The accumulated persistence function, a useful functional summary statistic for topological data analysis

Christophe A. N. Biscio and Jesper Møller, Aalborg University

May 15, 2017

• Topological data analysis recovers the topological information from a spatial point process **X**.

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

• r = 0, each point represents the birth of a connected component.

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...
- Also holes may appear (birth).

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...
- Also holes may appear (birth).

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...
- Also holes may appear (birth).
- And holes may disappear (death).

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as r grows...
- Also holes may appear (birth).
- And holes may disappear (death).

- Topological data analysis recovers the topological information from a spatial point process **X**.
- Construct a so-called Delaunay complex filtration \sim union of growing balls of radius $r \geq 0$ intersected with the Voronoi tessellation...

- r = 0, each point represents the birth of a connected component.
- \bullet As r grows balls intersect...
- meaning that some connected components die/Delaunay edges appear.
- And so on as *r* grows...
- Also holes may appear (birth).
- And holes may disappear (death).

Main tool in persistent homology: Persistence diagram

• For dimension k = 0, 1, ..., a persistent diagram consists of points (b_i, d_i) representing as r varies connected components (k = 0), holes (k = 1), etc. appearing at $r = b_i$ (birth) and disappearing at $r = d_i$ (death),

• possibly with multiplicity c_i for (b_i, d_i) .

• Chazal et al. (2013), Chen et al. (2015)...: Difficult to apply statistical methods.

Main tool in persistent homology: Persistence diagram

- For dimension k = 0, 1, ..., a persistent diagram consists of points (b_i, d_i) representing as r varies connected components (k = 0), holes (k = 1), etc. appearing at $r = b_i$ (birth) and disappearing at $r = d_i$ (death),
- possibly with multiplicity c_i for (b_i, d_i) .

- Chazal et al. (2013), Chen et al. (2015)...: Difficult to apply statistical methods.
- Two-dim. alternatives: persistent landscape (Bubenik, 2015: sequence of 1-dim. functions).

Main tool in persistent homology: Persistence diagram

- For dimension k = 0, 1, ..., a persistent diagram consists of points (b_i, d_i) representing as r varies connected components (k = 0), holes (k = 1), etc. appearing at $r = b_i$ (birth) and disappearing at $r = d_i$ (death),
- possibly with multiplicity c_i for (b_i, d_i) .

- Chazal et al. (2013), Chen et al. (2015)...: Difficult to apply statistical methods.
- Two-dim. alternatives: persistent landscape (Bubenik, 2015: sequence of 1-dim. functions).
- One-dim. alternatives provide selected information: Bubenik's dominant function λ₁; the silhoutte (Chazal et al., 2013: a weighted average of Bubenik's functions); kernel estimate of the intensity function for the persistent diagram (Chen et al., 2015).

A new functional summary statistic

Uses the rotated and rescaled persistence diagram:

A new functional summary statistic

Uses the rotated and rescaled persistence diagram:

• $(b_i, d_i) \leftrightarrow (m_i, l_i)$, where $m_i = \frac{b_i + d_i}{2}$ is the meanage and $l_i = d_i - b_i$ is the lifetime.

A new functional summary statistic

Uses the rotated and rescaled persistence diagram:

• $(b_i, d_i) \leftrightarrow (m_i, l_i)$, where $m_i = \frac{b_i + d_i}{2}$ is the meanage and $l_i = d_i - b_i$ is the lifetime.

NB: For each dimension k, $PD_k \leftrightarrow RRPD_k$ (where k = 0 if connected components are considered, k = 1 if holes, k = 2 if voids...).

The **accumulated persistence function** for *k*-dimensional topological features:

$$\operatorname{APF}_k(m) = \sum_i c_i l_i 1(m_i \le m), \quad m \ge 0.$$

Example:

The **accumulated persistence function** for *k*-dimensional topological features:

$$\operatorname{APF}_k(m) = \sum_i c_i l_i 1(m_i \le m), \quad m \ge 0.$$

Example:

Under mild conditions, $\operatorname{RRPD}_k \leftrightarrow \operatorname{APF}_k$.

NB: APF_k is a 1-dim. function! Apply methods from functional data analysis...

