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The problem

B ⊂ Rd bounded measurable set, (M,M) a measurable mark space

(Y ,Y) = (B ×M, B(B)⊗M)

Poisson process η on Y with intensity measure λ,

λ(d(y , r)) = τdyg(r)dr ,

y location, r mark, τ > 0 parameter

g density of reference mark distribution (unobserved)

X random process with density p w.r.t. η, space of outcomes (N,N )

hereditary Papangelou conditional intensity λ∗(x,u) = p(x∪u)
p(x) , x ∈ N

The aim: nonparametric estimation of g from observed data
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History of the problem
Møller and Helisová (2010), Scand. J. Statist.

disc process in R2, mark is the radius of disc

exponential type density w.r.t. Boolean model, heather data (Diggle,
1981)

pragmatic approach: using fitted Boolean disc model as the reference
process, followed by MLE of the density parameters

Dereudre, Lavancier, Staňková Helisová (2014)

the same data and reference processes

model estimation: Takacz-Fiksel method instead of MLE

Beneš, Večeřa, Eltzner, Huckemann, et al. (2017), segment process,
marks length and/or direction, data of stress fibres in stem cells

fully parametric approach (poster of J. Večeřa)
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Theoretical solution

f (y)
X density of the Palm mark distribution

of the process X at the location y ∈ B (observed)

the reference and observed distributions related by formula

f (y)
X (r) =

ρ(y , r)∫
M ρ(y , r)dr

intensity function ρ(u) = τg(r)Eλ∗(X ,u), u = (y , r)

ρ typically unknown - approximation

reference density transformed into p, homogeneous Poisson process
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Segment process with reference directional
distribution

segment length r > 0 is fixed, mark - direction, u = (y , ϕ) ∈ Y

Poisson segment process η with the intensity measure

λ(d(y , ϕ)) = dy
1
π

dϕ

p(x) = c exp(a N(x))τn(x)
∏
ui∈x

g(ϕi), x ∈ N,

n(x) total number of segments, N(x) total number of intersections
between segments, g a reference probability density on [0, π), ϕi
direction of i−th segment ui , a ≤ 0, τ > 0 are parameters, c a
normalizing constant. The conditional intensity

λ∗(x,u) = τg(ϕ) exp(aNx(u)),

Nx(u) number of segments of x \ {u} hit by the segment u
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Approximation

Saddle-point approximation (Baddeley and Nair, 2012)

EX eaNx(u) ≈ Eη(ρ)eaNx(u),

where η(ρ) is a Poisson process with intensity function ρ. Then

Eη(ρ)eaNx(u) = exp
(
(ea − 1)r2Iy (ϕ)

)
, u = (y , ϕ),

where
Iy (ϕ) =

∫ π

0
| sin(ϕ− β)|ρ(y , β)dβ.

ρ(y , ϕ) = Cy f (y)
X (ϕ). Given a stationary extension of X

g(ϕ) ≈ CfX (ϕ)

τ exp((ea − 1)Cr2J(ϕ))
,

where J(ϕ) =
∫ π

0 | sin(ϕ− β)|fX (ϕ)dϕ.
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Takacz-Fiksel estimation
estimation of parameters C,a, τ and the density g

(i) density fX estimated using a kernel estimator for directional data
(ii) denote β(a, r ,C, ϕ) = exp((ea − 1)r2CJ(ϕ)), estimate C,a from
equations:

∑
u∈x

Nx(u) =
π|B|C

J

J∑
i=1

fX (ϕi)Nx(ui)eaNx(ui )

β(a, r ,C, ϕi)
,

n(x) =
π|B|C

J

J∑
i=1

fX (ϕi)eaNx(ui )

β(a, r ,C, ϕi)
.

on the right integrals are evaluated by Monte Carlo method

(iii) plugg the estimators of C,a in

τ =
πC
J

J∑
i=1

fX (ϕi)

β(a, r ,C, ϕi)

(iv) g(ϕ) ≈ CfX (ϕ)
τ exp((ea−1)Cr2J(ϕ))
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Simulation study, numerical results

true mean sd
a -0.5 -0.496 0.071
τ 1000 1011 154.7
C 361.0 14.5

true mean sd
a -3 -3.03 0.356
τ 1000 976 141.0
C 235.1 13.0

Tabulka: Means and standard deviations (sd) (based on 100 simulations) of
Takacz-Fiksel estimates of scalar parameters in the model having the density
with reference directional distribution. The two cases correspond to
a = −0.5, a = −3.
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Estimation of reference density

Obrázek: Semiparametric estimation based on 100 simulations of the
segment process X , a = −0.5 (left), a = −3 (right). The average estimator of
the reference density (full line) compared to the true reference density
(dashed line) of von Mises distribution with parameters ν = 0, κ = 1. The
envelopes (dotted lines) correspond to empirical 90% confidence interval for
the estimated reference density, pointwise in 100 points on horizontal axis.
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Alternative model formulation
C(d) space of compact sets in Rd with Hausdorff metric, C0 ⊂ C(d) sets
with circumcentre at origin

stationary particle process X (Schneider, Weil, 2008), intensity
measure θ

θ(A) = γ
∫
C0

∫
Rd 1A(x + K )dxdQ(K ), λ = θ/γ,

X is a Gibbs process with Papangelou conditional intensity κ, activity
τ > 0, if

E
∫
C(d)

f (K ,X − δK ) ξ(dK ) = τ E
∫
C(d)

f (K ,X )κ(K ,X )λ(dK )

for all measurable f : Cd × Nd → [0,∞), Ruelle (1970)

