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Motivation & Background

1. Motivation

» Gibbs point processes are important models
in statistical physics, spatial statistics and stochastic
geometry.

» Many important properties of a Gibbs process are not
known as an explicit function of the model parameters
> intensity
» pair correlation function
> ...

» Approximations exist, but have limitations.
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Motivation & Background

Example: mean field approximation

Classical “mean field” approximation to A for a Strauss process
with parameters 8 = 100, r = 0.05 for various values of v
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Motivation & Background

Intractability of the moments of Gibbs processes
is a major obstacle in applications,
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Motivation & Background

Intractability of the moments of Gibbs processes
is a major obstacle in applications,

and was the original motivation for developing
Markov chain Monte Carlo methods.
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Motivation & Background

Chapman & Hall/CRC
Interdisciplinary Statistics Series

Spatial Point Patterns
Methodology and Applications with R

Software for spatial point process data
spatstat.org

Adrian Baddeley ® Ege Rubak @ Rolf Turner
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Motivation & Background

Dataset swedishpines
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Motivation & Background

library(spatstat)

fit <- ppm(swedishpines ~ 1, Strauss(9))
parameters(fit)

X <- simulate(fit)
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Motivation & Background

Setting

» X is a stationary Gibbs point process on RY, with
intensity A > 0 and conditional intensity Ax(u; X).
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Setting

» X is a stationary Gibbs point process on RY, with
intensity A > 0 and conditional intensity Ax(u; X).

» Typically Ax(u; X) is known/given explicitly as a function
of the model parameters

» Qur aim is to

» By Georgii-Nguyen-Zessin formula

A = E[Ax(0, X)]. (1)
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Motivation & Background

Setting

» X is a stationary Gibbs point process on RY, with
intensity A > 0 and conditional intensity Ax(u; X).

v

Typically Ax(u; X) is known/given explicitly as a function
of the model parameters

Qur aim is to

v

v

By Georgii-Nguyen-Zessin formula
A = E[Ax(0, X)]. (1)

v

Typically the expectation on the RHS of (1) is intractable.
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Motivation & Background

Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

Ax(u; x) = BHg(Xf — u),

where 3 > 0 is a parameter and g : R? — [0, 00) is the interaction
function.
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Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

Ax(u; x) = BHg(Xf — u),

where 3 > 0 is a parameter and g : R? — [0, 00) is the interaction
function.  Equation (1) becomes

A=pE [H g(x,-)] : (2)

The RHS of (2) is not known explicitly (it involves the probability
generating functional of X).
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Motivation & Background

Special case: Strauss process

The Strauss process is the pairwise interaction process with

BERINEY:
g(u)—{ 1 otherwise

where r > 0 is a fixed threshold, and 0 < v < 1 is the interaction
parameter.
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Motivation & Background

Special case: Strauss process

y=0 y=1/3 y=2/3 y=1
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Special case: Strauss process

y=0 y=1/3 y=2/3 y=1
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Motivation & Background

The conditional intensity is
Ax(u; x) = )

where

t(u,x) = Z 1{||x; — u|| < r}.
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Motivation & Background

The conditional intensity is
Ax(u; x) = )

where

(%) = 3 1 — ull < 1},
Equation (1) becomes

A= BE [yOX)].
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Motivation & Background

Using
A= BE[77%)],

it's easy to prove that
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Using
A= BE [y0X],
it's easy to prove that
» A< 5

> A is an increasing function of ~;
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Using
A= BE[77%)],

it's easy to prove that
» A< G

> A is an increasing function of ~;
| 4
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Poisson-saddlepoint approximation

2. Poisson-saddlepoint approximation

» Replace E[Ax(0, X)] by E[Ax(0,1,)] where [1, is the
homogeneous Poisson process with intensity A.
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2. Poisson-saddlepoint approximation

» Replace E[Ax(0, X)] by E[Ax(0,1,)] where [1, is the
homogeneous Poisson process with intensity A.

i.e. solve
A= M(N)

where M(\) = E[Ax (0, T))].
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i.e. solve
A= M(N)
where M(\) = E[Ax (0, T))].

» Solution (if it exists uniquely) is called the
APS for \.

Baddeley & Nair Poisson-saddlepoint approximation



Poisson-saddlepoint approximation

2. Poisson-saddlepoint approximation

» Replace E[Ax(0, X)] by E[Ax(0,1,)] where [1, is the
homogeneous Poisson process with intensity A.

i.e. solve
A= M(N)
where M(\) = E[Ax (0, T))].

» Solution (if it exists uniquely) is called the
APS for \.

B & N, Electronic J. Statist. 2012
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Poisson-saddlepoint approximation

Case of pairwise interaction

For a stationary process X with conditional
intensity Ax(u, X) = 8]] g(u— x),

M(/\) = BEPois()\)[Hg(Xi)]
— sew (2 [ letw) - 1)
= Bexp(—AG)

where

6= [ 11-gw)

is the “second Mayer cluster integral”.
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Poisson-saddlepoint approximation

Case of pairwise interaction

The Poisson saddlepoint equation (3) is

A = [Bexp(—AG)

Baddeley & Nair Poisson-saddlepoint approximation



Poisson-saddlepoint approximation

Case of pairwise interaction

The Poisson saddlepoint equation (3) is
A = [Bexp(—AG)

with solution
\rs_ W(86)

e
where W is Lambert's function, the inverse function of x — xe*.
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Poisson-saddlepoint approximation

Case of pairwise interaction

The Poisson saddlepoint equation (3) is
A = [Bexp(—AG)

with solution
)\PS — W(BG)
G
where W is Lambert's function, the inverse function of x — xe*.