- A single APF:
 - Transfer confidence region for the persistence diagram to the APF
 - Extreme rank envelope
- A sample of APFs:
 - Functional boxplot
 - Confidence region for the mean of APFs
- Two or more samples of APFs:
 - Two-sample test
 - Clustering
 - Supervised classification

APFs for aggregated, completely random or regular point clouds

Classical functional summary functions for aggregated, completely random or regular point clouds

• Ripley's K-function for a stationary point process $X \subset \mathbb{R}^2$:

$$K(r) = \frac{\mathrm{E}\left[\text{``Number of further points in } B(0, r)\text{''} \mid 0 \in \mathbf{X}\right]}{\mathrm{E}\left[\text{``Number of points per unit area''}\right]}, \quad r \ge 0.$$

• The empty space function:

$$F(r) = P(\mathbf{X} \cap B(0, r) \neq \emptyset), \quad r \ge 0.$$

• Suppose each observed point cloud is modelled by $X \sim \text{Poisson}(\rho, [0, 1]^2)$, the Poisson point process on $[0, 1]^2$ with **known** intensity ρ (= 100, 400).

- Suppose each observed point cloud is modelled by $X \sim \text{Poisson}(\rho, [0, 1]^2)$, the Poisson point process on $[0, 1]^2$ with **known** intensity ρ (= 100, 400).
- Following Myllymäki *et al.* (2016): Simulate 2499 independent realizations from $Poisson(\rho, [0, 1]^2)$.

- Suppose each observed point cloud is modelled by $X \sim \text{Poisson}(\rho, [0, 1]^2)$, the Poisson point process on $[0, 1]^2$ with **known** intensity ρ (= 100, 400).
- Following Myllymäki *et al.* (2016): Simulate 2499 independent realizations from $Poisson(\rho, [0, 1]^2)$.
- In each of the 4 cases, given a functional summary statistic $(APF_0, APF_1, \hat{K}, \hat{F})$, compute extreme rank envelope test at level 5% (Myllymäki *et al.*, 2016).

- Suppose each observed point cloud is modelled by $X \sim \text{Poisson}(\rho, [0, 1]^2)$, the Poisson point process on $[0, 1]^2$ with **known** intensity ρ (= 100, 400).
- Following Myllymäki *et al.* (2016): Simulate 2499 independent realizations from $Poisson(\rho, [0, 1]^2)$.
- In each of the 4 cases, given a functional summary statistic $(APF_0, APF_1, \hat{K}, \hat{F})$, compute extreme rank envelope test at level 5% (Myllymäki *et al.*, 2016).
- We repeated all this 500 times.

Extreme rank envelope for APF_0

 APF_0 in a case of rejection

Zoom at 0

Extreme rank envelope for APF_0

 APF_0 in a case of rejection

Zoom at 0

NB: Small lifetimes are not noise but of particular importance!

Extreme rank envelope for APF_1

 APF_1 in a case of rejection

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determ	Determinantal M		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	
APF_0	3.6	4	77.4	100	100	100	45.6	99.6	
APF_1	3.8	4.6	28.2	57.8	100	100	65.8	100	
Ŕ	3.4	2.8	97.4	100	100	100	52.4	50.2	
\hat{F}	2.2	0.8	29.8	48.8	100	100	60.8	100	
$\mathrm{APF}_0,\mathrm{APF}_1,\hat{K},\hat{F}$	4.5	5	99	100	100	100	65	100	

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determ	Determinantal M		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	
APF_0	3.6	4	77.4	100	100	100	45.6	99.6	
APF_1	3.8	4.6	28.2	57.8	100	100	65.8	100	
Ŕ	3.4	2.8	97.4	100	100	100	52.4	50.2	
\hat{F}	2.2	0.8	29.8	48.8	100	100	60.8	100	
$\mathrm{APF}_0,\mathrm{APF}_1,\hat{K},\hat{F}$	4.5	5	99	100	100	100	65	100	

• Conservative test.

• Good detection for inhibitive model when considered APF_0 and \hat{K} .

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determ	Determinantal M		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	
APF_0	3.6	4	77.4	100	100	100	45.6	99.6	
APF_1	3.8	4.6	28.2	57.8	100	100	65.8	100	
Ŕ	3.4	2.8	97.4	100	100	100	52.4	50.2	
\hat{F}	2.2	0.8	29.8	48.8	100	100	60.8	100	
$\mathrm{APF}_0,\mathrm{APF}_1,\hat{K},\hat{F}$	4.5	5	99	100	100	100	65	100	

- Good detection for inhibitive model when considered APF_0 and \hat{K} .
- Excellent detection for cluster model.

