

On D.G. Kendall's problem in spherical space

Daniel Hug, joint work with Andreas Reichenbacher | Luminy, May 2017

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

1/26

Introduction: Kendall's problem

- Poisson line process in \mathbb{R}^2 , stationary and isotropic
- Stationary, isotropic line tessellation
- **Crofton cell or zero cell** Z₀: containing the origin

Kendall's Conjecture (1940s, 1987) David George Kendall (1918 - 2007):

"The conditional law for the shape of Z_0 , given the area $A(Z_0)$ of Z_0 , converges weakly, as $A(Z_0) \rightarrow \infty$, to the degenerate law concentrated at the spherical shape."

- R. Miles (1995)
- I. N. Kovalenko (1997, 1999)
- A. Goldman (1998)
- Calka (2002; '10, '13 (surveys))
- D. Hug, M. Reitzner, R. Schneider (2004)
- D. Hug, R. Schneider (2007)
- ...
- G. Bonnet (2016)

Random tessellations in \mathbb{R}^d

Let *X* be a stationary and isotropic Poisson hyperplane process in \mathbb{R}^d with intensity $\gamma > 0$. The **intensity measure** of *X* is

$$\mathbb{E}X(\cdot) = \gamma \int_{\mathbb{S}^{d-1}} \int_0^\infty \mathbf{1}\{u^\perp + tu \in \cdot\} dt \, \sigma_{d-1}(du).$$

Let $\mathcal{H}_K := \{H : H \cap K \neq \emptyset\}$. The hitting functional of X is

$$K \mapsto \mathbb{E}X(\mathcal{H}_K) \sim V_1(K)$$
 for $K \in \mathcal{K}^d$,

 V_1 is the **mean width**.

Let Z_0 be the zero cell of the tessellation induced by X.

What is the limit shape of Z_0 – if it exists – given $V_d(Z_0) o \infty$?

Random tessellations in \mathbb{R}^d

Let *X* be a stationary and isotropic Poisson hyperplane process in \mathbb{R}^d with intensity $\gamma > 0$. The **intensity measure** of *X* is

$$\mathbb{E}X(\cdot) = \gamma \int_{\mathbb{S}^{d-1}} \int_0^\infty \mathbf{1}\{u^\perp + tu \in \cdot\} dt \, \sigma_{d-1}(du).$$

Let $\mathcal{H}_{\mathcal{K}} := \{H : H \cap \mathcal{K} \neq \emptyset\}$. The hitting functional of X is

$$K \mapsto \mathbb{E}X(\mathcal{H}_K) \sim V_1(K)$$
 for $K \in \mathcal{K}^d$,

V_1 is the mean width.

Let Z_0 be the zero cell of the tessellation induced by X.

What is the limit shape of Z_0 – if it exists – given $V_d(Z_0) o \infty$?

Random tessellations in \mathbb{R}^d

Let *X* be a stationary and isotropic Poisson hyperplane process in \mathbb{R}^d with intensity $\gamma > 0$. The **intensity measure** of *X* is

$$\mathbb{E}X(\cdot) = \gamma \int_{\mathbb{S}^{d-1}} \int_0^\infty \mathbf{1}\{u^\perp + tu \in \cdot\} dt \, \sigma_{d-1}(du).$$

Let $\mathcal{H}_{\mathcal{K}} := \{H : H \cap \mathcal{K} \neq \emptyset\}$. The hitting functional of X is

$$K \mapsto \mathbb{E}X(\mathcal{H}_K) \sim V_1(K)$$
 for $K \in \mathcal{K}^d$,

V₁ is the mean width.

Let Z_0 be the zero cell of the tessellation induced by X.

What is the limit shape of Z_0 – if it exists – given $V_d(Z_0) \rightarrow \infty$?

Kendall's problem in \mathbb{R}^d : a deviation result

Needed: a deviation functional

 $\vartheta(Z_0) =$ "scaling, translation, rotation invariant distance of Z_0 from B^d ".

Theorem (Hug, Reitzner, Schneider (2004), a special case

If X is stationary and isotropic in \mathbb{R}^d , $\varepsilon \in (0, 1)$, and $a^{1/d} \gamma \ge 1$, then

$$\mathbb{P}\left(\vartheta(Z_0) \geq \varepsilon \mid V_d(Z_0) \geq a\right) \leq c \, \exp\left(-c_1 \, \varepsilon^{d+1} a^{1/d} \gamma\right)$$

where $c = c(d, \varepsilon)$ and $c_1 = c_1(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations, lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

Kendall's problem in \mathbb{R}^d : a deviation result

Needed: a deviation functional

 $\vartheta(Z_0) =$ "scaling, translation, rotation invariant distance of Z_0 from B^d ".

