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Motivation

Random sets showing long scale clustering e¤ects: e.g.
non-homogenous location of points in space, as seen for some defects
in materials:

In polycrystals modellled by random tessellations, defects located on
the grain boundaries

In composite materials, defects on �bers of a network

In multivariate data analysis: clouds of points located on varieties

Prediction of the fracture probability of specimens, for various
generalizations of the Poisson point process and of the Boolean
model, namely some Cox processes and Cox Boolean models
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Outline

Principle of random structure modeling

Basic model of random sets: Boolean model

Reminder on Poisson varieties

Iteration of Boolean varieties

Application to Fracture statistics models based on the weakest link
model
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Principle of random structure
modeling
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Characterization of a random structure: Main Criteria

Morphological criteria

Size
Shape
Distribution in space (Clustering, Scales, Anisotropy)
Connectivity

Probabilistic criteria

Probability laws (n points, supK )
Moments
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Characterization of a random set

Models derived from the theory of Random Sets by G.
MATHERON
For a random closed set A (RACS), characterization by the
CHOQUET capacity T (K ) de�ned on the compact sets K

T (K ) = PfK \ A 6= ∅g = 1� PfK � Acg = 1�Q(K )

In the Euclidean space Rn, CHOQUET capacity and dilation
operation

T (Kx ) = PfKx \ A 6= ∅g = Pfx 2 A� Ǩg
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Binary Morphology (Fe-Ag)
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Basic Operations of Mathematical Morphology

Dilation by hexagon
(2)

Erosion by hexagon
(2)
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Calculation of the CHOQUET capacity

For a given model, the functional T is obtained:

by theoretical calculation
by estimation

on simulations
on real structures (possible estimation of the parameters from the
"experimental" T , and tests of the validity of assumptions).
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Basic Models of Random Sets
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Point Processes

Most simple kind of random structure: very small defects isolated in a
matrix

Particular RACS: Choquet capacity T (K )

Probability generating function GK (s) of the random variable N(K )
(number of points of the process contained in K )

Example: Poisson point process with intensity θ. Prototype random
point process without any order

GK (s) = exp(θµn(K )(s � 1))
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Boolean Model

The Boolean model (G. Matheron, 1967) is obtained by implantation
of random primary grains A0(with possible overlaps) on Poisson points
xk with the intensity θ:

A = [xkA0xk
Any shape (convex or non convex, and even non connected) can be
used for the grain A0

Mines ParisTech (Institute) Iterated Boolean May 19, 2017 13 / 76



Boolean Model

Fe Ag
Boolean model of spheres

(0.5)
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Boolean model of spheres
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Boolean Model

Choquet capacity, with

q = Pfx 2 Acg

T (K ) = PfA\K 6= ∅g = 1� PfK � Acg = 1� exp(�θµ(A0 � Ǩ ))

= q
µ(A0�Ǩ )

µ(A0)

Ex: contact distribution (ball), covariance, 3-points statistics,. . .

Percolation threshold obtained from simulations: 0:2895 +- 0:0005
for spheres with a single diameter

Estimation of the percolation threshold of the complementary random
set of a boolean model of spheres (constant radius): 0.0540�0.005
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Long range random sets: Boolean
varieties
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Context

In some media, long �bre or extended strata networks, involving very long
range of correlations .

Needs to model and to simulate such media

Slow convergence of the RVE
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Context

Thermisorel �brous network (X-ray microtomography and simulation)
600 x 600 x 360 voxels ; 5.6 x 5.6 x 3.37 mm3 ; Resolution US2B: 9.36

µm/voxel

Peyrega C., Jeulin D., Delisée C., Malvestio J. (2009) 3D
morphological modelling of a random �brous network. Image Analysis
and Stereology.
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Reminder on Poisson varieties

In Rn, n Poisson linear varieties with dimension k (k = 0, 1, ..., n� 1)
Poisson point process fxi (ω)g, with intensity θk (dω) on the varieties
of dimension (n� k) containing the origin O, and with orientation ω

On every point xi (ω) is given a variety with dimension k, Vk (ω)xi ,
orthogonal to the direction ω.

By construction, Vk = [xi (ω)Vk (ω)xi .
For instance in R3 can be built a network of Poisson hyperplanes Πα

(orthogonal to the lines Dω containing the origin) or a network of Poisson
lines in every plane Πω containing the origin.

