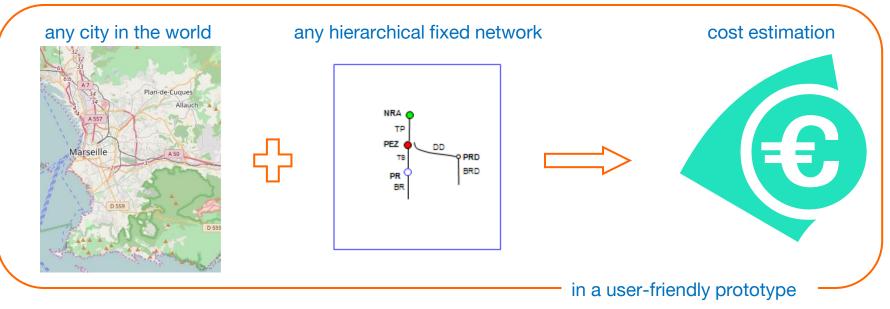
Cost estimation of a fixed network deployment over an urban territory

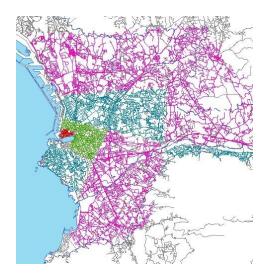

Elie Cali & Catherine Gloaguen Orange Labs, Châtillon elie.cali catherine.gloaguen@orange.com

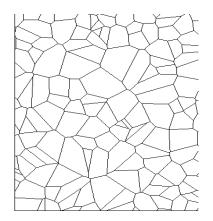
19th Workshop on Stochastic Geometry, Stereology and Image Analysis

CIRM, Luminy, May 15 - 19, 2017

orange[™]

introduction


- Putting to life stochastic geometry results to solve an operational problem
 - find and format the necessary input data
 - fit the mathematical models to the particular use case
 - extend the results beyond their strictly proven domain of validity
 - obtain realistic results within a few minutes
 - imbed the existing mathematical results in an operational prototype
 - benchmark the results against reality
- No equivalent tool on the market


geometry & network

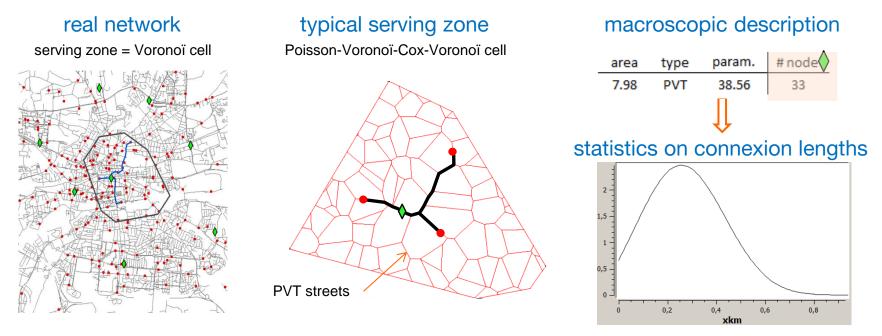
road system 1/3

reality

random model

macroscopic description

part	area km2	type	parameter km-2
red	0.61	PVT	149.04
green	1.65	PVT	114.63
blue	7.98	PVT	38.56
pink	30.87	PVT	18.68
whole city	65.90	PVT	28.08


1 realization of PVT Poisson Voronoï Tessellation (ex for blue part)

- the road system supports the network equipment : its morphology is structuring for the network
- only 3 quantities embed the morphology of a planar tessellation : number of crossings, number of street segments and length of streets
- the road system is viewed as a realization of a stationary random planar tessellation
 - a whole city map is replaced by very few information (area, model type & parameters)
 - no need for localizing any street segment

geometry & network

nodes and links 2/3

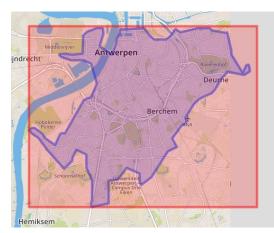
- the network is deployed on homogeneous areas (parts or city as a whole)
- the nodes are located on the streets, the links are shortest paths along the streets
- the serving zones of the nodes form a Voronoï tessellation
 - the set of all serving zones is modelled by realisations of a typical serving zone Z
 - the mean area of Z is determined by the number of \blacklozenge nodes
- analytical formulas for the probability distribution of the point to point connexion lengths in Z are available
 - this allowed to check that the model fits well reality

geometry & network

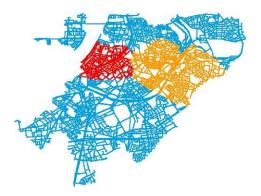
cables 3/3

- the typical serving zone is the key ingredient
- an averaged incoming capacity (# fibres) is associated to each one
- a street segment is empty or supports one cable of sufficient size
- no closed parametric formula for the random capacity tree
 - limit results for sparse trees /dense trees
 - fast simulations procedures for the cell and the tree
- statistics on type of cable-length are derived from capacity-length computed on realisations on the typical cell and used in the cost function

