A statistical methodology to detect low-dimensionality

Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid, Spain

19th Workshop on Stochastic Geometry, Stereology and Image Analysis (SGSIA) Marseille, May 19, 2017

Co-authors

- Catherine Aaron (Université Blaise Pascal, Clermont-Ferrand II, France)
- Alejandro Cholaquidis (Centro de Matemática, Universidad de la República, Uruguay)

Source:

Aaron, C., Cholaquidis, A. and Cuevas, A. (2017). Stochastic detection of some topological and geometric features. Submitted. https://arxiv.org/abs/1702.05193.

The general setup

This talk is concerned with the following general problem:

How much can we learn about a (nice enough) compact set $\mathcal{M} \subset \mathbb{R}^d$ from a random sample of points X_1, \ldots, X_n ?

The general setup

This talk is concerned with the following general problem:

How much can we learn about a (nice enough) compact set $\mathcal{M} \subset \mathbb{R}^d$ from a random sample of points X_1, \ldots, X_n ?

In this talk we will consider the following aspects of this general problem:

- ► To check whether M has an empty interior, M̂ = Ø: under regularity conditions this amounts to saying that dim_H(M) < d</p>
- **Estimation of** \mathcal{M} when the sample is "noisy (around \mathcal{M})
- ► Estimation of the measure of M: more specifically, if d' is the dimension of M, we are interested on the d'-dimensional Minkowski content of M.

The tools we use

- Statistical tools: definition of different sample models, methods for analyzing stochastic convergences and convergence rates, set estimation methodologies.
- Geometrically motivated conditions for sets: standardness, positive reach, rolling conditions,...
- Some basic tools of differential geometry,
- Some results of stochastic geometry borrowed from Penrose (1999, J. London Math. Soc), Walther (1997, Ann. Statist.) among others

Hausdorff measure and Hausdorff dimension

We first recall the so-called Hausdorff measure. It is defined for any separable metric space (\mathcal{M}, ρ) . Given $\delta, r > 0$ and $E \subset \mathcal{M}$, let

$$\mathfrak{H}^{r}_{\delta}(E) = \inf \left\{ \sum_{j=1}^{\infty} (\operatorname{diam}(B_{j}))^{r}: E \subset \cup_{j=1}^{\infty} B_{j}, \operatorname{diam}(B_{j}) \leq \delta \right\},$$

where diam(*B*) = sup{ $\rho(x, y) : x, y \in B$ }, inf $\emptyset = \infty$. Now, define $\mathcal{H}^{r}(E) = \lim_{\delta \to 0} \mathcal{H}^{r}_{\delta}(E)$.

The set function \mathcal{H}^r is an outer measure. If we restrict \mathcal{H}^r to the measurable sets (according to standard Caratheodory's definition) we get the *r*-dimensional Hausdorff measure on \mathcal{M} . The Hausdorff dimension of a set *E* is defined by

 $\dim_{H}(E) = \inf\{r \ge 0 : \mathcal{H}^{r}(E) = 0\} = \sup(\{r \ge 0 : \mathcal{H}^{r}(E) = \infty\} \cup \{0\}).$

Checking empty interior (low dimensionality) under the noiseless model

Let $\aleph_n = \{X_1, \dots, X_n\}$ be a *iid* sample of points, drawn from a distribution P with support \mathcal{M} in \mathbb{R}^d .

We want to detect whether or not $\mathring{M} = \emptyset$. First note that, if $\mathcal{M} \subset \mathbb{R}^d$ is "regular enough", $\dim_H(\mathcal{M}) < d$ is in fact equivalent to $\mathring{M} = \emptyset$. Indeed, in general $\dim_H(\mathcal{M}) < d$ implies $\mathring{M} = \emptyset$. The converse implication is not always true, even for sets fulfilling the property $\mathcal{H}^d(\partial \mathcal{M}) = 0$. However it holds if \mathcal{M} has positive reach (*), since in this case $\mathcal{H}^{d-1}(\partial \mathcal{M}) < \infty$ (see Ambrosio et al. (2008)). Checking empty interior (low dimensionality) under the noiseless model

Let $\aleph_n = \{X_1, \dots, X_n\}$ be a *iid* sample of points, drawn from a distribution P with support \mathcal{M} in \mathbb{R}^d .

We want to detect whether or not $\mathring{\mathcal{M}} = \emptyset$.

First note that, if $\mathfrak{M} \subset \mathbb{R}^d$ is "regular enough", dim_H(\mathfrak{M}) < d is in fact equivalent to $\mathfrak{M} = \emptyset$.