Matheron G. (1975) Random sets and integral geometry.
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Reminder on Poisson varieties

Theorem
The number of varieties of dimension k hit by a compact set K is a
Poisson variable, with parameter θ(K ):

θ(K ) =
Z

θk (dω)
Z
K (ω)

θn�k (dx) =
Z

θk (dω) θn�k (K (ω)) (1)

where K (ω) is the orthogonal projection of K on the orthogonal space to
Vk (ω), Vk?(ω). For the stationary case,

θ(K ) =
Z

θk (dω) µn�k (K (ω)) (2)
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Reminder on Poisson varieties

Theorem
The Choquet capacity T (K ) = PfK \ Vk 6= ?g of the varieties of
dimension k is given by

T (K ) = 1� exp
�
�
Z

θk (dω)
Z
K (ω)

θn�k (dx)
�

(3)

In the stationary case, the Choquet capacity is

T (K ) = 1� exp
�
�
Z

θk (dω) µn�k (K (ω))
�

(4)
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Reminder on Poisson varieties

Theorem

We consider now the isotropic (θk being constant) and stationary case,
and a convex set K. Due to the symmetry of the isotropic version, we can
consider θk (dω) = θk dω as de�ned on the half unit sphere (in Rk+1) of
the directions of the varieties Vk (ω). The number of varieties of dimension
k hit by a compact set K is a Poisson variable, with parameter θ(K ) with:

θ(K ) = θk

Z
µn�k (K (ω)) dω = θk

bn�kbk+1
bn

k + 1
2

Wk (K ) (5)

where bk is the volume of the unit ball in Rk (bk =
πk/2

Γ(1+
k
2
)
)

(b1 = 2, b2 = π, b3 =
4
3

π), and Wk (K ) is the Minkowski�s functional of

K, homogeneous and of degree n� k
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Reminder on Poisson varieties

Following examples useful for applications:

When k = n� 1, the varieties are Poisson planes in Rn; in that
case, θ(K ) = θn�1nWn�1(K ) = θn�1A(K ), where A(K ) is the norm
of K (average projected length over orientations).

In the plane R2 are obtained the Poisson lines, with θ(K ) = θL(K ),
L being the perimeter.

In the three-dimensional space are obtained Poisson lines for k = 1
and Poisson planes for k = 2. For Poisson lines, θ(K ) =

π

4
θS(K )

and for Poisson planes, θ(K ) = θM(K ), where S and M are the
surface area and the integral of the mean curvature.
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Boolean random varieties

De�nition
A Boolean model with primary grain A0 is built on Poisson linear varieties
in two steps: i) we start from a network Vk ; ii) every variety Vkα is dilated
by an independent realization of the primary grain A0. The Boolean RACS
A is given by

A = [αVkα � A0

By construction, this model induces on every variety Vk?(ω) orthogonal to
Vk (ω) a standard Boolean model with dimension n� k and with primary
grain A0(ω) and with intensity θ(ω)dω.

Jeulin D. (1991) Modèles de Fonctions Aléatoires multivariables. Sci.
Terre; 30: 225-256.
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Boolean random varieties

Choquet capacity obtained by averaging over the directions ω; it can also
be deduced from Eq. (4), after replacing K by A0 � Ǩ and averaging.

Theorem
The Choquet capacity of the Boolean model built on Poisson linear
varieties of dimension k is given by

T (K ) = 1� exp
�
�
Z

θk (dω) µn�k (A
0(ω)� Ǩ (ω))

�
(6)

For isotropic varieties, the Choquet capacity is given by

T (K ) = 1� exp
�
�θk

bn�kbk+1
bn

k + 1
2

W k (A
0 � Ǩ )

�
(7)
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Boolean random varieties

Particular cases of Eq. (6) when K = fxg (giving the probability
q = Pfx 2 Acg = exp

�
�
Z

θk (dω) µn�k (A
0(ω))

�
and when

K = fx , x + hg, giving the covariance of Ac , Q(h) :

Q(h) = q2 exp
�Z

θk (dω) Kn�k (ω,
�!
h .�!u (ω))

�
(8)

where Kn�k (ω, h) = µn�k (A
0(ω) \ A0�h(ω)) and

�!u (ω) is the unit
vector with the direction ω.
For a compact primary grain A0, there exists for any h an angular sector
where Kn�k (ω, h) 6= 0, so that the covariance generally does not reach its
sill, at least in the isotropic case, and the integral range is in�nite.

