Voronoi diagram on a Riemannian manifold

Aurélie Chapron

Modal'X (Paris Nanterre) and LMRS (Rouen)

CIRM, May 15-19, 2017

Aurélie Chapron

Voronoi diagram on a Riemannian manifold

Modal'X (Paris Nanterre) and LMRS (Rouen)

Motivation

Aim :

- Show a link between mean characteristics of the Voronoi cells and local characteristics of the manifold
- Derive limit theorems to develop statistical tools

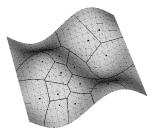


image:R.Kunze

Framework

- M Riemannian manifold of dim n, with its Riemannian metric d,
- *dx* the measure induced by the metric,
- \mathcal{P}_{λ} Poisson point process of intensity λdx and $x_0 \in M$ fixed,
- The Voronoi cell of $x \in \mathcal{P}_{\lambda}$ is defined by

$$C(x, \mathcal{P}_{\lambda}) = \{y \in M, d(x, y) \le d(x', y), \forall x' \in \mathcal{P}_{\lambda}\}$$

- $C = C(x_0, \mathcal{P}_{\lambda} \cup \{x_0\})$ is the Voronoi cell of x_0 ,
- $N(C(x, \mathcal{P}_{\lambda}))$ the number of vertices of $C(x, \mathcal{P}_{\lambda})$.

Outline

2 Limit theorems and estimation

Probabilistic proof of Gauss-Bonnet theorem

Aurélie Chapron

Voronoi diagram on a Riemannian manifold

Mean number of vertices of $\mathcal C$

Mean number of vertices

$$\mathbb{E}[N(\mathcal{C})] = E_n - \frac{\mathsf{Sc}(x_0)}{\lambda^{\frac{2}{n}}}C_n + o(\frac{1}{\lambda^{\frac{2}{n}}})$$

with

- E_n is the mean number of vertices in the case of \mathbb{R}^n ,
- C_n is a positive constant,
- $Sc(x_0)$ is the scalar curvature of M at x_0 .

Remarks:

- $\textbf{0} \quad \text{Mean number of vertices in a given direction} \rightsquigarrow \text{Ricci curvature}$
- ❷ Sectional Voronoi cell → sectional curvature

Sketch of proof

Each vertex of C is a circumcenter of x_0 and n points of the process.

$$\mathbb{E}[\mathsf{N}(\mathcal{C})] = \mathbb{E}[\sum_{x_1, \dots, x_n \in \mathcal{P}_{\lambda}} \sum_{\mathcal{B} \text{ circum}} \mathbb{1}_{\mathcal{B} \cap \mathcal{P}_{\lambda} = \emptyset}]$$

Applying Mecke-Slivnyak theorem

$$\mathbb{E}[N(\mathcal{C})] = \frac{\lambda^n}{n!} \int_{x_1, \dots, x_n \in \mathcal{M}} \sum_{\mathcal{B} \text{ circum}} e^{-\lambda \operatorname{vol}(\mathcal{B})} dx_1 \dots dx_n$$

An expansion of the volume of a small geodesic ball on M is given by

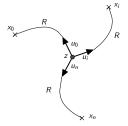
$$\operatorname{vol}(\mathcal{B}(z,R)) = \kappa_n R^n \left(1 - \frac{\operatorname{Sc}(z)}{6(n+2)} R^2 + o(R^2) \right)$$

Blaschke Petkantschin change of variables

Let
$$\Phi : (R, z, u_0, \dots, u_n) \mapsto (x_0, \dots, x_n)$$

be defined by

$$x_i = \exp_z(Ru_i)$$



Theorem

The Jacobian determinant J_{Φ} of Φ satisfies $J_{\Phi}(z, R, u_0, u_1, \dots, u_n) = n! \Delta(u_0, \dots, u_n) \prod_{i=0}^n \det M^{(i)}$ Moreover, when R tends to 0,

$$J_{\Phi}(z, R, u_0, u_1, \dots, u_n) = n! \Delta(u_0, u_1, \dots, u_n) \left(R^{n^2 - 1} - \frac{\sum_{i=0}^n \operatorname{Ric}_2(u_i)}{6} R^{n^2 + 1} + o(R^{n^2 + 1}) \right)$$

Limit theorems

We derive limit theorems with a view to estimation of the curvature

- Local geometry: we focus on $\mathcal{B}(x_0, \lambda^{-\beta})$, with $0 < \beta < \frac{1}{n}$
- Preserve the curvature: we consider the variable

$$N = \sum_{x \in \mathcal{P}_{\lambda} \cap \mathcal{B}(x_0, \lambda^{-\beta})} N(C(x, \mathcal{P}_{\lambda}))$$

Limit theorems

Weak Law of Large Numbers

When $\lambda \to \infty$

$$\frac{1}{\lambda \operatorname{vol}(\mathcal{B}(x_0, \lambda^{-\beta}))} \mathbb{E}[N] = \mathbb{E}[N(\mathcal{C})] + o\left(\frac{1}{\lambda^{\frac{2}{n}}}\right) = E_n - \frac{\operatorname{Sc}(x_0)}{\lambda^{\frac{2}{n}}} C_n + o\left(\frac{1}{\lambda^{\frac{2}{n}}}\right)$$

Central Limit Theorem

When $\lambda
ightarrow \infty$,

$$rac{{\mathsf{N}}-\mathbb{E}[{\mathsf{N}}]}{\sqrt{{\mathsf{Var}}({\mathsf{N}})}} o \mathcal{N}(0,1)$$
 in law

Sketch of proof

Baldi-Rinott (89)