Theorem (Hug, Reitzner, Schneider (2004), a special case ...)

If X is stationary and isotropic in \mathbb{R}^d , $\varepsilon \in (0, 1)$, and $a^{1/d} \gamma \ge 1$, then

$$\mathbb{P}\left(artheta(Z_0)\geqarepsilon\mid V_d(Z_0)\geq a
ight)\leq c\,\exp\left(-c_1\,arepsilon^{d+1}a^{1/d}\gamma
ight)$$
 .

where $c = c(d, \varepsilon)$ and $c_1 = c_1(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations, lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

Kendall's problem in \mathbb{R}^d : a deviation result

Needed: a deviation functional

 $\vartheta(Z_0) =$ "scaling, translation, rotation invariant distance of Z_0 from B^d ".

Theorem (Hug, Reitzner, Schneider (2004), a special case ...)

If X is stationary and isotropic in \mathbb{R}^d , $\varepsilon \in (0, 1)$, and $a^{1/d} \gamma \ge 1$, then

$$\mathbb{P}\left(artheta(Z_0)\geqarepsilon\mid V_d(Z_0)\geq a
ight)\leq c\,\exp\left(-c_1\,arepsilon^{d+1}a^{1/d}\gamma
ight)$$

where $c = c(d, \varepsilon)$ and $c_1 = c_1(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations, lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

Kendall's problem in \mathbb{R}^d : asymptotic distribution

Recall: $V_1(K)$ denotes the mean width of K.

Theorem (Hug, Schneider (2007))

$$\lim_{a\to\infty}a^{-1/d}\ln\mathbb{P}\left(V_d(Z_0)\geq a\right)=-\tau\,\gamma,$$

where

$$\tau \sim \min\{V_1(K): V_d(K) = 1\}.$$

Isoperimetric and stability problems!

Kendall's problem in \mathbb{R}^d : asymptotic distribution

Recall: $V_1(K)$ denotes the mean width of K.

Theorem (Hug, Schneider (2007))

$$\lim_{a\to\infty}a^{-1/d}\ln\mathbb{P}\left(V_d(Z_0)\geq a\right)=-\tau\,\gamma,$$

where

$$\tau \sim \min\{V_1(K) : V_d(K) = 1\}.$$

Isoperimetric and stability problems!

Isoperimetry and stability

Urysohn inequality:

 $V_1(K) \geq c(d) V_d(K)^{1/d}.$

Equality holds if and only if K is a ball.

Quantitative stability improvement:

 $V_1(K) \geq \left(1+a(d)\,\vartheta(K)^{d+1}
ight)c(d)\,V_d(K)^{1/d}.$

Isoperimetry and stability

Urysohn inequality:

 $V_1(K) \geq c(d) V_d(K)^{1/d}.$

Equality holds if and only if K is a ball.

Quantitative stability improvement:

 $V_1(K) \geq \left(1 + a(d) \vartheta(K)^{d+1}\right) c(d) V_d(K)^{1/d}.$

Kendall's problem in spherical space

- Spherical tessellations
- Large cells?
- A geometric inequality
- Some results

Kendall's problem in spherical space

- Spherical tessellations
- Large cells?
- A geometric inequality
- Some results

Spherical tessellations by great subspheres

- X isotropic Poisson process in $\mathbb{S}^d \subset \mathbb{R}^{d+1}$
- Spherical isotropic Poisson process of great subspheres

$$\widetilde{X} := \{x^{\perp} \cap \mathbb{S}^d : x \in X\}$$

Crofton cell Z₀

Spherically convex bodies: $\mathcal{K}_s^d \ni K$

 $\mathcal{H}_{K} := \{L \in G(d+1,d) \cap \mathbb{S}^{d} : L \cap K \neq \emptyset\}$ $\mathbb{E}\widetilde{X}(\mathcal{H}_{K}) = \gamma_{S} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$ $U_{1}(K) := (2\omega_{d+1})^{-1} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$

Void probability

$$\mathbb{P}(\widetilde{X}(\mathcal{H}_{\mathcal{K}})=0)=\exp\left(-2\gamma_{S}\omega_{d+1}U_{1}(\mathcal{K})\right)$$

Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$ $\mathcal{H}_{K} := \{L \in G(d+1, d) \cap \mathbb{S}^{d} : L \cap K \neq \emptyset\}$ $\mathbb{E}\widetilde{X}(\mathcal{H}_{K}) = \gamma_{S} \int_{\mathbb{S}^{d}} \mathbb{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$ $U_{1}(K) := (2\omega_{d+1})^{-1} \int_{\mathbb{S}^{d}} \mathbb{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$

Void probability

$$\mathbb{P}(\widetilde{X}(\mathcal{H}_{\mathcal{K}})=0)=\exp\left(-2\gamma_{S}\omega_{d+1}U_{1}(\mathcal{K})\right)$$

Spherically convex bodies: $\mathcal{K}_s^d \ni K$

$$\mathcal{H}_{K} := \{L \in G(d+1,d) \cap \mathbb{S}^{d} : L \cap K \neq \emptyset\}$$
$$\mathbb{E}\widetilde{X}(\mathcal{H}_{K}) = \gamma_{S} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$
$$U_{1}(K) := (2\omega_{d+1})^{-1} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$

Void probability

$$\mathbb{P}(\widetilde{X}(\mathcal{H}_{K})=0)=\exp\left(-2\gamma_{S}\omega_{d+1}U_{1}(K)\right)$$

Spherically convex bodies: $\mathcal{K}_s^d \ni K$

$$\mathcal{H}_{K} := \{L \in G(d+1,d) \cap \mathbb{S}^{d} : L \cap K \neq \emptyset\}$$
$$\mathbb{E}\widetilde{X}(\mathcal{H}_{K}) = \gamma_{S} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$
$$U_{1}(K) := (2\omega_{d+1})^{-1} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$

Void probability

$$\mathbb{P}(\widetilde{X}(\mathcal{H}_{\mathcal{K}})=0)=\exp\left(-2\gamma_{S}\omega_{d+1}U_{1}(\mathcal{K})\right)$$

Spherically convex bodies: $\mathcal{K}_s^d \ni K$

$$\mathcal{H}_{K} := \{L \in G(d+1,d) \cap \mathbb{S}^{d} : L \cap K \neq \emptyset\}$$
$$\mathbb{E}\widetilde{X}(\mathcal{H}_{K}) = \gamma_{S} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$
$$U_{1}(K) := (2\omega_{d+1})^{-1} \int_{\mathbb{S}^{d}} \mathbf{1}\{x^{\perp} \cap K \neq \emptyset\} \sigma_{d}(dx)$$

Void probability

$$\mathbb{P}(\widetilde{X}(\mathcal{H}_{\mathcal{K}})=0)=\exp\left(-2\gamma_{\mathcal{S}}\omega_{d+1}U_{1}(\mathcal{K})\right)$$

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}^d_s$ and let $C \subset \mathbb{S}^d$ be a spherical cap with $\sigma_d(C) = \sigma_d(K)$. Then

 $U_1(K) \geq U_1(C).$

Equality holds if and only if K is a spherical cap.

Since
$$U_1(K) = \frac{1}{2} - V_n(K^*)$$
,

$$\sigma_d(C) = \sigma_d(K) \Longrightarrow \sigma_n(K^*) \le \sigma_n(C^*),$$

and conversely.

We need a quantitative improvement / stability result!

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}^d_s$ and let $C \subset \mathbb{S}^d$ be a spherical cap with $\sigma_d(C) = \sigma_d(K)$. Then

 $U_1(K) \geq U_1(C).$

Equality holds if and only if K is a spherical cap.

Since
$$U_1(K) = \frac{1}{2} - V_n(K^*)$$
,
 $\sigma_d(C) = \sigma_d(K) \Longrightarrow \sigma_n(K^*) \le \sigma_n(C^*)$,

and conversely.

We need a quantitative improvement / stability result!

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}^d_s$ and let $C \subset \mathbb{S}^d$ be a spherical cap with $\sigma_d(C) = \sigma_d(K)$. Then

 $U_1(K) \geq U_1(C).$

Equality holds if and only if K is a spherical cap.

Since
$$U_1(K) = \frac{1}{2} - V_n(K^*)$$
,
 $\sigma_d(C) = \sigma_d(K) \Longrightarrow \sigma_n(K^*) \le \sigma_n(C^*)$

and conversely.

We need a quantitative improvement / stability result!