Jeulin D. (1991) Modèles de Fonctions Aléatoires multivariables. Sci.
Terre; 30: 225-256.
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Boolean model on Poisson planes

A Boolean model built on Poisson planes generates a structure with strata.
On isotropic Poisson planes, we have for a convex set A0 � Ǩ by
application of equation (7):

T (K ) = 1� exp
�
�θ M(A0 � Ǩ )

�
(9)

When A0 and K are convex sets, M(A0 � Ǩ ) = M(A0) +M(K ). If A0 � Ǩ
is not convex, T (K ) is expressed as a function of the length l of the
projection over the lines Dω by

T (K ) = 1� exp
�
�θ
Z
2πster

l(A0(ω)� Ǩ (ω)) dω

�
.

If A0 is a random sphere with a random radius R (with expectation R)
and K is a sphere with radius r , equation 9 becomes:

T (r) = 1� exp�4πθ(R + r)

T (0) = Pfx 2 Ag = 1� exp�4πθR

which can be used to estimate θ and R , and to validate the model.
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Boolean model on Poisson lines in 3D

Isotropic Poison �bres

Faessel M., Jeulin D. (2011) 3D Multiscale Vectorial Simulation of
Random Models, Proc. ICS 13, Beijing.

Schladitz K., Peters S., Reinel-Bitzer D., Wiegmann A., Ohser J.,
Design of acoustic trim based on geometric modeling and �ow
simulation for non-woven, Computational Materials Science 38 (2006)
56�66.
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Boolean model on Poisson lines in 3D

A Boolean model built on Poisson lines generates a �ber network, with
possible overlaps of �bers. On isotropic Poisson lines, for a convex set
A0 � Ǩ

T (K ) = 1� exp
�
�θ

π

4
S(A0 � Ǩ )

�
(10)

If A0 � Ǩ is not convex, T (K ) is expressed as a function of the area A of
the projection over the planes Πω by

T (K ) = 1� exp
�
�θ
Z
4πster

A(A0(ω)� Ǩ (ω)) dω

�
(11)

If A0 is a random sphere with a random radius R (with expectation R and
second moment E (R2)) and K is a sphere with radius r , equation 10
becomes:

T (r) = 1� exp
�
�π2θ(E (R2) + 2rR + r2)

�
T (0) = Pfx 2 Ag = 1� exp

�
�π2θE (R2)

�
which can be used to estimate θ, E (R2) and R , and to validate the model.
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Fluctuations and RVE of the volume fraction

Consider �uctuations of average values over di¤erent realizations of a
random medium inside the domain B with the volume V . In Geostatistics,
it is well known that for an ergodic stationary random function Z (x), with
mathematical expectation E (Z ), one can compute the variance D2Z (V ) of
its average value Z̄ (V ) over the volume V as a function of the central
covariance function C (h) of Z (x) by :

D2Z (V ) =
1
V 2

Z
B

Z
B
C (x � y) dxdy , (12)

where
C (h) = Ef(Z (x)� E (Z )) (Z (x + h)� E (Z ))g
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Fluctuations and RVE of the volume fraction

For a large specimen (with V � A3), equation (12) can be expressed to
the �rst order in 1/V as a function of the integral range in the space R3,
A3, by

D2Z (V ) = D
2
Z
A3
V
, (13)

with A3 =
1
D2Z

Z
R 3
C (h) dh, (14)

where D2Z is the point variance of Z (x) (here estimated on simulations)
and A3 is the integral range of the random function Z (x), de�ned when
the integral in equations (12) and (14) is �nite.
When Z (x) is the indicator function of the random set A, (13) provides
the variance of the local volume fraction (in 3D) as a function of the point
variance D2Z = p(1� p), p being the probability for a point x to belong to
the random set A.
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Scaling of the variance of the Boolean random varieties

Jeulin D. (2015) Power Laws Variance Scaling of Boolean Random
Varieties, Methodology and Computing in Applied Probability, pp.
1-15.