Indeed, in general dim_H(\mathcal{M}) < d implies $\mathring{\mathcal{M}} = \emptyset$. The converse implication is not always true, even for sets fulfilling the property $\mathcal{H}^d(\partial \mathcal{M}) = 0$. However it holds if \mathcal{M} has positive reach (*), since in this case $\mathcal{H}^{d-1}(\partial \mathcal{M}) < \infty$ (see Ambrosio et al. (2008)).

(*) reach(\mathfrak{M}) = R > 0 iff R is the supremum of those values r > 0 such that every point x with $d(x, \mathcal{M}) < r$ has only one metric projection on \mathfrak{M} This regularity condition rules out the presence of sharp inward peaks in \mathfrak{M} .

reach>0

reach=0

A simple tool: the offset estimator

The *r***-offset estimator** (Grenander (1981), Devroye & Wise (1980),...) based on the sample \aleph_n is defined by

$$\hat{S}_n(r) = \bigcup_{i=1}^n B(X_i, r)$$

 $B(X_i, r)$ is a **boundary ball** of $\hat{S}_n(r)$ if there exists a point $y \in \partial B(X_i, r)$ such that $y \in \partial \hat{S}_n(r)$.

The "**peeling**" of $\hat{S}_n(r)$, denoted by peel($\hat{S}_n(r)$), is the result of removing from $\hat{S}_n(r)$ all the boundary balls.

We are going to explore the following natural idea

 $\mathring{\mathbb{M}} \neq \emptyset$ iff peel $(\hat{S}_n(r_n)) \neq \emptyset$, eventually a.s. for suitably chosen r_n

An identification result in terms of $peel(\hat{S}_n(r_n))$

Theorem 1 (Identification of empty interior, noiseless case) Let $\mathcal{M} \subset \mathbb{R}^d$ be a compact non-empty set. We have, (a) if $\mathring{\mathcal{M}} = \emptyset$, and \mathcal{M} fulfills the **outside rolling condition** (**) for some r > 0, then peel($\hat{S}_n(r')$) = \emptyset for any r' < r.

(b) If $\mathfrak{M} \neq \emptyset$, assume that there exists a ball $\mathfrak{B}(x_0, \rho_0) \subset \mathfrak{M}$ such that $\mathfrak{B}(x_0, \rho_0)$ is standard (***) w.r.t. to P_X . Then $\operatorname{peel}(\hat{S}_n(r_n)) \neq \emptyset$ eventually, a.s., where r_n is a radius sequence such that: $(\kappa \frac{\log(n)}{n})^{1/d} \leq r_n \leq \min\{\rho_0/2, \lambda\}$ for a given $\kappa > (\delta \omega_d)^{-1}$.

(**) The set S is said to satisfy the outside r-rolling condition if for $s \in \partial S$ there exists some $x \in S^c$ such that $\mathcal{B}(x, r) \cap \partial S = \{s\}$.

 $\begin{aligned} (***) \\ \exists \ \lambda, \delta > 0 \text{ such that }, \forall x \in S \text{ and } 0 < \varepsilon \leq \lambda, \\ P_X(\mathfrak{B}(x, \varepsilon) \cap S) \geq \delta \mu_d(\mathfrak{B}(x, \varepsilon)) \end{aligned}$

Why $\left(\frac{\log n}{n}\right)^{1/d}$?

- This is the appropriate order to use some basic Borel-Cantelli arguments in the proof.
- Note this is also the order of the maximal multivariate spacing, i.e., the radius of the ball containing no sample point, Janson (1987, Ann. Prob.)

When $\mathcal M$ is a manifold

Theorem 2 (Identification of empty interior, the manifold case) Let \mathcal{M} be a d'-dimensional compact manifold in \mathbb{R}^d . Suppose that the sample points X_1, \ldots, X_n are drawn from a probability measure P_X with support \mathcal{M} which has a continuous density f with respect the d'-dimensional Hausdorff measure on \mathcal{M} , and $f(x) > f_0$ for all $x \in \mathcal{M}$. Define, for any $\beta > 6^{1/d}$, $r_n = \beta \max_i \min_{j \neq i} ||X_j - X_i||$. Then,

- i) if d' = d and ∂M is a \mathbb{C}^2 manifold then $\operatorname{peel}(\hat{S}_n(r_n)) \neq \emptyset$ eventually, a.s.
- ii) if d' < d and \mathfrak{M} is a \mathfrak{C}^2 manifold without boundary, then $\operatorname{peel}(\hat{S}_n(r_n)) = \emptyset$ eventually, a.s.

