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The case of a point cloud - Delaunay complex filtration

Topological data analysis recovers the topological information from a spatial
point process X.

Construct a so-called Delaunay complex filtration ∼ union of growing balls
of radius r ≥ 0 intersected with the Voronoi tessellation...

r = 0, each point represents the
birth of a connected component.

As r grows balls intersect...

meaning that some connected
components die/Delaunay edges
appear.

And so on as r grows...

Also holes may appear (birth).

And holes may disappear (death).
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Main tool in persistent homology: Persistence diagram

For dimension k = 0, 1, . . ., a persistent diagram consists of points (bi , di)
representing as r varies connected components (k = 0), holes (k = 1), etc.
appearing at r = bi (birth) and disappearing at r = di (death),
possibly with multiplicity ci for (bi , di).
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Chazal et al. (2013), Chen et al.
(2015)...: Difficult to apply
statistical methods.

Two-dim. alternatives: persistent
landscape (Bubenik, 2015: sequence
of 1-dim. functions).
One-dim. alternatives provide
selected information: Bubenik’s
dominant function λ1; the silhoutte
(Chazal et al., 2013: a weighted
average of Bubenik’s functions);
kernel estimate of the intensity
function for the persistent diagram
(Chen et al., 2015).
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A new functional summary statistic

Uses the rotated and rescaled persistence diagram:

(bi , di)↔ (mi , li), where
mi = bi+di

2 is the meanage and
li = di − bi is the lifetime.

Persistence diagram

Rotated and rescaled
persistence diagram
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NB: For each dimension k, PDk ↔ RRPDk
(where k = 0 if connected components are considered, k = 1 if holes, k = 2 if
voids...).
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A new functional summary statistic

The accumulated persistence function for k-dimensional topological
features:

APFk(m) =
∑

i

ci li1(mi ≤ m), m ≥ 0.

Example:
Rotated and rescaled
persistent diagram Connected components Holes
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Under mild conditions, RRPDk ↔ APFk .
NB: APFk is a 1-dim. function! Apply methods from functional data analysis...
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Applications

A single APF:

Transfer confidence region for the persistence diagram to the APF

Extreme rank envelope

A sample of APFs:

Functional boxplot

Confidence region for the mean of APFs

Two or more samples of APFs:

Two-sample test

Clustering

Supervised classification



APFs for aggregated, completely random or regular point clouds

Matérn cluster Poisson/CSR Determinantal
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Classical functional summary functions for aggregated, completely
random or regular point clouds

Ripley’s K -function for a stationary point process X ⊂ R2:

K(r) = E [“Number of further points in B(0, r)” | 0 ∈ X]
E [“Number of points per unit area”] , r ≥ 0.

The empty space function:
F(r) = P (X ∩ B(0, r) 6= ∅) , r ≥ 0.
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Extreme rank envelope test for CSR

CSR: Poisson process Inhibition: DPP Aggregation:
Matérn cluster

Baddeley-Silverman
cell process

Suppose each observed point cloud is modelled by X ∼ Poisson(ρ, [0, 1]2),
the Poisson point process on [0, 1]2 with known intensity ρ (= 100, 400).

Following Myllymäki et al. (2016): Simulate 2499 independent realizations
from Poisson(ρ, [0, 1]2).

In each of the 4 cases, given a functional summary statistic
(APF0,APF1, K̂ , F̂), compute extreme rank envelope test at level 5%
(Myllymäki et al., 2016).

We repeated all this 500 times.
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Extreme rank envelope for APF0

APF0 in a case of rejection Zoom at 0
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NB: Small lifetimes are not noise but of particular importance!
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Extreme rank envelope for APF1

APF1 in a case of rejection
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Test for CSR using different functional summary statistics

Percentage of simulated point patterns rejected by the 95%-extreme rank
envelope test.

