Convergence of infinite branch directions of RST to the uniform distribution

Youri Davydov - Université Lille 1

and St. Peterbourg state university

19th Workshop on Stochastic Geometry, Stereology and Image Analysis - Luminy 2017

Joint work with D. Coupier

We study the so-called Radial Spanning Tree (RST) introduced by Baccelli & Bordenave '07.

Our aim is to complete known information on semi-infinite branches of RST.

- (1) Radial Spanning Tree
- (2) Known facts on semi-infinite branchs
- (3) New results
- (4) Proof (sketch)

э

Let N be an homogeneous PPP with intensity 1.

RST is a directed tree ${\mathcal T}$ rooted at ${\it O}$ and defined by

- The vertex set: $\mathcal{N} \cup \{O\}$.
- The edge set: each X ∈ N is linked to the closest Y ∈ B(O, |X|).
 Y is unique a.s.

Notation : Y = Anc(X) T_{χ}^{out} is the subtree of \mathcal{T} rooted at X.

Remark. A.s. each vertex $X \in \mathcal{N} \cup \{O\}$ has a finite degree.

 \Rightarrow There exists at least one semi-infinite branche in $\mathcal{T}.$

Simulation of RST

Youri Davydov

3

In color...

х

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

医下头 医下

Youri Davydov

æ

 $(X_n)_{n \in \mathbb{N}}$ admits an asymptotic direction $\theta \in [0; 2\pi)$ if $\lim_{n \to \infty} \frac{X_n}{\|X_n\|} = e^{i\theta}$.

Theorem (Baccelli & Bordenave '07)

RST \mathcal{T} satisfies :

- (1) a.s. each semi-infinite branche of \mathcal{T} admits an asymptotic direction.
- (2) a.s. for each $\theta \in [0; 2\pi)$, there exists a semi-infinite branche of \mathcal{T} having asymptotic direction θ .
- (3) for each $\theta \in [0; 2\pi)$ (determinist), there exists a unique semi-infinite branche of \mathcal{T} having asymptotic direction θ .

 v_r : number of semi-infinite branches of \mathcal{T} which intersect $C(O, r) = rS^1 = \{x \mid ||x|| = r\}.$

 $\underline{\mathsf{Rem}}: \bullet \nu_r \xrightarrow{\mathrm{p.s.}} \infty$

• The mean number of edges of \mathcal{T} intersecting C(O, r) is of order r.

Theorem (Baccelli, Coupier & Tran '14)

Sub-linearity of the mean number of semi-infinite branches :

 $\mathbb{E} v_r = o(r)$ quand $r \to \infty$.

Conjecture (Coupier '16) : $\forall \varepsilon > 0, v_r = o(r^{3/4+\varepsilon})$ a.s. and in L^1 .

Let A be an arc of S^1 . We set

$$Ext(A,\varepsilon,s) = \left\{ x \mid ||x|| \ge s, \ \frac{x}{||x||} \in S^1 \setminus A^{\varepsilon} \right\}.$$

Let $\Omega(r, \varepsilon)$ be the event:

 $\forall s \geq r, \forall A \text{ arc of } S^1 \text{ and } \forall X \in N \text{ such that } [X, Anc(X)] \cap sA \neq \emptyset \text{ the branche } T_X^{out} \text{ does not depend on arbitrary changements of } N \cap Ext(A, \varepsilon, s).$

Proposition (Coupier & D '16)

For each $\varepsilon > 0$ $\mathbb{P}{\{\Omega(r, \varepsilon)\}} \to 1 \text{ as } r \to \infty$.

Let μ_r be the measure on S^1 defined by $\mu_r(A) = \frac{\nu_r(A)}{\nu_r}$, where

 $v_r(A)$ is the number of semi-infinite branches of \mathcal{T} which intersect rA.

Theorem (D. & Coupier '17)

The measure μ_r converges in probability, as $r \to \infty$, to the uniform distribution on S^1 .

1-st step:

From Th. [Coupier & D '16] it follows that for all disjoint arcs *A* and *B* the random variables $\mu_r(A)$ and $\mu_r(B)$ are asymptotically independent as $r \to \infty$.

2-nd step is based on the following

Proposition

Let (μ_n) be a sequence of random probability measures on S^1 such that

- The distribution of μ_n is invariant under rotations.
- For all disjoint arcs A and B the random variables μ_n(A) and μ_n(B) are asymptotically independent as n → ∞.

Then μ_n converges in probability, as $n \to \infty$, to the uniform distribution on S^1 .