The proof is based upon Th. 1, using results by Walther (1997, Ann. Stat.) and Penrose (1999, J. London Mat. Soc.)

"Noisy model": sample data on the parallel set $B(M,R_1)$

Theorem 3 (Estimation of the noise level)

Let $\mathcal{M} \subset \mathbb{R}^d$ be a compact set such that $\operatorname{reach}(\mathcal{M}) = R_0 > 0$. Let $\mathcal{Y}_n = \{Y_1, \ldots, Y_n\}$ be an iid sample of a distribution P_Y with support $S = B(\mathcal{M}, R_1)$ with $0 < R_1 < R_0$, absolutely continuous with respect to the Lebesgue measure, whose density f, is bounded from below by $f_0 > 0$. Let us denote $\varepsilon_n = c(\log(n)/n)^{1/d}$, with $c > (4/(f_0\omega_d))^{1/d}$, and $\hat{R}_n = \max_{Y_i \in \mathcal{Y}_n} \min_{j \in I_{bb}} ||Y_i - Y_j||$ where $I_{bb} = \{j : \mathcal{B}(Y_j, \varepsilon_n)$ is a boundary ball $\}$.

i) if $\mathring{\mathcal{M}} = \emptyset$, then, with probability one,

$$\left| \hat{R}_n - R_1 \right| \le 2\varepsilon_n$$
 for *n* large enough, (2)

ii) if $\mathring{\mathfrak{M}} \neq \emptyset$, then there exists C > 0 such that, with prob. one

$$|\hat{R}_n - R_1| > C$$
 for n large enough. (3)

The proof relies on Federer (1959) and C. & R.-Casal (2004, AAP)

An index of closeness to lower dimensionality

In the noiseless case $R_1 = 0$ the value $2\hat{R}_n/\widehat{\operatorname{diam}}(\mathcal{M})$ (where $\widehat{\operatorname{diam}}(\mathcal{M}) = \max_{i \neq j} ||X_i - X_j||$) can be seen as an index of departure from low-dimensionality. Observe that if $\mathcal{M} = \overline{\mathring{\mathcal{M}}}$ we get $2\hat{R}_n/\widehat{\operatorname{diam}}(\mathcal{M}) \to 1$, a.s. and if \mathcal{M} has empty interior, $2\hat{R}_n/\widehat{\operatorname{diam}}(\mathcal{M}) \to 0$ a.s.

Identifying the boundary balls

Proposition 1

Let $\mathfrak{X}_n = \{X_1, \ldots, X_n\}$ be an iid sample of points, in \mathbb{R}^d , drawn according to a distribution P_X , absolutely continuous with respect to the Lebesgue measure. Then, with probability one, for all $i = 1, \ldots, n$ and all r > 0, $\sup\{||z - X_i||, z \in Vor(X_i)\} \ge r$ if and only if $\mathfrak{B}(X_i, r)$ is a boundary ball for the Devroye-Wise estimator $\cup_i \mathfrak{B}(X_i, r)$.

An algorithm to partially "de-noise" the sample (I) Let $\mathcal{M} \subset \mathbb{R}^d$ with reach $(\mathcal{M}) = R_0 > 0$. Let $\mathcal{Y}_n = \{Y_1, \ldots, Y_n\}$ be an iid sample on $S = B(\mathcal{M}, R_1)$ for some $0 < R_1 < R_0$, with density bounded from below.

- 1. Take suitable auxiliary estimators for S and R_1 . Let \hat{S}_n be an estimator of S (based on \mathcal{Y}_n) such that $d_H(\partial \hat{S}_n, \partial S) < a_n$ eventually a.s., for some $a_n \to 0$. Let \hat{R}_n be an estimator of R_1 such that $|\hat{R}_n R_1| \le e_n$ eventually a.s. for some $e_n \to 0$.
- 2. Select a λ -subsample far from the estimated boundary of S. Take $\lambda \in (0,1)$ and define $\mathcal{Y}_m^{\lambda} = \{Y_1^{\lambda}, \dots, Y_m^{\lambda}\} \subset \mathcal{Y}_n$ where $Y_i^{\lambda} \in \mathcal{Y}_m^{\lambda}$ if and only if $d(Y_i^{\lambda}, \partial \hat{S}_n) > \lambda \hat{R}_n$.
- 3. Projection + translation stage. For every $Y_i^{\lambda} \in \mathcal{Y}_m^{\lambda}$, we define $\{Z_1, \ldots, Z_m\} = \mathcal{Z}_m$ as follows,

$$Z_{i} = \pi_{\partial \hat{S}_{n}}(Y_{i}^{\lambda}) + \hat{R}_{n} \frac{Y_{i}^{\lambda} - \pi_{\partial \hat{S}_{n}}(Y_{i}^{\lambda})}{\|Y_{i}^{\lambda} - \pi_{\partial \hat{S}_{n}}(Y_{i}^{\lambda})\|},$$
(4)

being $\pi_{\partial \hat{S}_n}(Y_i^{\lambda})$ the metric projection of Y_i^{λ} on $\partial \hat{S}_n$.

