Disagreement percolation for marked Gibbs point processes

Hofer-Temmel Christoph joint with Houdebert Pierre (Lille)

NLDA & CWI

20170518 @ SGSIA 17 @ CIRM

イロト 不得 トイヨト イヨト

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 1 / 12

Topic

Result

Sufficient condition for uniqueness of the Gibbs state of a Gibbs specification of a marked point process in the high temperature regime. Using percolation, coupling and dependent thinnings.

イロト 不得 トイヨト イヨト 二日

Notation

We consider \mathbb{R}^+ -marked configurations ω on \mathbb{R}^d . Marked points are X := (x, r). The ball of radius r around x is S(x, r) or S(X).

Let Δ be a Borel set of $\mathbb{R}^d \times \mathbb{R}^+$ with bounded support in \mathbb{R}^d and Ω_{Δ} be the locally finite marked configurations in Δ .

The Lebesgue measure \mathcal{L}^d on \mathbb{R}^d .

Percolation

Let $\mathcal{P}_{\alpha,\mathcal{Q}}^{\mathsf{poi}}$ be the homogeneous marked Poisson PP with intensity α and radius (mark) measure \mathcal{Q} .

Gilbert graph $G(\omega)$ on ω : $(x, r) \sim (y, r')$, if $S(x, r) \cap S(y, r') \neq \emptyset$.

The Boolean model $\mathcal{P}_{\alpha,\mathcal{Q}}^{\mathsf{poi}}$ percolates, iff

 $\mathcal{P}^{\mathsf{poi}}_{\alpha,\mathcal{Q}}(\mathcal{G}(\xi) \text{ contains infinite connected component}) = 1$.

Percolation threshold at $\alpha(\mathcal{Q}, d) \in [0, \infty]$.

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 4 / 12

Gibbs point process

For activity $\lambda \in \mathbb{R}^+$, radius measure \mathcal{Q} , domain Δ and boundary condition $\tilde{\omega} \in \Omega_{\Delta^c}$:

$$\mathcal{P}^{gibbs}_{\Delta,\tilde{\omega},\lambda,\mathcal{Q}}(\mathrm{d}\omega):=rac{\lambda^{|\omega|}\exp(-H_{\Delta}(\omega|\tilde{\omega}))(\mathcal{L}^d\otimes\mathcal{Q})^{|\omega|}(\mathrm{d}\omega)}{Z(\Delta,\lambda,\mathcal{Q},\tilde{\omega})}\,,$$

with the partition function $Z(\Delta, \lambda, Q, \tilde{\omega})$. Fulfils DLR, assume existence of Gibbs states.

Stochastic domination

 \mathcal{P}^1 stochastically dominates \mathcal{P}^2 , iff there exists a coupling \mathcal{P} of them with $\mathcal{P}(\xi^1 \ge \xi^2)$. "More and bigger points."

Sufficient condition for stochastic domination: Papangelou intensity $\rho^1(X, \omega) \ge \rho^2(X, \omega)$. Preston 76,Georgii & Küneth 97

Necessary properties

Locality

The interaction occurs within connected components of the Gilbert graph. $H(\omega|\tilde{\omega})$ depends only on the connected components of $G(\omega \cup \tilde{\omega})$ intersecting ω .

Boundedness

The Papangelou intensity is uniformly bounded

$$\lambda \exp(-H(X|\tilde{\omega})) \leq lpha$$
 .

Models

Finite range repulsive interaction, continuum random cluster, Widom-Rowlinson, quermass-interaction.