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determ	Determinantal		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	
APF_0	3.6	4	77.4	100	100	100	45.6	99.6	
APF_1	3.8	4.6	28.2	57.8	100	100	65.8	100	
Ŕ	3.4	2.8	97.4	100	100	100	52.4	50.2	
\hat{F}	2.2	0.8	29.8	48.8	100	100	60.8	100	
$\mathrm{APF}_0,\mathrm{APF}_1,\hat{K},\hat{F}$	4.5	5	99	100	100	100	65	100	

- Good detection for inhibitive model when considered APF_0 and \hat{K} .
- Excellent detection for cluster model.
- Decent detection for Baddeley-Silverman cell process.

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determinantal		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$	$\rho = 100$	$\rho = 400$
APF_0	3.6	4	77.4	100	100	100	45.6	99.6
APF_1	3.8	4.6	28.2	57.8	100	100	65.8	100
Ŕ	3.4	2.8	97.4	100	100	100	52.4	50.2
\hat{F}	2.2	0.8	29.8	48.8	100	100	60.8	100
$\mathrm{APF}_0,\mathrm{APF}_1,\hat{K},\hat{F}$	4.5	5	99	100	100	100	65	100

- Good detection for inhibitive model when considered APF_0 and \hat{K} .
- Excellent detection for cluster model.
- Decent detection for Baddeley-Silverman cell process.
- The power increases with the number of points and by combining all summary statistics.

- $\bullet~{\rm A}$ single APF
 - Transfer confidence region for the persistence diagram to the APF
 - Extreme rank envelope
- A sample of APFs
 - Functional boxplot
 - Confidence region for the mean of APFs
- Two or more samples of APFs
 - Two-sample test
 - Clustering
 - Supervised classification

• D_0 and E_0 : two independent random rotated and rescaled persistence diagrams.

- D_0 and E_0 : two independent random rotated and rescaled persistence diagrams.
- First sample is r_1 IID copies of $D_0: D_1, \ldots, D_{r_1}$.
- Second sample is r_2 IID copies of $E_0: E_1, \ldots, E_{r_2}$.
- $r = r_1 + r_2$ and A_1, \ldots, A_r the corresponding APFs.

- D_0 and E_0 : two independent random rotated and rescaled persistence diagrams.
- First sample is r_1 IID copies of $D_0: D_1, \ldots, D_{r_1}$.
- Second sample is r_2 IID copies of $E_0: E_1, \ldots, E_{r_2}$.
- $r = r_1 + r_2$ and A_1, \ldots, A_r the corresponding APFs.
- <u>Aim</u>: Test \mathcal{H}_0 : $D_0 = E_0$.

- D_0 and E_0 : two independent random rotated and rescaled persistence diagrams.
- First sample is r_1 IID copies of $D_0: D_1, \ldots, D_{r_1}$.
- Second sample is r_2 IID copies of $E_0: E_1, \ldots, E_{r_2}$.
- $r = r_1 + r_2$ and A_1, \ldots, A_r the corresponding APFs.
- <u>Aim</u>: Test \mathcal{H}_0 : $D_0 = E_0$.
- $\overline{A_{r_1}}$ and $\overline{A_{r_2}}$: the empirical mean of A_1, \ldots, A_{r_1} and $A_{r_1+1}, \ldots, A_{r_1+r_2}$.
- $0 \leq T_1 < T_2 < \infty$.

•
$$KS_{r_1,r_2} = \sqrt{\frac{r_1r_2}{r_1+r_2}} \sup_{m \in [T_1,T_2]} \left| \overline{A_{r_1}}(m) - \overline{A_{r_2}}(m) \right|.$$

- D_0 and E_0 : two independent random rotated and rescaled persistence diagrams.
- First sample is r_1 IID copies of $D_0: D_1, \ldots, D_{r_1}$.
- Second sample is r_2 IID copies of $E_0: E_1, \ldots, E_{r_2}$.
- $r = r_1 + r_2$ and A_1, \ldots, A_r the corresponding APFs.
- <u>Aim</u>: Test \mathcal{H}_0 : $D_0 = E_0$.
- $\overline{A_{r_1}}$ and $\overline{A_{r_2}}$: the empirical mean of A_1, \ldots, A_{r_1} and $A_{r_1+1}, \ldots, A_{r_1+r_2}$.
- $0 \le T_1 < T_2 < \infty$.