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}^d_s$ and let $C \subset \mathbb{S}^d$ be a spherical cap with $\sigma_d(C) = \sigma_d(K)$. Then

 $U_1(K) \geq U_1(C).$

Equality holds if and only if K is a spherical cap.

Since
$$U_1(K) = \frac{1}{2} - V_n(K^*)$$
,
 $\sigma_d(C) = \sigma_d(K) \Longrightarrow \sigma_n(K^*) \le \sigma_n(C^*)$.

and conversely.

We need a quantitative improvement / stability result!

For $K \in \mathcal{K}_{s}^{d}$, $e \in int(-K^{*})$, let $\alpha(u) = \alpha_{K,e}(u)$ be the spherical radial function, defined on $S_{e} := e^{\perp} \cap \mathbb{S}^{d}$:

 $\Delta({\mathcal K}):= \inf \left\{ \parallel {\mathcal D} \circ lpha_{{\mathcal K}, {\boldsymbol e}} - \overline{{\mathcal D} \circ lpha_{{\mathcal K}, {\boldsymbol e}}} \parallel_{L^2(S_{{\boldsymbol e}})} : {\boldsymbol e} \in -{
m int}({\mathcal K}^*)
ight\}.$

For $K \in \mathcal{K}_{s}^{d}$, $e \in int(-K^{*})$, let $\alpha(u) = \alpha_{K,e}(u)$ be the spherical radial function, defined on $S_{e} := e^{\perp} \cap \mathbb{S}^{d}$:

 $\Delta({\mathcal K}):= \inf \left\{ \parallel {\mathcal D} \circ lpha_{{\mathcal K},e} - \overline{{\mathcal D} \circ lpha_{{\mathcal K},e}} \parallel_{L^2(S_e)} : {\pmb e} \in -{
m int}({\mathcal K}^*)
ight\}.$

For $K \in \mathcal{K}_{s}^{d}$, $e \in int(-K^{*})$, let $\alpha(u) = \alpha_{K,e}(u)$ be the spherical radial function, defined on $S_{e} := e^{\perp} \cap \mathbb{S}^{d}$:

 $\Delta({\mathcal K}):= \inf \left\{ \parallel {\mathcal D} \circ lpha_{{\mathcal K},e} - \overline{{\mathcal D} \circ lpha_{{\mathcal K},e}} \parallel_{L^2(S_e)} : e \in -{
m int}({\mathcal K}^*)
ight\}.$

For $K \in \mathcal{K}_{s}^{d}$, $e \in int(-K^{*})$, let $\alpha(u) = \alpha_{K,e}(u)$ be the spherical radial function, defined on $S_{e} := e^{\perp} \cap \mathbb{S}^{d}$:

 $\Delta(\mathcal{K}) := \inf \left\{ \parallel D \circ \alpha_{\mathcal{K}, e} - \overline{D \circ \alpha_{\mathcal{K}, e}} \parallel_{L^2(S_e)} : e \in -int(\mathcal{K}^*) \right\}.$

A geometric stability result

Theorem (Hug, Reichenbacher)

Let $K \in \mathcal{K}_s^d$ and let C be a spherical cap with $\sigma_d(K) = \sigma_d(C) > 0$. Let $\alpha_0 \in (0, \pi/2)$ be such that $\alpha_0 \leq \alpha_C$. Then

 $U_1(K) \geq (1 + \widetilde{\gamma} \, \Delta(K)^2) U_1(C)$

with

$$\widetilde{\gamma} = 2 \cdot \min\left\{\frac{\binom{d+1}{2}\sin^{d+1}(\alpha_0)\tan^{-2d}(\alpha_C)}{d+d\binom{d+1}{2}\left(\frac{\pi}{2}\right)^2\tan^{-d}(\alpha_C)}, \left(\frac{2}{\pi}\right)^2 D\left(\frac{\pi}{2} - \alpha_C\right)\right\}.$$

A geometric stability result

Theorem (Hug, Reichenbacher)

Let $K \in \mathcal{K}_s^d$ and let C be a spherical cap with $\sigma_d(K) = \sigma_d(C) > 0$. Let $\alpha_0 \in (0, \pi/2)$ be such that $\alpha_0 \leq \alpha_C$. Then