Consider a convex domain K in Rn, with Lebesgue measure µn(K )
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Scaling of the variance of the Boolean random varieties

Theorem

In Rn, the variance D2Z (K ) of the local fraction Z =
µn(A\K )

µn(K )
of a Boolean

model built on isotropic Poisson varieties of dimension k
(k = 0, 1, ..., n� 1) Vk , is asymptotically expressed by

D2Z (K ) = p(1� p)
�

Ak
µn(K )

� n�k
n

the scaling exponent being γ = n�k
n . As particular cases, Poisson points

(k = 0) give the standard Boolean model with a �nite integral range and
γ = 1, Poisson lines (k = 1) generate Poisson �bers with γ = n�1

n , and
Poisson hyperplanes (k = n� 1) provide Poisson strata with γ = 1

n .

Poisson strata: very slow decrease of the variance with the volume of the
sample K , with γ = 1

n .
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Scaling of the variance of the Boolean random varieties

For isotropic Boolean �bers in 2D, the scaling exponent is γ = 1
2

For isotropic Boolean �bers in 3D, γ = 2
3 . Exponent recovered

from numerical simulations for the volume fraction and for the
e¤ective elastic properties [1]. For �bers with a �nite length, an
intermediary situation will occur [2], and a scaling coe¢ cient
2
3 6 γ 6 1, depending on the size of the specimen is expected (γ ' 2

3
for small specimens, and γ ' 1 for large samples)

Dirrenberger J., Forest S., Jeulin D. (2014) Towards gigantic RVE
sizes for 3D stochastic �brous networks, International Journal of Solids
and Structures, volume 51(2), 2014, pp. 359-376.

Altendorf H., Jeulin D., Willot F. (2014) In�uence of �ber geometry
on the e¤ective properties: application to glass�ber-reinforced
composites, In�uence of the �ber geometry on the macroscopic elastic
and thermal properties, International Journal of Solids and Structures,
Vol. 51, pp. 3807-3822.
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Scaling of the variance of the Boolean random varieties

For isotropic Boolean strata in 3D, γ = 1
3 . Decrease of the

variance with size much slower than for a �nite integral range.
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Iteration of Boolean random
varieties
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Two steps Boolean varieties

Further generalization of Boolean models by iteration of Poisson varieties

For instance in R2, �rst consider Poisson lines, and in a second step
Poisson points on every line. Points are germs to locate primary
grains A0 to generate a Boolean model. Compared to the standard
Boolean model, alignments of grains

Similarly in R3, start from Poisson planes V2α and use Poisson lines
V1β in every plane to generate a Boolean model with �bers. In
contrast with Poisson �bers in R3, this model generates a random set
with some coplanar �bers: could mimic speci�c microstructures with
an order in a lower dimension subspace of Rn, such as preferred
germination of objects on speci�c planes or lines.

Models based on doubly stochastic Poisson random variables for which
the Choquet capacity can be obtained
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Two steps Boolean varieties

De�nition
Two steps random varieties are de�ned as follows: starting from Poisson
linear varieties Vk of dimension k and with intensity θk (dω) in Rn,
Poisson linear varieties Vk 0β with dimension 0 � k 0 < k and with intensity
θk 0(dω) are implanted on each Vkα. Then each Vk 0β is dilated by
independent realizations of a random compact primary grain A0 � Rn to
generate the Boolean RACS A:

A = [βVk 0β � A0

By construction, when k 0 = 0 the varieties Vk 0β are a particular case of a
Cox process driven by the random set Vk , and the derived random set A is
a Cox Boolean model (Jeulin 2012).
In what follows, purpose restricted to the stationary and isotropic case,
with the two intensities θk and θk 0
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Two steps Boolean varieties: Generating function

Theorem
The number N(K ) of varieties of dimension k 0 < k hit by the compact
set K is a random variable with generating function

Gk 0(s,K ) = EfsN (K )g = exp [θkakWk (K ) [ϕk 0(θk 0ak 0(1� s),K )� 1]]
(15)

where ak 0 =
bn�k 0bk 0+1

bn
k 0+1
2 and ϕk 0(λ,K ) is the Laplace transform of the

random variable Wk 0(K \ Vkα) , Wk 0 being the Minkowski functional
homogeneous with degree k � k 0 in Rk :

ϕk 0(λ,K ) = Efexp [�λWk 0(K \ Vk )]g (16)

the mathematical expectation being taken over the realizations Vkα.
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Two steps Boolean varieties: Choquet capacity

