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@ possibly with multiplicity ¢; for (b;, d;).

Death

®  Connected components
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@ Chazal et al. (2013), Chen et al.

(2015)...: Difficult to apply
statistical methods.

Two-dim. alternatives: persistent
landscape (Bubenik, 2015: sequence
of 1-dim. functions).

One-dim. alternatives provide
selected information: Bubenik’s
dominant function A;; the silhoutte
(Chazal et al., 2013: a weighted
average of Bubenik’s functions);
kernel estimate of the intensity
function for the persistent diagram
(Chen et al., 2015).
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A new functional summary statistic

Uses the rotated and rescaled persistence diagram:

) <> (mi, l;), where
% is the meanage and
l; = d; — b; is the lifetime.
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A new functional summary statistic

The accumulated persistence function for k-dimensional topological

features:
APFy(m) = Z cilil(m; <m), m>0.
Example:
Rotated and rescaled Connected components Holes

persistent diagram
¢ ®  Connected components|

2 Holes

Liftetime
APFy(m)
APF,(m)

AB
a

s
A a
4 SeadRA s an

K4

Meahage Mean;age Me;;age
Under mild conditions, RRPDj +» APFy.
NB: APF}, is a 1-dim. function! Apply methods from functional data analysis...



Applications

o A single APF:
e Transfer confidence region for the persistence diagram to the APF

o Extreme rank envelope
o A sample of APFs:

e Functional boxplot

o Confidence region for the mean of APFs
e Two or more samples of APFs:

o Two-sample test
o Clustering

e Supervised classification



APFs for aggregated, completely random or regular point clouds
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assical functional summary functions for aggregated, completely

random or regular point clouds

e Ripley’s K-function for a stationary point process X C R?:
E [“Number of further points in B(0,7)” |0 € X]

K =
(r) E [“Number of points per unit area”]

r > 0.

I’

o The empty space function:
F(r)y=P(XNB0,r)£0), r>0.
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Aggregation: ~ Baddeley-Silverman

CSR: Poi ibition:
olsson process  Inhibition: DPP Matérn cluster cell process

e Suppose each observed point cloud is modelled by X ~ Poisson(p, [0, 1]?),
the Poisson point process on [0, 1] with known intensity p (= 100,400).

e Following Myllymaéki et al. (2016): Simulate 2499 independent realizations
from Poisson(p, [0,1]?).

o In each of the 4 cases, given a functional summary statistic
(APFo, APF4, K, F'), compute extreme rank envelope test at level 5%
(Myllyméki et al., 2016).

o We repeated all this 500 times.



Extreme rank envelope for APFq

APFy in a case of rejection

—— Extreme rank envelope bounds
—— Matern cluster

—— Determinantal

—— Baddeley-Silverman

0.0 0.2 0.4 0.6 0.8
Meanage

04 06 08 1.0

APFy(m)

0.2

0.0

Zoom at 0

| =—— Extreme rank envelope bounds
—— Matern cluster
—— Determinantal
7 Baddeley-Silverman
T T T T T T T
0.000 0.010 0.020 0.030

Meanage



Extreme rank envelope for APFq

APFy in a case of rejection Zoom at 0
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NB: Small lifetimes are not noise but of particular importance!
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Test for CSR using different functional summary statistics

Percentage of simulated point patterns rejected by the 95%-extreme rank
envelope test.
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p=100 p=400 | p=100 p=400 | p=100 p=400 | p=100 p =400
APFo 3.6 4 7.4 100 100 100 45.6 99.6
APF, 3.8 4.6 28.2 57.8 100 100 65.8 100
K 3.4 2.8 97.4 100 100 100 52.4 50.2
P 2.2 0.8 29.8 48.8 100 100 60.8 100
APFo, APF, K, 7 4.5 5 99 100 100 100 65 100

o Conservative test.
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Test for CSR using different functional summary statistics

Percentage of simulated point patterns rejected by the 95%-extreme rank
envelope test.

Poisson Determinantal Matérn cluster Baddeley-Silverman

p=100 p=400 | p=100 p=400 | p=100 p=400 | p=100 p =400
APFo 3.6 4 7.4 100 100 100 45.6 99.6
APF, 3.8 4.6 28.2 57.8 100 100 65.8 100
K 3.4 2.8 97.4 100 100 100 52.4 50.2
P 2.2 0.8 29.8 48.8 100 100 60.8 100
APFo, APF, K, 7 4.5 5 99 100 100 100 65 100

o Conservative test.

Good detection for inhibitive model when considered APFq and K.

o Excellent detection for cluster model.
@ Decent detection for Baddeley-Silverman cell process.

e The power increases with the number of points and by combining all
summary statistics.
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Two-sample test

Dy and FEp: two independent random rotated and rescaled persistence

diagrams.

First sample is r IID copies of Dyo: D1,..., Dy .
Second sample is r» IID copies of Ep: En, ..., Ey,.
r=r 4+ r; and Aq,..., A, the corresponding APFs.

Aim: Test Ho: Do = Ep.

A, and A,,: the empirical mean of Ay,..., A, and Ay 41,...

0< T < Ts < 0.

172 —_ -
KSy oy = su A (m)— A, (m)|.
o = s [ ) )|

Large values are critical for Ho.

I AT1+T2 N

Problem: the asymptotic distribution of KS, », known but intractable.

= Bootstrap procedure.



Theorem

Assume that X € (0,1) such that r1/r — X as r — co. Under mild conditions,
using a bootstrap method where we resample B times,

o if Ho is true,

lim lim P (KSy ., > 45) = a,

r—00 B—00

o if Ho is not true and sup,,¢(r, 7,1 |E{Ap, — Agy} (m)| >0,

lim lim P (KS,,, > ga) = 1.

r—o00 B—oo




Example: Brain artery trees dataset (Bendich et al., 2016)

o Subjects: 46 women and 49 men. Each subject/tree graph has ~ 10° nodes.

e Bendich et al. (2016) wanted to capture how the arteries bend through space
and to detect age and gender effects.

o The age effect was clearly revealed = we focus on the gender effect.
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Another example: Brain artery trees

Bendich et al. (2016) performed a permutation test based on the mean of the 100
largest lifetimes of each subject:

e When k£ = 0 (connected components), p-value of 10%.
e When k = 1 (holes), p-value of 3%.

We distinguish between male and female subjects using our two-sample test
statistic KSy,,r, based on APFys.

@ We consider two settings:
(A) We use only the 100 largest lifetimes as in Bendich et al. (2016).

(B) We use all topological features.



Example - Brain artery trees

Estimated p-values of the two-sample test statistic KSr, r:

APF, APF,
1=100,137] I=10,60] | I=1[0,25] I =[15,25]
Setting (A) 5.26 3.26 3.18 2.72
Setting (B) 7.67 3.64 20.06 1.83

e As in Bendich et al. (2016): Usually better results when & =1 (holes). In
comparison with Bendich et al. (2016), we see a very clear gender effect.

e Good detection when k = 0 (connected components). In contrast to Bendich
et al. (2016), we see a clear gender effect.

e Problem with APF; on I = [0, 25] partly dues to outliers (further studies
required).
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Conclusions:

@ We have introduced a new functional summary statistics (the APF) as an
alternative to the persistence diagram. It is 1D and usually <> persistence
diagram.

o We have successfully used it in various situations.

o E.g. in connection to the extreme rank envelope test and the corresponding
plot.

o We have detected a gender effect for the brain artery trees dataset.

Perspectives:

@ Define new spatial point process models based on their persistence diagrams.

e Use voids (k = 2) to study brain artery trees.



Paper available at arXiv:1611.00630.

Thank you for your attention.



