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In the case of d = 1, the renewal process (N(t), t > 0) is classically
defined by
N(t) = min{n: S, > t}.

In the multidimensional case, the latter is not applicable any-
more due to the lack of natural total order in N9. So, a relevant
multidimensional renewal process should be set-valued!



For t > 0, consider the renewal sets M of the following form:

My ={neN’: S, >t}
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Two basic questions:

1) How large are M;? (Or, more precisely, how large are M,;?)
2) What do M; look like?
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Answer to 1):
asymptotic results on the cardinality of M;. Some limit theorems
are summarized in the recent monograph by Klesov (2014).

Theorem (SLLN for card M;, O. Klesov, 1991)

§ Z 0 a.s., . card ﬂt 1
. — |im = [ a-s.
E(f log?’ 5) < 00, '

t—o0 tlogd_1 t p(d —1)

The same asymptotics holds for the renewal function U(t) = E card M.



Theorem (Marcinkiewicz-Zygmund SLLN for card M,,
O. Klesov, J. Steinebach, 1997)
Let

i) €>0as,
i) E(§5 logd~? ) < o0 for B < fo(d) with some Bo(d) € [1,2].
Then
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Here P is a polynomial of degree d —1 which can be explicitly given.
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Let

i) €>0as,
i) E(§5 logd~? ) < o0 for B < fo(d) with some Bo(d) € [1,2].
Then -
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Here P is a polynomial of degree d —1 which can be explicitly given.

Answer to 2):
asymptotic results on the location and the shape of M;
(the aim of the talk).
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The rescaled renewal set t=1/9 M,
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The rescaled renewal set tfl/d/\/lt, the “limit" set H
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The rescaled renewal set t=1/9 M, the “limit” set 7,
and its inner and outer neighbourhoods.




We start with the SLLN for the multi-indexed case.

Let |n| stand for ny - ... ng.

Theorem (multi-indexed SLLN, R. Smythe, 1973)

(].f\logd llf\) <oo<:>| I||m |i"|—ua.s.

In other words, S, ~ u/|n|.
Thus, S, > t roughly means that |n| > p~'t.

Equivalently,

a
t_%-{n:S,,Zt}% ~3. {n:] n]>u1t}.

t=1/d M; (rescaled M) approx1mate the set
’H:{XGRi: |X|Z;F1} as t—o00




For c € R, let us introduce the neighbourhoods of H:
H(c)={x e RY: x| > u~t +c}.

Notice that #(c) decreases in ¢ and H(0) = H.
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Notice that #(c) decreases in ¢ and H(0) = H.

In the rest of the talk, we discuss how close t_l/d/\/lt and H are.

We use two different approaches:
1) set-inclusion
(bounds in terms of set inclusions for t~/9 M, and H(c));

2) metrical
(bounds in terms of distances between sets).



A problem with the metrical approach in case of lattice sets:
we have to extremely accurately count the number of integer points
between “hyperbolas” {x: |x| = ¢} and {x: |x| = c}. This
is closely related to some number-theoretic issues (the generalized
Dirichlet divisor problem). The required bounds are only conjectured
and go back to the Riemann Hypothesis.



A problem with the metrical approach in case of lattice sets:
we have to extremely accurately count the number of integer points
between “hyperbolas” {x: |x| = ¢} and {x: |x| = c}. This
is closely related to some number-theoretic issues (the generalized
Dirichlet divisor problem). The required bounds are only conjectured
and go back to the Riemann Hypothesis.

A way out is to use continuous counterparts of M constructed
by piecewise multilinear interpolation:
Se=Y_ Vi(x) S
ke Cx

Here C. denotes the set of all neighbouring integer points to x,
vk(x) stands for the volume of the box with k and x as diagonally
opposite vertices and with faces parallel to the coordinate planes,
and k* means the vertex opposite to k in the cube C,.

So, we redefine M; as continuous sets: M; = {X € Ri: S > t}.



Set-inclusion SLLN and LIL
for renewal sets




We will need the following generalization of regular variation.