Let $\{X_{an}, a \in V_n\}$ r. v. having dependency graph $G_n = (V_n, E_n), n \ge 1$. Let $S_n = \sum_{a \in V_n} X_{an}, \sigma_n^2 = \operatorname{Var}(S_n) < \infty, D_n$ denote the maximal degree of G_n and suppose $|X_{an}| \le B_n$ for some constant B_n a.s. for all $a \in V_n$. Then

$$\left|\mathbb{P}\left(\frac{S_n - \mathbb{E}[S_n]}{\sigma_n} \le x\right) - \Phi(x)\right| \le 32(1 + \sqrt{6}) \left(\frac{|V_n| D_n^2 B_n^3}{\sigma_n^3}\right)^{\frac{1}{2}}$$

We construct a dependency graph

We show that the bounds in Baldi-Rinott tends to 0

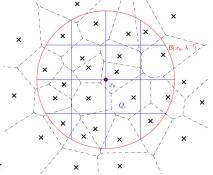
Dependency graph

• $\mathcal{B}(x_0, \lambda^{-\beta})$ is divided into $m_{\lambda} = \lambda^{n\alpha} \log(\lambda)^{-n} \lambda^{-n\beta}$ sets, Q_i , of volume $\lambda^{-n\alpha} \log(\lambda)^n, \frac{1}{n} > \alpha > \beta$.

$$N_i = \sum_{x \in \mathcal{P}_\lambda \cap Q_i} N(C(x, \mathcal{P}_\lambda))$$

• all is considered "conditionally on A_{λ} " with

$$A_{\lambda} = \{ orall i, 1 \leq \mathcal{P}_{\lambda}(Q_i) \leq c\lambda\lambda^{-lpha n} \log(\lambda)^n \}$$



Bound

- Number of vertices: $m_{\lambda} = \lambda^{n\alpha} \log(\lambda)^{-n} \lambda^{-n\beta}$
- Maximal degree: $D_{\lambda} \leq C_n$, constant
- Bound of N_i : $N_i \leq C'_n \lambda \lambda^{-\alpha n} \log(\lambda)^n$
- Variance: Var(N) ≥ λλ^{-nβ} (lower bound due to Last-Peccati-Schulte, 2014)

$$\left|\mathbb{P}\left(\frac{N-\mathbb{E}[N]}{\sqrt{\mathsf{Var}(N)}} \leq x\right) - \Phi(x)\right| \leq \log(\lambda)^n \lambda^{\frac{n\beta-1}{4}} \to 0 \text{ when } \lambda \to \infty$$

Estimation of the scalar curvature

In order to estimate $Sc(x_0)$, we define the estimator

$$\widehat{\mathsf{Sc}}_{\lambda}(x_0) = \frac{\lambda^{\frac{2}{n}}}{D_n} \left(E_n - \frac{1}{\lambda \operatorname{vol}(\mathcal{B}(x_0, \lambda^{-\beta}))} \sum_{x \in \mathcal{P}_{\lambda} \cap \mathcal{B}(x_0, \lambda^{-\beta})} N(C(x, \mathcal{P}_{\lambda})) \right)$$

Properties

When λ tends to ∞ , $\widehat{\mathsf{Sc}}_{\lambda}(x_0)$ is

- asymptotically unbiased
- asymptotically normal
- convergent, for $n \ge 5$ and $\beta < \frac{1}{n} \frac{4}{n^2}$

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary

Gauss-Bonnet theorem

$$2\pi\chi(S)=\int_{x\in S}K(x)dx$$

For all graph on S,

$$\chi(S) = V - E + F$$

V: vertices, E: edges, F: faces

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary

Gauss-Bonnet theorem

$$2\pi\chi(S)=\int_{x\in S}K(x)dx$$

For all random graph on S,

$$\chi(S) = \mathbb{E}[V] - \mathbb{E}[E] + \mathbb{E}[F]$$

V: vertices, E: edges, F: faces

Aurélie Chapron

Voronoi diagram on a Riemannian manifold

Voronoi diagram

For any Voroni diagram,

- each vertex is in three cells
- each edge is in two cells

so 3V = 2E

$$\chi(S) = \mathbb{E}[F] - \frac{1}{2}\mathbb{E}[V]$$

Computation of $\mathbb{E}[V]$ and $\mathbb{E}[F]$

$$3\mathbb{E}[V] = \mathbb{E}[\sum_{C \text{ cell}} N(C)] = \lambda \int_{x \in S} \mathbb{E}[N(C(x, \mathcal{P}_{\lambda} \cup \{x\}))] dx$$

$$\mathbb{E}[N(C(x,\mathcal{P}_{\lambda}\cup\{x\}))]=6-\frac{3K(x)}{\pi\lambda}+o\left(\frac{1}{\lambda}\right)$$

$$\mathbb{E}[V] = 2\lambda \operatorname{vol}(S) - \frac{1}{\pi} \int_{x \in S} K(x) dx + o(1)$$
$$\mathbb{E}[F] = \lambda \operatorname{vol}(S)$$

$$\chi(S) = \frac{1}{2\pi} \int_{x \in S} K(x) dx$$

Take Home Message

• We did it

- $\,\hookrightarrow\,$ Link between mean number of vertices and scalar curvature
- $\,\hookrightarrow\,$ Limit theorems for the number of vertices
- $\,\hookrightarrow\,$ Simple probabilistic proof of Gauss-Bonnet theorem in dimension 2.

Perspectives:

- \hookrightarrow Study of $\widehat{\mathsf{Sc}}_{\lambda}(x_0)$
- $\hookrightarrow\,$ Limit theorems for other characteristics and estimation of other curvatures
- $\,\hookrightarrow\,$ Generalized Gauss-Bonnet theorem for manifolds of even dimension

 \hookrightarrow . . .

Thank you for your attention!

Aurélie Chapron

Voronoi diagram on a Riemannian manifold