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Introduction



Let
(
ξm,m ∈ Nd

)
, d ≥ 2, be a multi-indexed family of i.i.d. random

variables with finite common mean µ > 0.

Denote by Sn, n ∈ Nd , their partial sums over rectangles:

Sn =
∑
m≤n

ξm.

In the case of d = 1, the renewal process
(
N(t), t > 0

)
is classically

defined by

N(t) = min
{
n : Sn ≥ t

}
.

In the multidimensional case, the latter is not applicable any-

more due to the lack of natural total order in Nd . So, a relevant

multidimensional renewal process should be set-valued!
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For t > 0, consider the renewal sets Mt of the following form:

Mt =
{
n ∈ Nd : Sn ≥ t

}
.



Two basic questions:

1) How large are Mt? (Or, more precisely, how large are Mt?)

2) What do Mt look like?

Answer to 1):

asymptotic results on the cardinality of Mt . Some limit theorems

are summarized in the recent monograph by Klesov (2014).

Theorem (SLLN for cardMt , O. Klesov, 1991)

ξ ≥ 0 a.s.,

E
(
ξ logd−1+ ξ

)
<∞,

=⇒ lim
t→∞

cardMt

t logd−1 t
=

1

µ(d − 1)!
a.s.

The same asymptotics holds for the renewal function U(t) = E cardMt .



Two basic questions:

1) How large are Mt? (Or, more precisely, how large are Mt?)

2) What do Mt look like?

Answer to 1):

asymptotic results on the cardinality of Mt . Some limit theorems

are summarized in the recent monograph by Klesov (2014).

Theorem (SLLN for cardMt , O. Klesov, 1991)

ξ ≥ 0 a.s.,

E
(
ξ logd−1+ ξ

)
<∞,

=⇒ lim
t→∞

cardMt

t logd−1 t
=

1

µ(d − 1)!
a.s.

The same asymptotics holds for the renewal function U(t) = E cardMt .



Theorem (Marcinkiewicz-Zygmund SLLN for cardMt ,

O. Klesov, J. Steinebach, 1997)

Let

i) ξ ≥ 0 a.s.,

ii) E
(
ξβ logd−1+ ξ

)
<∞ for β < β0(d) with some β0(d) ∈ [1, 2].

Then

lim
t→∞

cardMt − t
µP(log t

µ)

t1/β logd−1 t
= 0 a.s.

Here P is a polynomial of degree d−1 which can be explicitly given.

Answer to 2):

asymptotic results on the location and the shape of Mt

(the aim of the talk).
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An informal discussion



We start with the SLLN for the multi-indexed case.

Standing notation: |n| def= n1 · . . . · nd .

Theorem (multi-indexed SLLN, R. Smythe, 1973)

E
(
|ξ| logd−1+ |ξ|

)
<∞⇐⇒ lim

|n|→∞

Sn
|n|

= µ a.s.

In other words, Sn ≈ µ|n|.
Thus, Sn ≥ t roughly means that |n| ≥ µ−1t.

Equivalently,

t−1/d ·
{
n : Sn ≥ t

}︸ ︷︷ ︸
t−1/dMt (rescaledMt)

≈ t−1/d ·
{
n : |n| ≥ µ−1t

}
.︸ ︷︷ ︸

approximate the set

H=
{
x∈Rd

+ : |x |≥µ−1
}

as t→∞
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The rescaled renewal set t−1/dMt

, the “limit” set H,

and its inner and outer neighbourhoods.
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For c ∈ R, let us introduce the neighbourhoods of H:

H(c) =
{
x ∈ Rd

+ : |x | ≥ µ−1 + c
}
.

Notice that H(c) decreases in c and H(0) = H.

In the rest of the talk, we discuss how close t−1/dMt and H are.

We use two different approaches:

1) set-inclusion

(bounds in terms of set inclusions for t−1/dMt and H(c));

2) metrical

(bounds in terms of distances between sets).
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A problem with the metrical approach in case of lattice sets:

we have to extremely accurately count the number of integer points

between “hyperbolas” {x : |x | = c1} and {x : |x | = c2}. This

is closely related to some number-theoretic issues (the generalized

Dirichlet divisor problem). The required bounds are only conjectured

and go back to the Riemann Hypothesis.

A way out is to use continuous counterparts ofMt constructed

by piecewise multilinear interpolation:

Sx =
∑
k∈Cx

vk(x) Sk∗ .

Here Cx denotes the set of all neighbouring integer points to x ,

vk(x) stands for the volume of the box with k and x as diagonally

opposite vertices and with faces parallel to the coordinate planes,

and k∗ means the vertex opposite to k in the cube Cx .

So, we redefine Mt as continuous sets: Mt =
{
x ∈ Rd

+ : Sx ≥ t
}
.
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Set-inclusion SLLN and LIL

for renewal sets



We will need the following generalization of regular variation.

