Cluster size distribution of extreme values in a Poisson-Voronoi tessellation

Nicolas Chenavier, Christian Y. Robert

Université du Littoral Côte d'Opale, LMPA

16 mai 2017

Framework

- η : Poisson point process;
- M_{PVT} := {C_η(x) : x ∈ η}: Voronoi tessellation associated with η;
- g: geometric characteristic (e.g. volume, diameter);
- ▶ $v \ge 0$: threshold.

Figure: Nuclei of the Voronoi cells with diameter larger than v in a square

Notation

- η : homogeneous Poisson point process of intensity 1 in \mathbf{R}^d ;
- g: translation-invariant function;
- $W_{\rho} := \rho^{1/d} [-\frac{1}{2}, \frac{1}{2}]^d$, $\rho > 0$;
- v_{ρ} : threshold such that

$$\rho \mathbb{P}\left(g(\mathcal{C}) > v_{\rho}\right) \xrightarrow[\rho \to \infty]{} \tau,$$

for some au > 0, where $\mathcal{C} = C_{\eta \cup \{0\}}(0)$ is the typical cell;

• $\Phi_{W_{\rho}}^{\eta}$: (normalized) point process of exceedances in W_{ρ} , i.e.

$$\Phi_{W_{\rho}}^{\eta} := \rho^{-1/d} \{ x \in \eta \cap W_{\rho} : g(\mathcal{C}_{\eta}(x)) > v_{\rho} \}.$$

NB: $\tau = \lim_{\rho \to \infty} \mathbb{E} \left[\# \Phi^{\eta}_{W_{\rho}} \right]$ is (asymptotically) the mean number of exceedances in W_{ρ} .

Convergence of the point process of exceedances

Theorem 1 (under a local condition)

Let v_{ρ} be such that $\rho \mathbb{P}(g(\mathcal{C}) > v_{\rho}) \xrightarrow[\rho \to \infty]{} \tau$. Assume that the following local condition holds:

$$\rho \int_{B(0;\log \rho)} \mathbb{P}\left(g(\mathcal{C}_{\eta \cup \{0,x\}}(0)) > v_{\rho}, g(\mathcal{C}_{\eta \cup \{0,x\}}(x)) > v_{\rho}\right) \mathrm{d}x \underset{\rho \to \infty}{\longrightarrow} 0.$$

Then

$$\Phi^{\eta}_{W_{\rho}} = \rho^{-1/d} \{ x \in \eta \cap W_{\rho} : g(\mathcal{C}_{\eta}(x)) > v_{\rho} \}$$

converges to a Poisson point process in $\left[-\frac{1}{2},\frac{1}{2}\right]^d$ with intensity τ .

NB: since $\{\max_{x\in\eta\cap W_{\rho}} g(C_{\eta}(x)) \leq v_{\rho}\} = \{\#\Phi_{W_{\rho}}^{\eta} = 0\}$, we have:

$$\mathbb{P}\left(\max_{x\in\eta\cap W_{
ho}}g(\mathcal{C}_{\eta}(x))\leq v_{
ho}
ight) \stackrel{}{\longrightarrow} e^{- au}.$$

1 Exceedances under a local condition

2 Clusters of exceedances

3 Numerical illustrations

Extremal index

Proposition

Assume that for each $\tau \geq 0$, there exists $v_{\rho}(\tau)$ such that $\rho \mathbb{P}(g(\mathcal{C}) > v_{\rho}(\tau)) \xrightarrow[\rho \to \infty]{} \tau$. Then there exists $\theta \in [0, 1]$ such that, for each $\tau \geq 0$,

$$\lim_{
ho o \infty} \mathbb{P}\left(\max_{x \in \eta \cap W_
ho} g(\mathcal{C}_\eta(x)) \leq \mathsf{v}_
ho(au)
ight) = \mathsf{e}^{- heta au},$$

provided that the limit exists.