Theorem
As a consequence, the Choquet capacity of the Boolean RACS A built on
the Poisson linear varieties Vk 0 using a deterministic primary grain A0 is
derived from Gk 0(0,A0 � Ǩ ), E fg being the expectation with respect to
the random variety Vkα:

1� T (K ) (17)

= exp
�
�θkakWk (A

0 � Ǩ )
�
1� Efexp

�
�θk 0ak 0Wk 0(A

0 � Ǩ \ Vk )
�
g
��

Choquet capacity requires the use of the Laplace transform ϕk 0(λ,A
0 � Ǩ )

Not easy to express them in a closed form for speci�c compact sets K and
A0, but can be estimated by simulation of the random variables obtained
from random variables Wk 0(A0 � Ǩ \ Vkα) obtained from random sections
Examples of closed form expressions given now for two-steps Poisson
points in R2 and in R3
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Scaling of the variance of two steps Boolean random
varieties

The local volume fraction of A, µn(A\K )
µn(K )

has a variance proportional

to 1
µn(K )

n�k
n

Scaling law of the variance : same as for Boolean varieties, the
variance of the volume fraction of iterated varieties being
dominated by the e¤ect of the varieties of the �rst iteration,
namely Vk .

In R2 a Boolean model built on Poisson lines or on Poisson points
generated on Poisson lines have the same scaling with the
exponent γ = 1

2

In R3 a Boolean model built on Poisson lines or on Poisson points
in Poisson planes have the same scaling with the exponent γ = 1

3 ,
while for a Boolean model built on Poisson �bers or on Poisson
points located on Poisson lines we have γ = 2

3
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Two steps Boolean varieties in 2D and in 3D

Poisson points on Poisson lines in R2

Poisson points on Poisson planes in R3

Poisson points on Poisson lines in R3
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Poisson points on Poisson lines in 2D

Two steps point process:

1 Poisson lines in R2 (isotropic case), with intensity θ1
2 On each Poisson line, 1D Poisson point process, with intensity θ
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Poisson points on Poisson lines in 2D

Theorem
The generating function GK (s) of the random number of points NP (K )
contained in a convex set K in R2 with perimeter L(K ), random intercept
length L(K ) (with Laplace transform ϕL(λ,K )), is given by

GK (s) = exp (�θ1L(K )(1� ϕL(θ(1� s),K ))) (18)

We have

1� T (K ) = Q(K ) = exp (�θ1L(K )(1� ϕL(θ,K ))) (19)

Choquet capacity of the corresponding Boolean model for convex sets K
and A0 obtained by replacing K by (A0 � Ǩ ) in equation 19
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Poisson points on Poisson lines in 2D
Generating function and Choquet capacity for a disc

When K is the disc C (r) with radius r , generating function of the random
number of points NP (r) in C (r)

G (s, r) = exp [�2πrθ1(1� ϕL(θ(1� s), r))]

with

ϕL(λ, r) = π/2 [�BesselI (1, 2λr) + StruveL(�1, 2λr)]

Choquet capacity:

1� T (r) = Q(r) = exp [�2πrθ1(1� ϕL(θ, r))]
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Poisson points on Poisson planes in 3D

Two steps point process:

1 Poisson planes in R3 (isotropic case), with intensity θ2
2 On each Poisson plane, 2D Poisson point process, with intensity θ
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Poisson points on Poisson planes in 3D
Generating function and Choquet capacity

For a convex compact set K ,

GK (s) = exp [θ2M(K )(ψA(θ(1� s),K \ π)� 1)]

1� T (K ) = Q(K ) = exp [�θ2M(K )(1� ψA(θ,K \ π))]

with:

M(K ): integral of mean curvature of K

A(K \ π): area of sections of K by a random plane π, with Laplace
transform ψA(λ,K \ π)
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Poisson points on Poisson planes in 3D
Generating function and Choquet capacity for a sphere

Generating function G (s, r) of the random number of points NP (r) in the
sphere with radius r

G (s, r) = exp [�4πrθ2(1� ψ(θπ(1� s), r))]

1� T (r) = Q(r) = exp [�4πrθ2(1� ψ(θπ, r))]

with

ψ(λ, r) :=
exp(�λr2)