•
$$KS_{r_1,r_2} = \sqrt{\frac{r_1r_2}{r_1+r_2}} \sup_{m \in [T_1,T_2]} \left| \overline{A_{r_1}}(m) - \overline{A_{r_2}}(m) \right|.$$

- Large values are critical for \mathcal{H}_0 .
- Problem: the asymptotic distribution of KS_{r_1,r_2} known but intractable. \Rightarrow Bootstrap procedure.

Theorem

Assume that $\lambda \in (0,1)$ such that $r_1/r \to \lambda$ as $r \to \infty$. Under mild conditions, using a bootstrap method where we resample B times,

• if \mathcal{H}_0 is true,

$$\lim_{r \to \infty} \lim_{B \to \infty} \mathbb{P}\left(KS_{r_1, r_2} > \hat{q}^B_\alpha\right) = \alpha,$$

• if \mathcal{H}_0 is not true and $\sup_{m \in [T_1, T_2]} |E \{A_{D_0} - A_{E_0}\}(m)| > 0$,

$$\lim_{r \to \infty} \lim_{B \to \infty} \mathbb{P}\left(KS_{r_1, r_2} > \hat{q}^B_\alpha\right) = 1.$$

Example: Brain artery trees dataset (Bendich et al., 2016)

- Subjects: 46 women and 49 men. Each subject/tree graph has $\approx 10^5$ nodes.
- Bendich *et al.* (2016) wanted to capture how the arteries bend through space and to detect age and gender effects.
- The age effect was clearly revealed \Rightarrow we focus on the gender effect.

Bendich *et al.* (2016) performed a permutation test based on the mean of the 100 largest lifetimes of each subject:

- When k = 0 (connected components), *p*-value of 10%.
- When k = 1 (holes), *p*-value of 3%.

Bendich *et al.* (2016) performed a permutation test based on the mean of the 100 largest lifetimes of each subject:

- When k = 0 (connected components), *p*-value of 10%.
- When k = 1 (holes), *p*-value of 3%.

We distinguish between male and female subjects using our two-sample test statistic KS_{r_1,r_2} based on APF_ks.

Bendich *et al.* (2016) performed a permutation test based on the mean of the 100 largest lifetimes of each subject:

- When k = 0 (connected components), *p*-value of 10%.
- When k = 1 (holes), *p*-value of 3%.

We distinguish between male and female subjects using our two-sample test statistic KS_{r_1,r_2} based on APF_ks.

- We consider two settings:
 - (A) We use only the 100 largest lifetimes as in Bendich et al. (2016).
 - (B) We use all topological features.

Estimated *p*-values of the two-sample test statistic KS_{r_1,r_2} :

	AP	F_0	APF_1		
	I = [0, 137]	I = [0, 60]	I = [0, 25]	I = [15, 25]	
Setting (A)	5.26	3.26	3.18	2.72	
Setting (B)	7.67	3.64	20.06	1.83	

- As in Bendich *et al.* (2016): Usually better results when k = 1 (holes). In comparison with Bendich *et al.* (2016), we see a very clear gender effect.
- Good detection when k = 0 (connected components). In contrast to Bendich *et al.* (2016), we see a clear gender effect.
- Problem with APF_1 on I = [0, 25] partly dues to outliers (further studies required).

• We have introduced a new functional summary statistics (the APF) as an alternative to the persistence diagram. It is 1D and usually \leftrightarrow persistence diagram.

- We have introduced a new functional summary statistics (the APF) as an alternative to the persistence diagram. It is 1D and usually \leftrightarrow persistence diagram.
- We have successfully used it in various situations.

- We have introduced a new functional summary statistics (the APF) as an alternative to the persistence diagram. It is 1D and usually \leftrightarrow persistence diagram.
- We have successfully used it in various situations.
- E.g. in connection to the extreme rank envelope test and the corresponding plot.

- We have introduced a new functional summary statistics (the APF) as an alternative to the persistence diagram. It is 1D and usually \leftrightarrow persistence diagram.
- We have successfully used it in various situations.
- E.g. in connection to the extreme rank envelope test and the corresponding plot.
- We have detected a gender effect for the brain artery trees dataset.

- We have introduced a new functional summary statistics (the APF) as an alternative to the persistence diagram. It is 1D and usually \leftrightarrow persistence diagram.
- We have successfully used it in various situations.
- E.g. in connection to the extreme rank envelope test and the corresponding plot.
- We have detected a gender effect for the brain artery trees dataset.

Perspectives:

- Define new spatial point process models based on their persistence diagrams.
- Use voids (k = 2) to study brain artery trees.

Paper available at arXiv:1611.00630.

Thank you for your attention.