Definition

According to Leadbetter, we say that $\theta \in [0,1]$ is the extremal index if, for each $\tau \geq 0$, we have:

$$\ \, \mathfrak{o}\mathbb{P}\left(g(\mathcal{C})>\mathsf{v}_{\rho}(\tau)\right)\underset{\rho\to\infty}{\longrightarrow}\tau;$$

$$\ \ \, \supseteq \ \, \mathbb{P}\left(\mathsf{max}_{x\in\eta\cap W_{\rho}} \, g(\mathit{C}_{\eta}(x)) \leq \mathsf{v}_{\rho}(\tau) \right) \underset{\rho\to\infty}{\longrightarrow} e^{-\theta\tau}.$$

Remarks

- Characterization of the extremal index:
 - discretization of $W_{\rho} = \rho^{1/d} [-\frac{1}{2}, \frac{1}{2}]^d$ into k_{ρ}^d blocks of equal size, with $k_{\rho}^d = o(\rho)$ and $\log \rho = o(k_{\rho}^d)$;
 - interpretation:

$$\theta^{-1} = \lim_{\rho \to \infty} \frac{\mathbb{E} \left[\text{Nbr of cells exceeding } v_{\rho}(\tau) \right]}{\mathbb{E} \left[\text{Nbr of blocks exceeding } v_{\rho}(\tau) \right]}.$$

- ▶ In the classical Extreme Value Theory:
 - computation of θ : difficult;
 - estimation of θ : block and run methods.
- For a Poisson-Voronoi tessellation:
 - block method: can be adapted, but not efficient;
 - run method: cannot be adapted (specific to the unidimensional case).

Cluster size distribution

•
$$\Phi^{\eta}_{B}(au) :=
ho^{-1/d} \left\{ x \in \eta \cap B : g(\mathcal{C}_{\eta}(x)) > v_{
ho}(au)
ight\}$$
 for any $B \subset \mathbf{R}^{d}$

•
$$Q_{\rho} = q_{\rho}^{1/d} [-\frac{1}{2}, \frac{1}{2}]^d$$
, with $q_{\rho} = (\log \log \rho)^{\log \log \rho} \ll \rho$.

Theorem 2 (without local condition)

Assume that the limit $\lim_{\rho\to\infty} \mathbb{P}\left(\#\Phi^{\eta}_{W_{\rho}}(\tau_0)=0\right) \in (0,1)$ exists, for some $\tau_0 > 0$, and assume that the limit distribution $p = (p_k)$ exists, with:

$$p_k:=\lim_{
ho
ightarrow\infty}\mathbb{P}\left(\left.\#\Phi_{Q_
ho}^{\eta\cup\{0\}}(au_0)=k
ight|g(\mathcal{C}_{\eta\cup\{0\}}(0))>v_
ho(au_0)
ight),k\geq 1.$$

Then

θ = Σ_{k=1}[∞] k⁻¹p_k;
 Φ^η_{W_ρ}(τ) converges, for each τ > 0, to a compound Poisson point process in [-¹/₂, ¹/₂]^d, with intensity θτ > 0, and cluster size distribution (π_k) with π_k := ^{p_k}/_{kθ}.

1 Exceedances under a local condition

2 Clusters of exceedances

3 Numerical illustrations

Layout

Numerical illustrations for two geometric characteristics (dimension d = 2):

▶ approximations of the probabilities p₁,..., p₉ and approximation of the extremal index:

$$\theta = \sum_{k=1}^{\infty} k^{-1} p_k;$$

•
$$\tau = 1$$
, $\rho = \exp(100)$, $Q_{\rho} = q_{\rho}^{1/2} [-\frac{1}{2}, \frac{1}{2}]^2 = [-173, 173]^2$;

- ► computation of $v_{\rho}(1)$ such that $\rho \mathbb{P}\left(g(\mathcal{C}) > v_{\rho}(1)\right) \xrightarrow[\rho \to \infty]{} 1;$
- ► 10000 simulations divided into 100 samples of size 100, such that $g(C) > v_{\rho}(1)$.

Example 1: inradius

- $g(C_{\eta}(x)) = r(C_{\eta}(x)) = \text{ inradius of } C_{\eta}(x);$
- condition (LCC) holds;

•
$$\theta = 1$$
, $\pi_1 = 1$ and $\pi_k = 0$ for $k \ge 2$.

Figure: incircle (red) of a Voronoi cell (green).

Numerical illustration

Figure: typical cell with a large inradius (left) and estimates of p_k (right).

Example 2: circumradius

- $g(C_{\eta}(x)) = R(C_{\eta}(x)) = \text{circumradius of } C_{\eta}(x);$
- maximum of circumradii: interpretation as a covering of the window W_ρ by balls.

$$\bullet \ \theta = \frac{1}{4}? \ \pi_k?$$

Figure: incircle (red) of a Voronoi cell (green).

Numerical illustration

Figure: typical cell with a large circumradius (left) and estimates of p_k (right).

Perspectives

- existence of the extremal index;
- adaptation of the main theorem (without local condition) to various random tessellations;
- theoretical computations of extremal indices and of distributions (\(\pi_k\)) for various geometric characteristics;
- shape of a cluster of exceedances.