R rpλ
0 exp(y2)dy

r
p

λ
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Poisson points on Poisson lines in 3D

Two steps point process:

1 Poisson lines in R3 (isotropic case), with intensity θ1
2 On each Poisson line, 1D Poisson point process, with intensity θ

Models of a long �ber network with points germs
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Poisson points on Poisson lines in 3D
Generating function and Choquet capacity

For a convex compact set K ,

GK (s) = exp
h
�π

4
θ1S(K )(1� ϕL(θ(1� s),K ))

i
1� T (K ) = Q(K ) = exp

h
�π

4
θ1S(K )(1� ϕL(θ,K ))

i
where S(K ) is the surface area of K , and ϕL(λ,K ) the Laplace transform
of a random chord L(K ) in K

Mines ParisTech (Institute) Iterated Boolean May 19, 2017 51 / 76



Poisson points on Poisson lines in 3D
Generating function and Choquet capacity for a sphere

Generating function G (s, r) of the random number of points NP (r) in the
sphere with radius r

log(G (s, r)) =

�π2θ1r2
�
1� 2

(2rθ(1� s))2
[1� (1+ 2rθ(1� s)) exp(�2rθ(1� s))])

1� T (r) = Q(r) =

exp
�
�π2θ1r2

�
1� 2

(2rθ)2
[1� (1+ 2rθ) exp(�2rθ)]

��
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Three steps iteration: Poisson points on 2D Poisson lines
on 3D Poisson planes

1 Poisson planes in R3 (isotropic case), with intensity θ2
2 On each Poisson plane, 2D Poisson lines process, with intensity θ1
3 On each line, 1D Poisson point process with intensity θ

Models of a long �bers in random planes, with point defects
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Three steps iteration: Poisson points on 2D Poisson lines
on 3D Poisson planes
Generating function and Choquet capacity

Consider a convex compact set K , with random planar sections K \ π

log(GK (s))

= θ2M(K )(Eπ fexp [θ1L(K \ π) (ϕL(θ(1� s),K \ π)� 1)]g � 1)
where Eπ is the mathematical expectation over random sections

log(Q(K )) =

θ2M(K )(Eπ fexp [θ1L(K \ π) (ϕL(θ,K \ π)� 1)]g � 1)
with

perimeter L(K \ π) of sections of K , with Laplace transform
ψL(λ,K \ π),
random chord of each planar section L(K \ π), with Laplace
transform ϕL(λ,K \ π)
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Three steps iteration: Poisson points on 2D Poisson lines
on 3D Poisson planes
Generating function for a sphere

Generating function of the number of points of the process inside a sphere
with radius r

log(G (s, r))

= 4πθ2r(ER fexp [2πθ1R (ϕL(θ(1� s),R)� 1)]g � 1)

with

ER fexp [2πθ1R (ϕL(θ(1� s),R)� 1)]g

=
Z r

0
exp [2πθ1u (ϕL(θ(1� s), u)� 1)] f (u, r)du

f (u, r): distribution function of the radius R of random sections of a
sphere
ϕL(λ,R): Laplace transform of random chords of the disc with radius
R
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Three steps iteration: Poisson points on 2D Poisson lines
on 3D Poisson planes
Choquet capacity for a sphere

log(Q(r)) = log(1� T (r)) =

4πθ2r
�Z r

0
exp [2πθ1u (ϕL(θ, u)� 1)] f (u, r)du � 1

�
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Fracture Statistics Models
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Recall of the weakest link model

Decomposition of the volume V into links vi
Fracture of the volume V when a single link vi is broken

Classical computation for independent events

PfNon fractureg = ∏
i
PfNon fracture of vig

For vi ! 0, Pffractureg ' Φ((σ(x))dx , Φ increasing with the loading,
and Pfnon fracture of dxg ' 1�Φ((σ(x))dx

PfNon fracture of V g = exp(�
Z
V

Φ(σ(x))dx) =exp(�VΦ(σeq))

where the equivalent stress σeq is de�ned by

Φ(σeq) =
1
V

Z
V

Φ((σ(x))dx
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Recall of the weakest link model

Critical Defects at level σ: Poisson point process (Prototype
random process without any order) with the cumulative intensity
Φ(σ) (total number of point defects per unit volume, with critical
stress less than σ) in a matrix with σR = ∞
Model: ^ Boolean random function with point support primary
random functions (PRF); immediate extension to any PRF with a
support having almost surely compact sections.