Definition 1 (Avacumović, 1936)

A non-negative measurable function p on (a,∞), a > 0, is said

to be O-regularly varying (O-RV for short) if

lim sup
t→∞

p(ct)

p(t)
<∞

for all c > 0.

The class of O-RV functions clearly includes all the RV functions

together with a lot of oscillating ones.



Theorem 1 (multidimensional inversion)

Let p =
(
p(t), t > a

)
be an O-RV function such that

i) p(t) increases for large t,

ii) p(t)
t decreases for large t.

Assume that Sn − µ|n| = O
(
p(|n|)

)
a.s. as n→∞.

Then the inclusions H
(
εp(t)
t

)
⊂ t−1/dMt ⊂ H

(
− εp(t)

t

)
hold

true a.s. for all ε > 0 and t > t0 with some t0 = t0(ω, ε) > 0.

Examples of p:

• tr , 0 ≤ r ≤ 1;

• tr (log t)α, 0 < r < 1, α ∈ R;

• tr (log t)α(log log t)δ, 0 < r < 1, α, δ ∈ R;

• etc.
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Corollary 1 (set-inclusion Marcinkiewicz-Zygmund SLLN)

Let

E
(
|ξ|β logd−1+ |ξ|

)
<∞

for some β ∈ [1, 2).

Then the inclusions

H
(
εt

1
β
−1
)
⊂Mt ⊂ H

(
−εt

1
β
−1
)

hold true a.s. for all ε > 0 and t > t0 with some

t0 = t0(ω, ε, β) > 0.

Proof

Multi-indexed Marcinkiewicz-Zygmund SLLN by A. Gut (1978) +

multidimensional inversion (Theorem 1).
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Theorem 2 (set-inclusion LIL)

Let

E
[
ξ2

logd−1
+ ξ

log+ log+ |ξ|

]
<∞.

Then

i) if γ < −µ− 3
2 , then t−

1
dMt ⊂ H

(
γσ
√

2dt−1 log log t
)

a.s.

for all t > t0 with some t0 = t0(ω, γ) > 0;

ii) if −µ− 3
2 ≤ γ ≤ µ−

3
2 , then there are positive sequences

(
t ′i , i ∈ N

)
and

(
t ′′i , i ∈ N

)
depending on ω and γ, such that a.s. t ′i → ∞,

t ′′i →∞, and for all i a.s.

(t ′i )
− 1

dMt′i
6⊂ H

(
γσ
√

2d(t ′i )
−1 log log t ′i

)
,

(t ′′i )−
1
dMt′′i

6⊃ H
(
γσ
√

2d(t ′′i )−1 log log t ′′i

)
;

iii) if γ > µ−
3
2 , then t−

1
dMt ⊃ H

(
γσ
√

2dt−1 log log t
)

a.s.

for all t > t0 with some t0 = t0(ω, γ) > 0.
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Metrical SLLN and LIL

for renewal sets



Definition 2

i) The Hausdorff distance ρH(X ,Y ) between two subsets X and

Y of Rd
+ is defined by

ρH(X ,Y ) = max
{

sup
x∈X

inf
y∈Y

ρ(x , y), sup
y∈Y

inf
x∈X

ρ(x , y)
}
,

with ρ denoting the Euclidean distance in Rd .

ii) For a fixed compact set K ⊂ Rd , the localized symmetric differ-

ence distance (a.k.a. Fréchet-Nikodym one) ρK4(X ,Y ) between

two Borel subsets X and Y of Rd
+ is defined by

ρK4(X ,Y ) = λd

(
K ∩

(
X4Y

))
,

with λd denoting the Lebesgue measure on Rd .
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Theorem 3 (metrical Marcinkiewicz-Zygmund SLLN)

Let

E
(
|ξ|β logd−1+ |ξ|

)
<∞

for some β ∈ [1, 2).

Then

ρH
(
t−1/dMt ,H

)
= O

(
t

1
β
−1) a.s. as t →∞,

and, for any compact set K ⊂ Rd ,

ρK4
(
t−1/dMt ,H

)
= O

(
t

1
β
−1) a.s. as t →∞.



Theorem 4 (metrical LIL)

Let

E
[
ξ2

logd−1
+ ξ

log+ log+ |ξ|

]
<∞.

Then

lim sup
t→∞

ρH
(
t−1/dMt ,H

)√
t−1 log log t

=
√

2 d−
1
2σµ−

1
2−

1
d a.s.,

and, for any compact set K ⊂ Rd ,

lim sup
t→∞

ρK4(t−1/dMt ,H)√
t−1 log log t

≤ 2
√

2σµ−
3
2 LK a.s.,

with

LK =

∫
(K∩∂H)pr

λd−1(dx)

|x |
.

In case ξ is a.s. non-negative, the bound can be improved to

lim sup
t→∞

ρK4(t−1/dMt ,H)√
t−1 log log t

≤
√

2σµ−
3
2 LK a.s.
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Thank you

for your attention
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