An algorithm to partially "de-noise" the sample (II)

Theorem 4 (Estimation by denoising)

If reach(\mathcal{M}) = $R_0 > 0$ and $\mathcal{Y}_n = \{Y_1, \ldots, Y_n\}$ is an iid sample on $S = B(\mathcal{M}, R_1)$ with density $f > f_0 > 0$, there exists $b_n = O\left(\max(a_n^{1/3}, e_n, \varepsilon_n)\right)$ such that, with probability one, for n large enough, the de-noised sub-sample \mathcal{Z}_m satisfies

 $d_H(\mathcal{Z}_m,\mathcal{M}) \leq b_n$

where
$$\varepsilon_n = c(\log(n)/n)^{1/d}$$
 with $c > (4/f_0\omega_d)^{1/d}$.

Note that, when $\mathcal{M} = \emptyset$, the result simplifies since, according to Theorem 3 we can take $e_n = 2\epsilon_n$ and, according to C. & R.-Casal (2004, Adv. Appl. Prob.) $a_n = (\log n/n)^{1/d}$. Therefore, in this case $b_n = 0$ ($(\log n/n)^{1/3d}$). In particular, the result is true for $b_n = n^{-q}$ for any $q < \frac{1}{3d}$.

Estimation of the Minkowski content

The target now is to estimate the d'-dimensional Minkowski content, as defined by

$$\lim_{\epsilon \to 0} \frac{\mu_d(B(\mathcal{M}, \epsilon))}{\omega_{d-d'} \epsilon^{d-d'}} = L_0(\mathcal{M}).$$
(5)

This is just (alongside with Hausdorff measure, among others) one of the possible ways to measure lower-dimensional sets.

The following result shows that the denosing process allows us to estimate the Minkowski content, even under the noisy model.

Theorem 5 (Boundary measure estimation in the noisy case) With the hypothesis and notation of the previous denoising theorem, assume that $L_0(\mathcal{M}) < \infty$. Now, take r_n such that $b_n/r_n \rightarrow 0$. Then,

$$\lim_{n\to\infty}\frac{\mu_d(B(\mathcal{Z}_m,r_n))}{\omega_{d-d'}r_n^{d-d'}}=L_0(\mathcal{M}) \quad a.s.$$
 (6)

For d' < d the result holds with $r_n = n^{-q}$ for any $q < \frac{1}{3d}$.

Toy examples: identifying low dimensionality

200 samples of sizes $n = 50, 100, 200, 300, 400, 500, 1000, 2000, 5000, 10000 on the set <math>\mathcal{B}(0, 1 + A) \setminus \mathring{\mathcal{B}}(0, 1 - A)$. The width parameter A takes the values $A = 0, 0.01, 0.05, 0.1, \dots, 0.05$. Table 1 provides the minimum sample sizes to "safely decide" the correct answer.

Α	<i>d</i> = 2	<i>d</i> = 3	d = 4
0	\leq 50	≤ 50	\leq 50
0.01	[51, 100]	[1001, 2000]	> 10000
0.05	\leq 50	[201, 300]	[1001, 2000]
0.1	\leq 50	[51, 100]	[101, 200]
0.2	\leq 50	\leq 50	[51, 100]
0.3	\leq 50	\leq 50	[51, 100]
0.4	\leq 50	\leq 50	\leq 50
0.5	\leq 50	\leq 50	\leq 50

Table: Minimum sample sizes required to correct detection (i.e. in 190 out of 200 cases) for different values of d and A.

Denoising (Lamé curve $|x|^3 + |y|^3 = 1$)

Figure: The yellow background is made of 5000 points (left) and 50000 points (right) drawn on on $\mathcal{B}(S_{L_3}, 0.3)$, with $S_{L_3} = \{(x, y), |x|^3 + |y|^3 = 1\}$. The blue points are the result of the denoising process. The black line corresponds to the original set S_{L_3}

Denoising (Trefoil knot)

Figure: The upper panel shows 5000 noisy points (left) and 50000 noisy points (right) drawn on $\mathcal{B}(\mathcal{T}, 0.3)$. The lower panel shows the result of the corresponding denoising process.

THANKS!