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Introduction: Kendall’s problem

Poisson line process in R2, stationary and isotropic

Stationary, isotropic line tessellation

Crofton cell or zero cell Z0: containing the origin
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Kendall’s Conjecture (1940s, 1987)
David George Kendall (1918 - 2007):

“The conditional law for the shape of Z0, given
the area A(Z0) of Z0, converges weakly, as
A(Z0) → ∞, to the degenerate law concen-
trated at the spherical shape.”

R. Miles (1995)

I. N. Kovalenko (1997, 1999)

A. Goldman (1998)

Calka (2002; ’10, ’13 (surveys))

D. Hug, M. Reitzner, R. Schneider (2004)

D. Hug, R. Schneider (2007)

. . .

G. Bonnet (2016)

. . .
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Random tessellations in Rd

Let X be a stationary and isotropic Poisson hyperplane process in Rd with
intensity γ > 0. The intensity measure of X is

EX(·) = γ

∫
Sd−1

∫ ∞
0

1{u⊥ + tu ∈ ·} dt σd−1(du).

Let HK := {H : H ∩ K 6= ∅}. The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,

V1 is the mean width.

Let Z0 be the zero cell of the tessellation induced by X .

What is the limit shape of Z0 – if it exists – given Vd (Z0)→∞?
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Kendall’s problem in Rd : a deviation result

Needed: a deviation functional

ϑ(Z0) = “scaling, translation, rotation invariant distance of Z0 from Bd ”.

Theorem (Hug, Reitzner, Schneider (2004), a special case . . . )

If X is stationary and isotropic in Rd , ε ∈ (0, 1), and a1/d γ ≥ 1, then

P (ϑ(Z0) ≥ ε | Vd (Z0) ≥ a) ≤ c exp
(
−c1 ε

d+1a1/dγ
)
,

where c = c(d , ε) and c1 = c1(d).

Extensions (with Rolf Schneider): no isotropy assumption, relaxed
stationarity assumption, typical cells, Voronoi and Delaunay tessellations,
lower-dimensional weighted typical faces, various other size functionals,
axiomatic approach, asymptotic distributions
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Kendall’s problem in Rd : asymptotic distribution

Recall: V1(K ) denotes the mean width of K .

Theorem (Hug, Schneider (2007))

lim
a→∞

a−1/d lnP (Vd (Z0) ≥ a) = −τ γ,

where
τ ∼ min{V1(K ) : Vd (K ) = 1}.

Isoperimetric and stability problems!
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Isoperimetry and stability

Urysohn inequality:

V1(K ) ≥ c(d) Vd (K )1/d .

Equality holds if and only if K is a ball.

Quantitative stability improvement:

V1(K ) ≥
(
1 + a(d)ϑ(K )d+1) c(d) Vd (K )1/d .
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Kendall’s problem in spherical space

Spherical tessellations

Large cells?

A geometric inequality

Some results
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Spherical tessellations by great subspheres

X isotropic Poisson process in Sd ⊂ Rd+1

Spherical isotropic Poisson process of great subspheres

X̃ := {x⊥ ∩ Sd : x ∈ X}

Crofton cell Z0
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Intensity measure and hitting functional

Spherically convex bodies: Kd
s 3 K

HK : = {L ∈ G(d + 1, d) ∩ Sd : L ∩ K 6= ∅}

EX̃(HK ) = γS

∫
Sd

1{x⊥ ∩ K 6= ∅} σd (dx)

U1(K ) : = (2ωd+1)−1
∫
Sd

1{x⊥ ∩ K 6= ∅} σd (dx)

Void probability

P(X̃(HK ) = 0) = exp (−2γSωd+1U1(K ))
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A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let K ∈ Kd
s and let C ⊂ Sd be a spherical cap with σd (C) = σd (K ). Then

U1(K ) ≥ U1(C).

Equality holds if and only if K is a spherical cap.

Since U1(K ) = 1
2 − Vn(K ∗),

σd (C) = σd (K ) =⇒ σn(K ∗) ≤ σn(C∗),

and conversely.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if U1(K ) is ε-close to U(C)?
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A deviation functional

For K ∈ Kd
s , e ∈ int(−K ∗), let α(u) = αK ,e(u) be the spherical radial

function, defined on Se := e⊥ ∩ Sd :

σd (K )

ωd
=

∫
Se

∫ α(u)

0
sind−1 t dt︸ ︷︷ ︸

=:D(α(u))

σ0
d−1(du)

σd (C)

ωd
= D(αC), αC ∈ (0, π/2) const.