Definition 1 (Avacumovi¢, 1936)
A non-negative measurable function p on (a,c0), a > 0, is said
to be O-regularly varying (O-RV for short) if

p(ct)

limsup ——= < o0
o’ p(t)

for all ¢ > 0.

The class of O-RV functions clearly includes all the RV functions
together with a lot of oscillating ones.



Theorem 1 (multidimensional inversion)
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Theorem 1 (multidimensional inversion)
Let p = (p(t),t > a) be an O-RV function such that

i) p(t) increases for large t,
(

ii) —) decreases for large t.

Assume that S, — pu|n| = o(p(|n|)) a.s. as n — oco.

Then the inclusions 7—[< P( )> C t_l/dM C 7—[< ep( )> hold

true a.s. for all e > 0 and t > ty with some ty = to(w,e) > 0.

Examples of p:

o t" 0<r<1;

o t'(logt)*, 0<r<1 aecR;

e t'(logt)*(loglogt)’, 0 < r <1, a,6 €R;
e etc.
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Corollary 1 (set-inclusion Marcinkiewicz-Zygmund SLLN)
Let

E(I¢]° log{ " [¢]) < o0
for some 3 € [1,2).
Then the inclusions
1 4 1 4
H(etﬁ ) C M; C H(—z—:tﬂ )
hold true a.s. for all ¢ > 0 and t > ty with some
to = tO(W,E,ﬁ) > 0.

Proof

Multi-indexed Marcinkiewicz-Zygmund SLLN by A. Gut (1978) +
multidimensional inversion (Theorem 1).
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Theorem 2 (set-inclusion LIL)
Let

d—1
E{gz'%} c
log, log, [¢]

Then

0 ify < —u_%, then t=4 M, C 7—[(70\/2dt—1 log log t) a.s.

for all t > ty with some ty = to(w,7) > 0;

i) if —u~% <~ < pu3, then there are positive sequences (t,i € N)
and (t/,i € N) depending on w and v, such that a.s. t| — oo,
t! — oo, and for all i a.s.

(tl{)*ﬁ_/\/[t’_, 4 H(’ya\/2d(t{)*1 log log t;),
(tl{/)—%Mti,, ) H(WU\/Zd(ti”)*l log log t}’);

jii) ify > p"2, then t—a Mg D H(yo\/2dtloglogt) a.s.

for all t > to with some ty = to(w, ) > 0.
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for renewal sets




Definition 2

i) The Hausdorff distance py(X,Y) between two subsets X and
Y of Ri is defined by

pr(X, Y) = max{sup inf p(x,y), sup inf p(x,y)},
xeX yeY yeY xeX

with p denoting the Euclidean distance in RY.
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i) The Hausdorff distance py(X,Y) between two subsets X and
Y of Ri is defined by

pr(X, Y) = max{sup inf p(x,y), sup inf p(x,y)},
xeX yeY yeY xeX

with p denoting the Euclidean distance in RY.

ii) For a fixed compact set K C RY, the localized symmetric differ-
ence distance (a.k.a. Fréchet-Nikodym one) pX (X, Y) between
two Borel subsets X and Y of Ri is defined by

PKX,Y) = M (K N (XAY)),

with Ay denoting the Lebesgue measure on RY.



Theorem 3 (metrical Marcinkiewicz-Zygmund SLLN)
Let

E(I¢17 log{ ™t [€]) < o0
for some 3 € [1,2).
Then

pH(tfl/th,’H) = O(t%_l) a.s. ast — oo,

and, for any compact set K C RY,

pg(t_l/d/\/lt,’H) = O(t%_l) a.s. ast — o0.
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Theorem 4 (metrical LIL)

Let o
g~
log, log, [¢]

Then
. pH(t_l/thH)
lim sup

t—oo 4/t lloglogt

and, for any compact set K C RY,

= \@d*%ow*%*5 a.s.,

. pz(til/thIH)
lim sup

t—oo +/tlloglogt

L 7/ )\d_l(dX)
K — =0
(KNOH)pr x|

In case & is a.s. non-negative, the bound can be improved to

<2V2ou ik as,

with

. PR(ETVIM, H)
lim sup

t—woo y/t~lloglogt

< ﬁa/f% Lk a.s.



Thank you
for your attention
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