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Motivation

Aim :
@ Show a link between mean characteristics of the Voronoi cells and

local characteristics of the manifold

@ Derive limit theorems to develop statistical tools

image:R.Kunze
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Framework

@ M Riemannian manifold of dim n, with its Riemannian metric d,
@ dx the measure induced by the metric,

@ P, Poisson point process of intensity A\dx and x; € M fixed,

@ The Voronoi cell of x € Py is defined by

Clx,Pr) ={y € M,d(x,y) < d(x',y),¥x" € Pr}

@ C = C(xo,PrU{x0}) is the Voronoi cell of xo,
@ N(C(x,Py)) the number of vertices of C(x,Py).
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Outline

@ Mean number of vertices of C

© Limit theorems and estimation

© Probabilistic proof of Gauss-Bonnet theorem
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Mean number of vertices of C

Mean number of vertices of C

Mean number of vertices

_ £ Sc(x) o 1
EING)] = £ - 252G, + o(5)

n

with
@ E, is the mean number of vertices in the case of R”,
@ C, is a positive constant,
@ Sc(xp) is the scalar curvature of M at xo.
Remarks:
@ Mean number of vertices in a given direction ~~ Ricci curvature

@ Sectional Voronoi cell ~ sectional curvature
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Mean number of vertices of C

Sketch of proof

Each vertex of C is a circumcenter of xg and n points of the process.

ENC) =E[ > I P

X1,.--,XnEPx B circum
Applying Mecke-Slivnyak theorem

E[N(C)] = Af/ > e By ... dx,

|
N Jx,...xa€M B circum

An expansion of the volume of a small geodesic ball on M is given by

Sc(z)

vol(B(z, R)) = knR" (1 — m

R? + o(R2)>
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Mean number of vertices of C

Blaschke Petkantschin change of variables

Let @ : (R, z,up,...,un) = (X0, Xn)
be defined by

x; = exp,(Ru;)

The Jacobian determinant Jg of ® satisfies
Jo(z, R, up, u1, ..., up) = n'A(up, . .., up) [T, det M)

Moreover, when R tends to 0,
Jo(z, R, ug, ur, ..., up) = MA(ug, u1,. .., Uy) (R"zfl — MR"ZH + O(R"2+1))
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Limit theorems and estimation

Limit theorems

We derive limit theorems with a view to estimation of the curvature

o Local geometry: we focus on B(xp, A\™%), with 0 < 3 < 2

@ Preserve the curvature: we consider the variable

N = Z N(C(X7P>\))

XEPANB(x0,A—7)
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Limit theorems and estimation

Limit theorems

Weak Law of Large Numbers

When A — oo

1 _ 1\ _ . Sc(x) 1
NaBoe )P = ENOIo (57 = 625 6o ()

Central Limit Theorem

When A — oo,
N —E[N]

— N(0,1) in law
Var(N)

Aurélie Chapron Modal'X (Paris Nanterre) and LMRS (Rouen)

Voronoi diagram on a Riemannian manifold



Limit theorems and estimation

Sketch of proof

Baldi-Rinott (89)

Let {Xan,a € V,,} r. v. having dependency graph G, = (V,,, E,), n > 1.
Let S, = Zaevn Xan, 02 = Var(S,) < oo, D, denote the maximal degree
of G, and suppose |X,,| < B, for some constant B, a.s. for all a € V.

Then

‘]P’ (252 <) - 00

On

Nl

< 32(1 4 V6) (' V"DSBS)

8
On

@ We construct a dependency graph
@ We show that the bounds in Baldi-Rinott tends to 0
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Limit theorems and estimation

Dependency graph

Y X orlcad Uy
o B(xp, A7) is divided into P T N x
_ _ ~ X \ \
A = A" log(\)""A™"8 sets, @;, of \‘, % \) },’ I
_ X — = i o T S
volume A~ log()\)", L > o > 3. B e e A TS
n g S A X
ST )X X
° s M AN -
N ( ; RS Pl /“
Z N X P)\)) T x \>77A To ] <\\‘ X
NNl " / i W
x€EPANQ; oA T N LS S A e
. . . DI Sl S = ~ 0
@ all is considered " conditionally on A" TR kA R
. P \ SN % . / ~
with x XN S xS x
T i il NS
3 _ b TS T X
Ay = {Vi,1 <Pr(Qi) < AN " log(N)"} ok 5
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Limit theorems and estimation

o Number of vertices: my = A" log(\)~"A~""
o Maximal degree: D, < C,, constant
e Bound of N;: N; < C/AA""log(\)"
e Variance: Var(N) > A\~
(lower bound due to Last-Peccati-Schulte, 2014)

nB—1
< log(A)"A\" % — 0 when A — oo

N — E[N]
|]P’ (\/\W < X) — ®(x)
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Limit theorems and estimation

Estimation of the scalar curvature

In order to estimate Sc(xp), we define the estimator

EJINY

A

Sca(xo) = o

1
o Xol(Bo A 7)) 2 Mk

XE'P')\ﬁB(Xo,)\fﬂ)

When A tends to oo, §E>\(x0) is
@ asymptotically unbiased
@ asymptotically normal

@ convergent, for n > 5 and 8 < % -4

n2
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Probabilistic proof of Gauss-Bonnet theorem

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary

Gauss-Bonnet theorem

2mx(S) = / K (x)dx
x€ES
For all graph on S,

x(S)=V—-E+F

V' vertices, E: edges, F: faces
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Probabilistic proof of Gauss-Bonnet theorem

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary

Gauss-Bonnet theorem

2mx(S) = / K (x)dx
x€ES
For all random graph on S,

x(S) = E[V] - E[E] + E[F]

V' vertices, E: edges, F: faces
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Probabilistic proof of Gauss-Bonnet theorem

Voronoi diagram

For any Voroni diagram,
@ each vertex is in three cells
@ each edge is in two cells
so 3V =2E

X(5) = EIF] - 3EIV]
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Probabilistic proof of Gauss-Bonnet theorem

Computation of E[V] and E[F]

3E[V] =E[ > N(C)] = )\/

E[N(C(x,Px U {x}))]dx
C cell =

3K(x) 1
E[N(C(x,PrU{x}))] =6 — — to ()\>

E[V] = 2\ vol(S) — %/ K(x)dx + o(1)

XES
E[F] = Avol(S)

X(S)= 5 [ KGodx
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Conclusion

Take Home Message

e We did it
< Link between mean number of vertices and scalar curvature
< Limit theorems for the number of vertices
— Simple probabilistic proof of Gauss-Bonnet theorem in dimension 2.

@ Perspectives:

— Study of éEA(Xo)

< Limit theorems for other characteristics and estimation of other
curvatures

— Generalized Gauss-Bonnet theorem for manifolds of even dimension
—
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Conclusion

Thank you for your attention!
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