∆(K ) := inf
{
‖ D ◦ αK ,e − D ◦ αK ,e ‖L2(Se) : e ∈ −int(K ∗)

}
.
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A geometric stability result

Theorem (Hug, Reichenbacher)

Let K ∈ Kd
s and let C be a spherical cap with σd (K ) = σd (C) > 0. Let

α0 ∈ (0, π/2) be such that α0 ≤ αC . Then

U1(K ) ≥ (1 + γ̃∆(K )2)U1(C)

with

γ̃ = 2 ·min

{(d+1
2

)
sind+1(α0) tan−2d (αC)

d + d
(d+1

2

) (
π
2

)2 tan−d (αC)
,

(
2
π

)2

D
(π

2
− αC

)}
.
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A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let 0 < a < ωd+1/2 and 0 < ε < 1. Then there are constants c̃1, c̃2 > 0
such that

P(∆(Z0) ≥ ε | σd (Z0) ≥ a) ≤ c̃1·exp
(
−c̃2 · ε2(d+1) · γS · 2ωd+1U1(Ba)

)
,

where c̃1 = c̃1(a, ε, d), c̃2 = c̃2(a, d), Ba is a spherical cap of volume a.
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Asymptotic distribution

Theorem (Hug, Reichenbacher)

Let 0 < a < ωd+1/2. Then

lim
γS→∞

γ−1
S · ln P(σd (Z0) ≥ a) = −2ωd+1 · U1(Ba),

where Ba is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the
spherical inradius as the size functional.
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Illustration

γS = 1 (17 great subspheres)
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Illustration

γS = 2 (31 great subspheres)
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Illustration

γS = 4 (61 great subspheres)
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Illustration

γS = 10 (118 great subspheres)
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Typical cell

With a given isotropic tessellation X ′ of Sd with intensity γX ′ , we can
associate particular spherical random polytopes. For a fixed point
(spherical origin) ō ∈ Sd , one of these is the Crofton cell Z0 3 ō.

The typical cell Z is a spherical random polytope, centred at ō, with
distribution

P(Z ∈ ·) =
1

γX ′ωd+1
E

[∑
K∈X ′

∫
SOd+1

1{σ−1K ∈ ·}κ(cs(K ), dσ)

]
.

It is invariant wrt rotations fixing ō.
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Crofton cell and typical cell

Lemma

Let f : Kd
s → [0,∞) be measurable and rotation invariant. Let X ′ be an

isotropic tessellation of Sd with intensity γX ′ > 0, Crofton cell Z0 and
typical cell Z . Then

E[f (Z0)] = γX ′E[f (Z ) · σd (Z )].

If X ′ is the tessellation induced by a Poisson point process X with intensity
γs, then γX ′ is an explicitly known function of γs.
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Typical cells of tessellations by great subspheres

The preceding Lemma and the deviation result for the Crofton cell can be
combined to give a result for the typical cell.

Theorem (Hug, Reichenbacher)

Let 0 < a < ωd+1/2 and ε ∈ (0, 1]. Let Z be the typical cell of an
isotropic spherical Poisson tessellation of great subspheres. Then

P(∆(Z ) ≥ ε | σd (Z ) ≥ a) ≤ c3 · exp
(
−c4 · ε2(d+1) · γS

)
,

where c3 = c3(a, d , ε) and c4 = c4(a, d).
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Spherical Poisson–Voronoi cells

Let X be an isotropic Poisson process on Sd with intensity γs, and let
X ′ = {C(x ,X) : x ∈ X} be the associated Poisson–Voronoi tessellation.

The distribution of the typical cell Z then satisfies

P(Z ∈ ·) = P(C(ō,X + δō) ∈ ·).
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Hitting and deviation functional
Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY (HK ) = γsŨ(K ), ō ∈ K ∈ Kd
s ,

where

Ũ(K ) = 2
∫

ō⊥∩Sd

∫
As(u)

sind−1 (2ds(S̃u, t)
)

1{t⊥ ∩ K 6= ∅}σ1(dt)σd−1(du)

with S̃u = {−ō, u} and As(u) = arc(−ō, u).

Define

rs(K ) := max{r ≥ 0 : Bs(ō, r) ⊂ K}
Rs(K ) := min{r ≥ 0 : Bs(ō, r) ⊃ K}
ϑ(K ) := Rs(K )− rs(K ).
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ō⊥∩Sd

∫
As(u)

sind−1 (2ds(S̃u, t)
)

1{t⊥ ∩ K 6= ∅}σ1(dt)σd−1(du)
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ϑ(K ) := Rs(K )− rs(K ).

24/26



Geometric stability

Theorem (Hug, Reichenbacher)

Let a ∈ (0, π/2), ō ∈ K ∈ Kd
s with rs(K ) ≥ a and C := Bs(ō, a). Then

Ũ(K ) ≥ Ũ(C) = σd (Bs(ō, 2a)).

Equality holds if and only if K = C.

More generally,

Ũ(K ) ≥
(
1 + c5(a, d)ϑ(K )d) Ũ(C).
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Shape deviation

Theorem (Hug, Reichenbacher)

Let a ∈ (0, π/2) and ε ∈ (0, 1]. Let Z be the typical cell of the Voronoi
tessellation associated with an isotropic Poisson point process with
intensity γs on Sd . Then

P(Rs(Z )− rs(Z ) ≥ ε | rs(Z ) ≥ a) ≤ c6 · exp
(
−c7 · εd · γS

)
,

where c6 = c6(a, d , ε) and c7 = c7(a, d).

Davies, J. https://www.jasondavies.com/maps/voronoi
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