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 7 / 12

Disagreement coupling

Coupling of 3 point processes (van den Berg & Maes 94) Suppose that, for all $\Delta \subseteq S$ with supp $\Delta \Subset \mathbb{R}^d$, $\tilde{\omega}_1, \tilde{\omega}_2 \in \Omega_{\Delta^c}$, there exists $\mathcal{P} := \mathcal{P}_{\Delta, \tilde{\omega}_1, \tilde{\omega}_2}$ with

$$\begin{split} i \in \{1,2\} : \quad \mathcal{P}(\xi^{i} = d\omega) &= \mathcal{P}_{\Delta,\tilde{\omega}_{i},\lambda,\mathcal{Q}}^{gibbs}(d\omega) \\ \mathcal{P}(\xi^{3} = d\omega) &= \mathcal{P}_{\Delta,\alpha,\mathcal{Q}}^{\mathsf{poi}}(d\omega) \\ \mathcal{P}(\xi^{1} \triangle \xi^{2} \leq \xi^{3}) &= 1 \\ \mathcal{P}(\forall X \in \xi^{1} \triangle \xi^{2} : X \xleftarrow{\mathsf{in } G(\xi^{3})} \tilde{\omega}_{1} \triangle \tilde{\omega}_{2}) \,. \end{split}$$

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 8 / 12

Disagreement percolation

Theorem

If $\mathcal{P}_{\alpha,\mathcal{Q}}^{poi}$ does not percolate ($\alpha < \alpha(\mathcal{Q}, d)$), then there is a unique Gibbs state.

Theorem

If the connection function of $\mathcal{P}_{\alpha,\mathcal{Q}}^{poi}$ decays exponentially, then the pair correlation of the Gibbs states decays exponentially, too.

Dependent thinning

Couple $\mathcal{P}_{\Delta,\tilde{\omega},\lambda,\mathcal{Q}}^{gibbs}$ and $\mathcal{P}_{\Delta,\alpha,\mathcal{Q}}^{poi}$ by a dependent thinning. Explore ω drawn from $\mathcal{P}_{\Delta,\alpha,\mathcal{Q}}^{poi}$ in (measurable total) order. At $X \in \omega$: having chosen $\gamma \subseteq \omega \cap] - \infty, X[$, choose X with probability

$$p_{\Delta}(X|\gamma,\tilde{\omega}) := \frac{1}{\alpha} \frac{\partial}{\partial X} \log Z([X,\infty[,\lambda,\mathcal{Q},\gamma\cup\tilde{\omega})] \\ = \underbrace{\frac{\lambda \exp(-H(X|\gamma\cup\tilde{\omega}))}{\alpha}}_{\leq 1} \underbrace{\frac{Z(]X,\infty[,\lambda,\mathcal{Q},\gamma\cup\tilde{\omega}\cup X)}{Z([X,\infty[,\lambda,\mathcal{Q},\gamma\cup\tilde{\omega})]}}_{<1}.$$

Reduces to Papangelou intensity in extreme case.

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 10 / 12

イロト イロト イヨト イヨト 三日

Summary & outlook

Comparison with other uniqueness criteria Cluster expansion Ruelle 69,Hofer-Temmel 15-17+ Dobrushin uniqueness Klein 82

Models

Applications Uniqueness, Poincare inequality for dynamics Chazottes & Redig & Völlering 11.

Generalisations

- Replace R⁺ marks by R^k (easy) or compact bodies (difficult?).
- Stochastic domination also in Q, i.e., Q ≼ Q'. Finer constraint than uniformly bounded Papangelou intensity.
- Factorisation of joint thinning probability over connected components of G(ω ∪ ω̃).

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518 11 / 12

Bibliography

Disagreement percolation in the study of Markov fields van den $\mathsf{Berg}\ \&\ \mathsf{Maes}\ 94$

Disagreement percolation for the hard-sphere model Hofer-Temmel 15-17+

The Poincaré inequality for Markov random fields proved via disagreement percolation Chazottes & Redig & Völlering 11

Continuum percolation Meester & Roy 96

Random Fields Preston 76

Stochastic comparison of point random fields Georgii & Küneth 97

Dobrushin uniqueness techniques and the decay of correlations in continuum statistical mechanics Klein $82\,$

Statistical mechanics Ruelle 69

Hofer-Temmel (math@temmel.me)

Disagreement percolation

20170518

12 / 12