Poisson Determinantal Matérn cluster Baddeley-Silverman

ρ = 100 ρ = 400 ρ = 100 ρ = 400 ρ = 100 ρ = 400 ρ = 100 ρ = 400

APF0 3.6 4 77.4 100 100 100 45.6 99.6

APF1 3.8 4.6 28.2 57.8 100 100 65.8 100

K̂ 3.4 2.8 97.4 100 100 100 52.4 50.2

F̂ 2.2 0.8 29.8 48.8 100 100 60.8 100

APF0, APF1, K̂ , F̂ 4.5 5 99 100 100 100 65 100

Conservative test.

Good detection for inhibitive model when considered APF0 and K̂ .

Excellent detection for cluster model.

Decent detection for Baddeley-Silverman cell process.

The power increases with the number of points and by combining all
summary statistics.
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Two-sample test

D0 and E0: two independent random rotated and rescaled persistence
diagrams.

First sample is r1 IID copies of D0: D1, . . . ,Dr1 .

Second sample is r2 IID copies of E0: E1, . . . ,Er2 .

r = r1 + r2 and A1, . . . ,Ar the corresponding APFs.

Aim: Test H0: D0 = E0.

Ar1 and Ar2 : the empirical mean of A1, . . . ,Ar1 and Ar1+1, . . . ,Ar1+r2 .

0 ≤ T1 < T2 <∞.

KSr1,r2 =
√

r1r2

r1 + r2
sup

m∈[T1,T2]

∣∣Ar1 (m)−Ar2 (m)
∣∣.

Large values are critical for H0.

Problem: the asymptotic distribution of KSr1,r2 known but intractable.
⇒ Bootstrap procedure.
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Theorem
Assume that λ ∈ (0, 1) such that r1/r → λ as r →∞. Under mild conditions,
using a bootstrap method where we resample B times,

if H0 is true,

lim
r→∞

lim
B→∞

P
(
KSr1,r2 > q̂B

α

)
= α,

if H0 is not true and supm∈[T1,T2] |E {AD0 −AE0} (m)| > 0,

lim
r→∞

lim
B→∞

P
(
KSr1,r2 > q̂B

α

)
= 1.



Example: Brain artery trees dataset (Bendich et al., 2016)

Subjects: 46 women and 49 men. Each subject/tree graph has ≈ 105 nodes.

Bendich et al. (2016) wanted to capture how the arteries bend through space
and to detect age and gender effects.

The age effect was clearly revealed ⇒ we focus on the gender effect.



Another example: Brain artery trees

Bendich et al. (2016) performed a permutation test based on the mean of the 100
largest lifetimes of each subject:

When k = 0 (connected components), p-value of 10%.

When k = 1 (holes), p-value of 3%.

We distinguish between male and female subjects using our two-sample test
statistic KSr1,r2 based on APFks.

We consider two settings:

(A) We use only the 100 largest lifetimes as in Bendich et al. (2016).

(B) We use all topological features.
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Example - Brain artery trees

Estimated p-values of the two-sample test statistic KSr1,r2 :

APF0 APF1

I = [0, 137] I = [0, 60] I = [0, 25] I = [15, 25]

Setting (A) 5.26 3.26 3.18 2.72

Setting (B) 7.67 3.64 20.06 1.83

As in Bendich et al. (2016): Usually better results when k = 1 (holes). In
comparison with Bendich et al. (2016), we see a very clear gender effect.

Good detection when k = 0 (connected components). In contrast to Bendich
et al. (2016), we see a clear gender effect.

Problem with APF1 on I = [0, 25] partly dues to outliers (further studies
required).



Conclusions:

We have introduced a new functional summary statistics (the APF) as an
alternative to the persistence diagram. It is 1D and usually ↔ persistence
diagram.

We have successfully used it in various situations.

E.g. in connection to the extreme rank envelope test and the corresponding
plot.

We have detected a gender effect for the brain artery trees dataset.

Perspectives:

Define new spatial point process models based on their persistence diagrams.

Use voids (k = 2) to study brain artery trees.
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Thank you for your attention.