 $U_1(K) \ge (1 + \widetilde{\gamma} \Delta(K)^2) U_1(C)$

with

$$\widetilde{\gamma} = 2 \cdot \min\left\{\frac{\binom{d+1}{2}\sin^{d+1}(\alpha_0)\tan^{-2d}(\alpha_c)}{d+d\binom{d+1}{2}\left(\frac{\pi}{2}\right)^2\tan^{-d}(\alpha_c)}, \left(\frac{2}{\pi}\right)^2 D\left(\frac{\pi}{2} - \alpha_c\right)\right\}.$$

A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let $0 < a < \omega_{d+1}/2$ and $0 < \varepsilon < 1$. Then there are constants $\widetilde{c}_1, \widetilde{c}_2 > 0$ such that

 $\mathbb{P}(\Delta(Z_0) \geq \varepsilon \mid \sigma_d(Z_0) \geq a) \leq \widetilde{c}_1 \cdot \exp\left(-\widetilde{c}_2 \cdot \varepsilon^{2(d+1)} \cdot \gamma_S \cdot 2\omega_{d+1} U_1(B_a)\right),$

where $\tilde{c}_1 = \tilde{c}_1(a, \varepsilon, d)$, $\tilde{c}_2 = \tilde{c}_2(a, d)$, B_a is a spherical cap of volume a.

Asymptotic distribution

Theorem (Hug, Reichenbacher)

Let $0 < a < \omega_{d+1}/2$. Then

$$\lim_{\gamma_S \to \infty} \gamma_S^{-1} \cdot \ln \ \mathbb{P}(\sigma_d(Z_0) \geq a) = -2\omega_{d+1} \cdot U_1(B_a),$$

where B_a is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the spherical inradius as the size functional.

Asymptotic distribution

Theorem (Hug, Reichenbacher)

Let $0 < a < \omega_{d+1}/2$. Then

$$\lim_{\gamma_S \to \infty} \gamma_S^{-1} \cdot \ln \ \mathbb{P}(\sigma_d(Z_0) \geq a) = -2\omega_{d+1} \cdot U_1(B_a),$$

where B_a is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the spherical inradius as the size functional.

 $\gamma_{S} =$ 1 (17 great subspheres)

 $\gamma_{\mathcal{S}} =$ 2 (31 great subspheres)

 $\gamma_{\mathcal{S}} =$ 4 (61 great subspheres)

 $\gamma_{S} =$ 10 (118 great subspheres)

Typical cell

With a given isotropic tessellation X' of \mathbb{S}^d with intensity $\gamma_{X'}$, we can associate particular spherical random polytopes. For a fixed point (spherical origin) $\bar{o} \in \mathbb{S}^d$, one of these is the Crofton cell $Z_0 \ni \bar{o}$.

The **typical cell** Z is a spherical random polytope, centred at \bar{o} , with distribution

$$\mathbb{P}(Z \in \cdot) = \frac{1}{\gamma_{X'}\omega_{d+1}} \mathbb{E}\left[\sum_{K \in X'} \int_{SO_{d+1}} \mathbf{1}\{\sigma^{-1}K \in \cdot\}\kappa(c_s(K), d\sigma)\right]$$

It is invariant wrt rotations fixing \bar{o} .

Crofton cell and typical cell

Lemma

Let $f : \mathcal{K}^d_s \to [0, \infty)$ be measurable and rotation invariant. Let X' be an isotropic tessellation of \mathbb{S}^d with intensity $\gamma_{X'} > 0$, Crofton cell Z_0 and typical cell Z. Then

 $\mathbb{E}[f(Z_0)] = \gamma_{X'} \mathbb{E}[f(Z) \cdot \sigma_d(Z)].$

If X' is the tessellation induced by a Poisson point process X with intensity γ_s , then $\gamma_{X'}$ is an explicitly known function of γ_s .

Typical cells of tessellations by great subspheres

The preceding Lemma and the deviation result for the Crofton cell can be combined to give a result for the typical cell.

Theorem (Hug, Reichenbacher)

Let $0 < a < \omega_{d+1}/2$ and $\varepsilon \in (0, 1]$. Let Z be the typical cell of an isotropic spherical Poisson tessellation of great subspheres. Then

$$\mathbb{P}(\Delta(Z) \geq \varepsilon \mid \sigma_d(Z) \geq a) \leq c_3 \cdot \exp\left(-c_4 \cdot \varepsilon^{2(d+1)} \cdot \gamma_S\right),$$

where $c_3 = c_3(a, d, \varepsilon)$ and $c_4 = c_4(a, d)$.

Spherical Poisson–Voronoi cells

Let X be an isotropic Poisson process on \mathbb{S}^d with intensity γ_s , and let $X' = \{C(x, X) : x \in X\}$ be the associated Poisson–Voronoi tessellation.

