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Maximal degree in a Poisson-Delaunay graph

1 Poisson point process η ⊂ R2

stationary
intensity 1

2 Delaunay:
For any triple of points:
Draw triangle if the circumscribed circle is
empty

3 Maximal degree in Wn = n1/2[0, 1]2:
∆n = maxx∈η∩Wn deg(x)

How is distributed ∆n when n→∞?

Similar results from Penrose about random geometric graphs.

Additional difficulties:
• typical degree 6= Poisson

• local condition
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Results/Conjecture

∆n = maxx∈η∩Wn deg(x) ... maximal degree in a window of volume n.

Theorem [Bern, Eppstein, Yao, 1991]

E∆n = Θ

(
logn

log log n

)

Conjecture (... but soon to be a Theorem) [B., Chenavier]

There exists a deterministic sequence (In)n≥1 such that

1 P(∆n ∈ {In, In + 1}) −−−→
n→∞

1 ;

2 In ∼ 1
2 ·

log n
log log n .

• Distribution of the typical degree

• Points with high degree are isolated

• Dependency graph
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typical degree

degtyp ... typical degree

P(degtyp = k) :=
1

Vol(W )
E

 ∑
x∈η∩W

1(deg(x) = k)

 , where W ⊂ R2.

Theorem : [Hilhorst ’05]

P(degtyp = n) ∼ n−2nn−1/2c ,

as n→∞, where c = e2

4
√
π

∏∞
q=1(1− 1

q + 4
q4 )−1

More results of this flavor for hyperplane tesselation:

• [Hilhorst, Calka, ’08] number of facets of zero cell (in R2)

• [B., Calka, Reitzner, ’17] number of facets of typical cell (in Rd)

• Ph.D. thesis of B. (’16)
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Deterministic sequence In

G : R+ → [0, 1] ... continuous decreasing with G (k) = P(degtyp > k)

In = closest integer from G−1
(
1
n

)
Lemma

As n→∞,

1 n P(degtyp ≥ In)→∞;

2 nα P(degtyp ≥ In)→ 0, for any α < 1;

3 n P(degtyp ≥ In + 2)→ 0.

From 3 we get

P(∆n ≥ In + 2) ≤ E

 ∑
x∈η∩Wn

1(deg(x) ≥ In + 2)

 = n P(degtyp ≥ In + 2)

−→ 0
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General idea for the inequality P(∆n < In)→ 0, as n→∞

What would happen if the degrees at each points of the process would be
independent?

Life would be easy! We would get

P(∆n < In) = P

 ∑
x∈η∩Wn

1(deg(x) ≥ In) = 0


= P(Bin(Po(n) , P(degtyp ≥ In)) = 0)

→ 0 since n P(degtyp ≥ In)→∞.

(difficult!) Local condition

n

∫
B(0,log n)

P(degη∪{0,y}(0) ≥ In , degη∪{0,y}(y) ≥ In)dy → 0.
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Dependency graph

We discretize the window of volume n into
√

n
log n ×

√
n

log n smaller

squares of volume log n.
Set (V ,E ) the graph with

• vertex set V =
{

1, . . . ,
√

n
log n

}
×
{

1, . . . ,
√

n
log n

}
• edges {(i , j), (i ′, j ′)} when max(|i ′ − i |, |j ′ − j |) ≤ 4

Set Mi ,j := max(deg(x) : x ∈ Squarei ,j), with i , j = 1, . . . ,
√

n
log n .

Lemma

(V ,E ) is a dependency graph for the random variables Mi ,j , i.e. if
V1,V2 ⊂ V such that E ∩ (V1 × V2) = ∅ then
σ(Mi ,j : (i , j) ∈ V1) ⊥⊥ σ(Mi ,j : (i , j) ∈ V2) .



Dependency graph ⇒ Poisson approximation

[Arratia, Goldstein, Gordon, 1990]

sup
S⊂N

∣∣∣∣∣∣P
 ∑

(i ,j)∈V

1(Mi ,j ≥ In) ∈ S

− P(Po(µ) ∈ S)

∣∣∣∣∣∣ ≤ 2D·|V |·(A+B)

where D is the degree of the dependency graph, |V | = n
log n ,

µ := E

 ∑
(i ,j)∈V

1(Mi ,j ≥ In)



→∞

A := sup
(i ,j)∈V

P(Mi ,j ≥ In)2

= o

(
log n

n

)

and

B := sup
{(i ,j),(i ′,j ′)}∈E

P(Mi ,j ≥ In,Mi ′,j ′ ≥ In)

= o

(
log n

n

)
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Dependency graph ⇒ Poisson approximation

sup
S⊂N

∣∣∣∣∣∣P
 ∑

(i ,j)∈V

1(Mi ,j ≥ In) ∈ S

− P(Po(µ) ∈ S)

∣∣∣∣∣∣ ≤ o(1),

with µ→∞. Applied to S = {0}, this gives

P

 ∑
(i ,j)∈V

1(Mi ,j ≥ In) = 0

→ 0,

and thus

P(∆n ≥ In) = 1− P

 ∑
(i ,j)∈V

1(Mi ,j ≥ In) = 0

→ 1.



Thank you !