For a homogeneous stress �eld σ(x) = σ

PfNon fracture of V g = exp(�VΦ(σ))

For Φ(σ) = θ(σ� σ0)m , PfNon fracture of V g follows a Weibull
distribution
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Poisson point process in the plane and Inf Boolean random
function with cone PRF
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Point defects generated by
iteration of random Poisson

varieties
Poisson points on Poisson planes in R3

Poisson points on Poisson lines in R3

Three steps iteration: Poisson points on 2D Poisson lines on Poisson
planes in R3
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Poisson points on Poisson planes

Two steps point process:

1 Poisson planes in R3 (isotropic case), with intensity θ2
2 On each Poisson plane, 2D Poisson point process, with intensity θ

In the case of point defects acting in fracture statistics, θ replaced by Φ(σ)
Considering the Poisson tessellation generated by Poisson planes, this
model �gures out point defects located on grain boundaries,
generating intergranular fracture

PfσR � σgπ = exp [�θ2M(K )(1� ψA(Φ(σ),K \ π))] (20)

When K is the sphere of radius r :

PfσR � σgπ = exp [�4πrθ2(1� ψ(πΦ(σ), r))] (21)

with

ψ(λ, r) :=
exp(�λr2)

R rpλ
0 exp(y2)dy

r
p

λ
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Poisson points on Poisson lines

Two steps point process:

1 Poisson lines in R3 (isotropic case), with intensity θ1
2 On each Poisson line, 1D Poisson point process, with intensity θ

Models of a long �ber network with point defects. In the case of point
defects acting in fracture statistics, θ replaced by Φ(σ)

PfσR � σgD = exp
h
�π

4
θ1S(K )(1� ϕL(Φ(σ),K ))

i
(22)
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Poisson points on Poisson lines

When K is the sphere with radius r

PfσR � σgD = (23)

exp
�
�π2θ1r2(1�

2
(2rΦ(σ))2

[1� (1+ 2rΦ(σ)) exp(�2rΦ(σ))]]
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Comparison of Fracture statistics for standard Poisson
points and for points on planes

Fracture of a sphere of sphere of radius r containing a random number of
points NP (r) with a given average:
For the standard Poisson point process,

EfNP (r)g =
4
3

πr3θ3

For Poisson points on Poisson planes,

EfNP (r)g =
8
3

π2r3θ2θ

Given an average number of defects in the sphere of radius r ,

θ3 = 2πθ2θ
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Comparison of Fracture statistics for standard Poisson
points and for points on planes

Using the same intensity Φ(σ) = θ for the two processes

log(PfσR � σgP )� log(PfσR � σgπ)

= 4πrθ2

�
1� ψ(θπ, r)� θr2

2

�
PfσR � σgπ < PfσR � σgP for r2Φ(σ) < 1.8

Given the same statistics of defects Φ(σ), for low applied stresses, or at
a small scale, the "intergranular" fracture probability is higher than
the standard probability of fracture. For high applied stresses the
reverse is true, and the material is less sensitive to "intergranular"
fracture
Crossing of the two probability curves for r2Φ(σ) ' 1.8
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Comparison of Fracture statistics for standard Poisson
points and for points on lines

Fracture of a sphere of sphere of radius r containing a random number of
points NP (r) with a given average:
For the standard Poisson point process,

EfNP (r)g =
4
3

πr3θ3

For Poisson points on Poisson lines,

EfNP (r)g =
4
3

π2r3θ1θ

Given an average number of defects in the sphere of radius r ,

θ3 = πθ1θ
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Comparison of Fracture statistics for standard Poisson
points and for points on lines

Using the same intensity Φ(σ) = θ for the two processes

log(PfσR � σgD )� log(PfσR � σgP )

= π2θ1r2
�
2
α2
(1� (1+ α) exp(�α))� 1+ 2

3
α

�
with α = 2rθ

PfσR � σgD < PfσR � σgP for any α

Given the same statistics of defects Φ(σ), the "�ber" fracture
probability is higher than the standard probability of fracture. The
material is more sensitive to points defects on �bers
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Comparison of Fracture statistics for Poisson points on
planes and for points on lines