prototype


"OSM Miner" city acquisition 1/3

map from internet


Anvers, Belgique

drawing the city's build up area

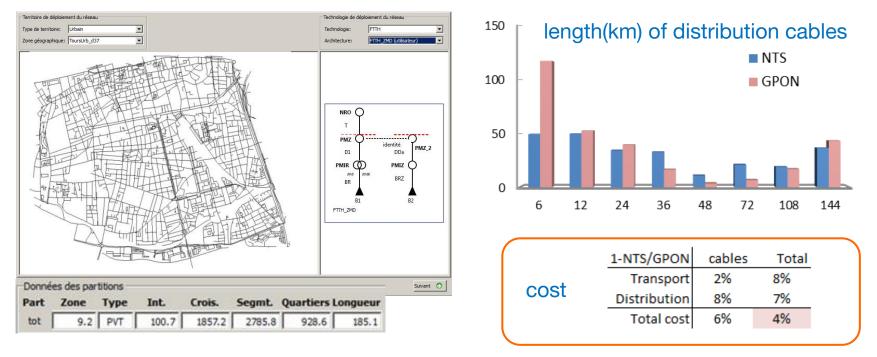
street system partition

- Open Street Map is a free database for street maps of any city in the world
- detailed data : type of streets, administrative contour
- automatization of treatment
 - detection of build up area contour
 - extraction of streets
 - segmentation in homogeneous parts
 - computation of mathematical model -> « voirie file »

part	area km2	type	parameter km-2
1	3.77	PVT	76.32
2	9.32	PVT	60.04
3	40.41	PVT	42.27
whole city	53.50	PVT	47.73

prototype

"Network Topology Synthesis" Tool 2/3


	N2 Q	Niveaux	Matériel Main d'oeuvre Génie civil Études	
	N4 Noeud		Nom cPEZTransport Valeur 500,00 Type enterré	
200	L4 Branche Attacher		Nom cNRO Valeur 2000,00 Type enterré	
J.	N1 Detacher		Unité d'oeuvre C3 Donnée NTS Câbles Coeff 1,000 🕂 🗙	
	L1	(т) Э (т)	Unité d'oeuvre CPEZTransport 💌 Donnée NTS Nb PEZ 💌 Coeff 1,000 🕂 💥	
	B1	C 2 (D) C 1 (BR)	Unité d'oeuvre CNRO 🔽 Donnée NTS Nb NRO 🔽 Coeff 1,000 🐺 💥	

- network design : immediately usable in the prototype
 - architecture : hierarchical network
 - engineering: relates nodes to population and technology
- generic specification of cost function
 - declined in material, manpower, civil work and studies on each network level
 - specification of unit costs for all equipment
 - specification of rules to compute the global cost
- compute the main values (covered road system, cable laying...) by simulation on the typical cell

prototype

benchmark on Tours 3/3

- GPON optimizer (operational tool in Orange) optimization of global deployment cost
 - on the architecture required by the French regulator Arcep and engineering constraints
 - © optimal location of nodes & cabling scheme, exact path of fibres, detailed cost function
 - ⊗ computational time (tens of hours) ⇒ restricted to small areas
- NTStool designed for macroscopic estimation in very large areas
 - available data set Tours (9 km2) is the limit range
 - ③ structuring cost units can be addressed
 - © computation in minutes
- detailed comparison : cabling system ok, cost within %

Cost estimation of a fixed network deployment, E. Cali & C. Gloaguen, 19th SGSIA, Luminy, May 15-19 2017 - p8

Conclusion

- the prototype offers an optimization for a decision problem with M€ yearly OPEX costs stakes and anticipates industrialization
- stochastic geometry is used to address a very practical use case :
 - some work needed to create a usable tool
 - not obvious that costs could be obtained (simulation time remains reasonable)
 - no equivalent tool on the market
- difficult to explain that a handful of parameters can produce reliable statistics in no time on a very large territory
 - very weird approach for operators, used to databases
- a lot of other mathematical results can still be put to use
 - other road models
 - for rural territory or at a full country scale
 - to address other use cases
- we are at your disposal for prototype demonstration

thank you for your attention

references

Maier R. & Schmidt S. (2003). Stationary Iterated Tessellations. Adv Appl Prob (SGSA) 35:337-353

Courtat T. (2012). Promenade dans les cartes de villes. Phénoménologie mathématique et physique de la ville : une approche mathématique – PhD Thesis, Paris Diderot

Gloaguen C., Fleischer F., Schmidt H., Schmidt V. (2006). Fitting of stochastic telecommunication network models via distance measures and Monte-Carlo tests. Telecommun Syst 31(4):353-377.

Fleischer F., Gloaguen C., Schmidt V., Voss F. (2009). Simulation of the typical Poisson-Voronoï-Cox-Voronoïcell. Journal of Statistical Computation and Simulation 79(7):939-957.

Gloaguen C., Voss F., Schmidt V. (2011). Parametric Distributions of Connection Lengths for the Efficient Analysis of Fixed Access Networks. Ann Telecommun 66:103-118.

Neuhäuser D., Hirsch C., Gloaguen C., Schmidt V. (2015). Joint distributions for total lengths of shortest paths trees in telecommunication networks. Ann Telecommun 70:221-232.

Neuhäuser D., Hirsch C., Gloaguen C., Schmidt V. (2015). Parametric modelling of Sparse Random Trees Using 3D Copulas. Stochastic Models 31(2):226-260.

OpenStreetMap. http://openstreetmap.org. Accessed November 28th, 2016.

Cost estimation of a fixed network, E. Cali & C. Gloaguen, 19th SGSIA, Luminy, May 15-19 2017 - p10