The distribution of the typical cell Z then satisfies

 $\mathbb{P}(Z \in \cdot) = \mathbb{P}(C(\bar{o}, X + \delta_{\bar{o}}) \in \cdot).$

Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic) Poisson process Y of great subspheres with hitting functional

$$\mathbb{E}Y(\mathcal{H}_{\mathcal{K}}) = \gamma_{s}\widetilde{\boldsymbol{U}}(\mathcal{K}), \qquad \bar{\boldsymbol{o}} \in \mathcal{K} \in \mathcal{K}_{s}^{d},$$

where

$$\widetilde{\boldsymbol{U}}(\boldsymbol{K}) = 2 \int_{\widetilde{\boldsymbol{o}}^{\perp} \cap \mathbb{S}^{d}} \int_{A_{s}(\boldsymbol{u})} \sin^{d-1} \left(2d_{s}(\widetilde{\boldsymbol{S}}_{\boldsymbol{u}}, t) \right) \mathbf{1} \{ t^{\perp} \cap \boldsymbol{K} \neq \emptyset \} \sigma_{1}(dt) \sigma_{d-1}(d\boldsymbol{u})$$

with $\tilde{S}_u = \{-\bar{o}, u\}$ and $A_s(u) = \operatorname{arc}(-\bar{o}, u)$.

Define

$$r_{s}(K) := \max\{r \ge 0 : B_{s}(\bar{o}, r) \subset K\}$$

$$R_{s}(K) := \min\{r \ge 0 : B_{s}(\bar{o}, r) \supset K\}$$

$$\vartheta(K) := R_{s}(K) - r_{s}(K).$$

Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic) Poisson process Y of great subspheres with hitting functional

$$\mathbb{E}Y(\mathcal{H}_{\mathcal{K}}) = \gamma_{s}\widetilde{\boldsymbol{U}}(\mathcal{K}), \qquad \bar{\boldsymbol{o}} \in \mathcal{K} \in \mathcal{K}_{s}^{d},$$

where

$$\widetilde{\boldsymbol{U}}(\boldsymbol{K}) = 2 \int_{\widetilde{\boldsymbol{o}}^{\perp} \cap \mathbb{S}^{d}} \int_{A_{s}(\boldsymbol{u})} \sin^{d-1} \left(2d_{s}(\widetilde{\boldsymbol{S}}_{\boldsymbol{u}}, t) \right) \mathbf{1} \{ t^{\perp} \cap \boldsymbol{K} \neq \emptyset \} \sigma_{1}(dt) \sigma_{d-1}(d\boldsymbol{u})$$

with $\tilde{S}_u = \{-\bar{o}, u\}$ and $A_s(u) = \operatorname{arc}(-\bar{o}, u)$.

Define

$$\begin{split} r_s(K) &:= \max\{r \ge 0 : B_s(\bar{o}, r) \subset K\} \\ R_s(K) &:= \min\{r \ge 0 : B_s(\bar{o}, r) \supset K\} \\ \vartheta(K) &:= R_s(K) - r_s(K). \end{split}$$

Geometric stability

Theorem (Hug, Reichenbacher)

Let $a \in (0, \pi/2)$, $\bar{o} \in K \in \mathcal{K}_s^d$ with $r_s(K) \ge a$ and $C := B_s(\bar{o}, a)$. Then

 $\widetilde{U}(K) \geq \widetilde{U}(C) = \sigma_d(B_s(\bar{o}, 2a)).$

Equality holds if and only if K = C.

More generally,

 $\widetilde{U}(K) \geq \left(1 + c_5(a, d) \vartheta(K)^d\right) \widetilde{U}(C).$

Shape deviation

Theorem (Hug, Reichenbacher)

Let $a \in (0, \pi/2)$ and $\varepsilon \in (0, 1]$. Let Z be the typical cell of the Voronoi tessellation associated with an isotropic Poisson point process with intensity γ_s on \mathbb{S}^d . Then

 $\mathbb{P}(R_s(Z) - r_s(Z) \ge \varepsilon \mid r_s(Z) \ge a) \le c_6 \cdot \exp\left(-c_7 \cdot \varepsilon^d \cdot \gamma_S\right),$

where $c_6 = c_6(a, d, \epsilon)$ and $c_7 = c_7(a, d)$.

Davies, J. https://www.jasondavies.com/maps/voronoi