Given an average number of defects in the sphere of radius r ,

θ2θπ =
1
2

θ1θD

Taking 2rθD = πr2θπ = α, we get π2θ1r2 = 4πrθ2
Using the same intensity Φ(σ) = θ = θπ = θD for the two processes,

log(PfσR � σgπ)� log(PfσR � σgD )

= π2θ1r2
�

ψ(θπ, r)� 2
α2
(1� (1+ α) exp(�α))

�
> 0

and therefore PfσR � σgπ > PfσR � σgD and it is easier to break a
specimen with defects on �bers than with defects on planes.
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Three steps iteration: Poisson points on 2D Poisson lines
on Poisson planes

1 Poisson planes in R3 (isotropic case), with intensity θ2
2 On each Poisson plane, 2D Poisson lines process, with intensity θ1
3 On each line, 1D Poisson point process with intensity θ

Models of a long �bers in random planes, with point defects
In the case of point defects acting in fracture statistics, θ replaced by Φ(σ)
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Three steps iteration: Poisson points on 2D Poisson lines
on Poisson planes

log(PfσR � σg3 iterations) =
θ2M(K )

(Eπ fexp [θ1L(K \ π) (ϕL(Φ(σ),K \ π)� 1)]g � 1)

For fracture statistics of the sphere with radius r ,

log(PfσR � σg3 iterations) =

4πθ2r
�Z r

0
exp [2πθ1u (ϕL(Φ(σ), u)� 1)] f (u, r)du � 1

�
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Comparison of Fracture statistics for Poisson points and
for the three steps iteration

Fracture of a sphere of radius r containing a random number of points
NP (r) with a given average:
For the standard Poisson point process,

EfNP (r)g =
4
3

πr3θ3

For Poisson points on Poisson lines on Poisson planes,

EfNP (r)g =
4
3

πr3(θ2θ1θ2π2)

Given an average number of defects in the sphere of radius r ,

θ3 = 2π2θ2θ1θ

To compare fracture statistics of Poisson points and of the three iterations
case, use of the ratio

4
3

θ3r3

4θ2r
=
4
3
2π2θ2θ1θ

4θ2
r2 =

2
3

π2θ1θr2
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Comparison of Fracture statistics for Poisson points and
for the three steps iteration

With auxilliary variables 2θr = α and θ1r = β, we have to compare
1
3π2θ1αr = 1

3π2αβ to

1�
Z 1

0
exp [�2πβy (1� ϕL(θ, ry))]

yp
1� y2

dy

Comparison by numerical calculation of the integral, made over α, for
given β. For β = 0.01, 0.1, 1 and 10,

PfσR � σg3 iterations > PfσR � σgP

With these assumptions, the strength of a medium with Poisson point
defects is lower than for the defects localized on lines in planes
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Comparison of Fracture statistics for Poisson points on
Poisson planes and for the three steps iteration

Average number of points in the sphere with radius r
For Poisson points on Poisson planes

EfNπ(r)g
8
3

π2r3θ2θπ

and for 3 iterations

EfNP (r)g3 =
4
3

πr3(θ2θ1θ2π2)

To keep the same average values,

2θ2θπ = 2πθ2θ1θ

Taking θπ = θ to get the same statistics over points, and θ2 identical for
the two models, in order to keep the same scale for the Poisson polyedra,
πθ1 = 1 and θ1 = 1/π
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Comparison of Fracture statistics for Poisson points on
Poisson planes and for the three steps iteration

For β = 0.01, 0.1, 0.5, 0.75, numerical calculations give

PfσR � σg3 iterations > PfσR � σgπ

For β = 1,

PfσR � σg3 iterations < PfσR � σgπ when α < 1.99

PfσR � σg3 iterations > PfσR � σgπ when α > 1.99

For β = 2, 10,

PfσR � σg3 iterations < PfσR � σgπ
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Conclusion

New models of random sets and point processes designed to simulate
some speci�c clustering of points, namely on random lines in R2

and R3 and on random planes in R3

Possible application is to model point defects in materials with
some degree of large scale alignments
Derivation of general theoretical results, useful to compare
geometrical e¤ects on the sensitivity of materials to fracture

Easy generalization to more than one critical defect, using the
distribution of the number of defects in a domain

Based on the presented theoretical results, applications can be looked
for from statistical experimental data.
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