κ(K , µ) := exp
[
−
∫
C(d) U(K ∩ L)µ(dL)

]
, (K , µ) ∈ C(d) × Nd

Stationary segment process X in R2, intensity measure concentrated
on the system of segments S ⊂ C(2)

potential U(K ) := a 1{K 6= ∅}, a > 0, K ∈ C(2) (poster D. Novotná)
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The segment process with reference length
distribution

Circle B = b(0,ea) ⊂ R2, Lo = [0,ea] interval of segment lengths

Y = B × Lo × [0, π) space of segments, u = (y , r , ϕ) ∈ Y , centre y ,
length r , axial direction ϕ

Poisson segment process η, intensity measure λ(du) = dy 1
ea

dr 1
πdϕ

on Y

Segment process X , density p w.r.t. η :

p(x) = c1[x⊂B] exp(b D(x))τn(x)
∏
ui∈x

g(ri)

b ∈ R, τ > 0 parameters, ri length of i−th segment ui , g reference
probability density on Lo

D(x) =
∑
u∈x

d(u), d(u) = max
z∈u

||z||
ea
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Segment process simulation

Obrázek: Simulated realizations of the segment process with ea = 1 having
parameters b = 10, τ = 3 (left) and b = −10, τ = 4000 (right), g is beta
distribution with parameters α = 2, β = 4.
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Properties of the model

Conditional intensity

λ∗(x,u) = 1[x∪{u}⊂B]τg(r) exp(bd(u))

Intensity function

ρ(u) = Eλ∗(X ,u) = τg(r) exp(bd(u)), u ⊂ B,
ρ(u) = 0, u ∩ (R2 \ B) 6= ∅

X inhomogeneous but isotropic

f (y)
X bivariate (Palm) density of length and direction, segment centered

at y . Basic relation:

g(r) =
Cy f (y)

X (r , ϕ)

ebd(u)

From the isotropy f (y)
X (r , ϕ) = f (Ay)

X (r ,Aϕ)

normalizing constants Cy = CAy for all y ∈ B and all rotations A
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Semiparametric estimation using maximum
pseudolikelihood

estimate parameters b, τ and reference density g

maximize logarithmic pseudolikelihood

logL = log(τ)n(x) + bD(x) +
∑
u∈x

log g(r)− τ
∫

u⊂B
g(r)ebd(u)du

∂ logL
∂τ

=
n(x)

τ
−
∫

u⊂B
g(r)ebd(u)du,

∂ logL
∂b

= D(x)− τ
∫

u⊂B
d(u)g(r)ebd(u)du.

using the basic relation

n(x) = τ

∫
u⊂B

Cy f (y)
X (r , ϕ)du,

D(x) = τ

∫
u⊂B

Cy d(u)f (y)
X (r , ϕ)du.
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Estimation procedure

(i) discretize the data to a system of k annuli,

kernel density esimator of f (yj )

X (r , ϕ) in each annulus using rotated
data, j = 1, . . . , k

product kernel, length: system of beta kernels (Chen, 1999),
directions: circular data kernel

(ii) numerical integration of the basic relation to obtain Cyj as a
function of b

(iii) Monte-Carlo integration on the right of PLE equations

(iv) numerical solution of equation for D(x)
n(x) w.r.t. unknown b

(v) subsequent plugging in, estimation of Cj , τ and finally g

16



Simulation study, numerical results

Simulation of the process with parameters
b = 3, τ = 900, α = 2, β = 4,ea = 1, k = 6

true mean sd
b 3 3.059 0.484
τ 900 938.8 189.9

true mean sd
b 3 3.048 0.486
τ 900 954 186

Tabulka: Means and standard deviations (sd) of the maximum
pseudolikelihood estimates of scalar parameters in the model with the
reference length density. Upper part - sample I (20 simulations), lower part -
sample II (40 simulations)
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Step (i), kernel density estimation

Obrázek: Kernel estimation of the observed length density based on 40
simulations of the inhomogeneous segment process X , b = 3, τ = 900. In
each of six classes the average kernel estimator of the observed length
density (full line) is compared to the true reference density (dashed line) of
beta distribution with parameters α = 2, β = 4. The envelopes (dotted lines)
correspond to empirical 90% confidence interval for the kernel estimator,
pointwise in 100 points on horizontal axis.
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The estimator of the reference length distribution

Obrázek: Semiparametric estimation of reference length density based on
sample I (left), II (right) of 20, 40 simulations, respectively, of the segment
process X , b = 3, τ = 900. The average (from first four classes) estimator of
the reference density (full line) compared to the true reference density
(dashed line) of beta distribution with parameters α = 2, β = 4. The
envelopes (dotted lines) correspond to empirical 90% confidence interval for
the estimated reference density, pointwise in 100 points on horizontal axis.
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Some references related to asymptotics
Classical Jensen-Kuensch approach

Mase S. (2000). Marked Gibbs processes and asymptotic normality
of maximum pseudolikelihood estimators. Mathematische
Nachrichten. 209, 151-169.

Coeurjolly J.F. (2015). Almost sure behavior of functionals of
stationary Gibbs point processes. Statist. Probab. Letters 97,
241–246.

Malliavin-Stein method

Torrisi G. L. (2016). Probability approximation of point processes with
Papangelou conditional intensity. Bernoulli. In print.

Decorrelation techniques

Blaszczyszyn B., Yogeshwaran D., Yukich J.E. (2016) Limit theory for
geometric statistics of clustering point processes. arXiv:1606.03988
[math.PR].

20



Basic references
Baddeley A, Nair G (2012) Fast approximation of the intensity of
Gibbs point processes. Electron J Statist 6:1155–1169.
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