Coincides with the Poisson-Boltzmann-Emden approximation
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Poisson-saddlepoint approximation

Example: Strauss process

Approximation to A for a Strauss process with parameters
B =100, r = 0.05 for various values of
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Poisson-saddlepoint approximation

It is not a “Poisson approximation”

The Poisson-saddlepoint approximation is not equivalent to
approximating X by a Poisson point process.
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It is not a “Poisson approximation”

The Poisson-saddlepoint approximation is not equivalent to
approximating X by a Poisson point process.

Rather, a of X is approximated by a
of the Poisson process.
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Poisson-saddlepoint approximation

It is not a “Poisson approximation”

The Poisson-saddlepoint approximation is not equivalent to
approximating X by a Poisson point process.

Rather, a of X is approximated by a
of the Poisson process.

(The mean field approximation comes from Poisson process
approximation: it is the value of A which minimises
Kullback-Leibler divergence K(IMy[/X).)
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Poisson-saddlepoint approximation

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary
pairwise interaction process,
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Poisson-saddlepoint approximation

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary
pairwise interaction process,
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Poisson-saddlepoint approximation

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary
pairwise interaction process,

B B
<A<
1+8G ~ — 2—eh6
and 5 5
<>\PS
1+8G — ~2—e 6
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Poisson-saddlepoint approximation

Example: Strauss process

Approximation to A for a Strauss process with parameters
B =100, r = 0.05 for various values of
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Poisson-saddlepoint approximation

Implementation in R

> library(spatstat)
> fit <- ppm(swedishpines ~ 1, Strauss(9))
> parameters(fit)
beta gamma r
0.0546 0.264 9
> intensity(fit)
0.0094
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Higher order interaction

3. Higher order interaction
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3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter 6.
Denote the conditional intensity by Ag(u, X). Define

M(X,0) = E[Ao(0, )]
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Higher order interaction

3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter 6.
Denote the conditional intensity by Ag(u, X). Define

M(X,0) = E[Ag(0,1T))]
so that the Poisson-saddlepoint approximation is the solution of

A= M(\,6).
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Higher order interaction

Existence and uniqueness

Suppose the conditional intensity is monotone increasing in the
sense that, for two point patterns x and y,

xCy = )\Q(U,X) < )\G(ua Y)
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Higher order interaction

Existence and uniqueness

Suppose the conditional intensity is monotone increasing in the
sense that, for two point patterns x and y,

xCy = )\Q(U,X) < )\G(ua Y)

Then M(),0) = E[Ag(0,11,)] is a nondecreasing, continuous
function of A, by a simple coupling argument.
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Higher order interaction

Existence and uniqueness

Suppose the conditional intensity is monotone increasing in the
sense that, for two point patterns x and y,

xCy = )\Q(U,X) < )\G(ua Y)

Then M(),0) = E[Ag(0,11,)] is a nondecreasing, continuous
function of A, by a simple coupling argument. This can be used
to prove that \"'S exists, and under additional conditions, that it is
unique.
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Higher order interaction

Series expansion
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Higher order interaction

Series expansion

Suppose the process has finite interaction range R in the sense that

No(0,X) = Ag(0, X N b(0, R)),
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Higher order interaction

Series expansion

Suppose the process has finite interaction range R in the sense that

No(0,X) = Ag(0, X N b(0, R)),

Then
M(X, 0) = e_“z IE[/\g 0,Z,)],
where = A\rR?, and Z, = Z, r is the binomial point process

consisting of exactly n points independently and uniformly
distributed in b(0, R).
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Higher order interaction

Series expansion

M(X,60) = e %mn(e, R)
n=0

where

mn(0, R) = E[Ag(0, Z R)]
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Higher order interaction

General strategy

mn(8, R) = E[A\g(0, Z,, g)]
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Higher order interaction

General strategy

mn(8, R) = E[A\g(0, Z,, g)]

1. Use scaling properties to reduce my(-,-) to mu(-,1)
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Higher order interaction

General strategy

mn(8, R) = E[A\g(0, Z,, g)]

1. Use scaling properties to reduce mp(-,-) to mp(-,1)

2. Forsmall n=0,1,2,..., compute my(0,1) accurately, by
numerical integration or simulation
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General strategy

mn(8, R) = E[A\g(0, Z,, g)]

1. Use scaling properties to reduce mp(-,-) to mp(-,1)

2. Forsmall n=0,1,2,..., compute my(0,1) accurately, by
numerical integration or simulation

3. Find the limiting behaviour of m,(6,1) as n — oo.
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General strategy

mn(8, R) = E[A\g(0, Z,, g)]

1. Use scaling properties to reduce mp(-,-) to mp(-,1)

2. Forsmall n=0,1,2,..., compute my(0,1) accurately, by
numerical integration or simulation

3. Find the limiting behaviour of m,(6,1) as n — oo.

4. Combine these results to compute M(\, 6) approximately
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Higher order interaction

General strategy

mn(8, R) = E[A\g(0, Z,, g)]

1. Use scaling properties to reduce mp(-,-) to mp(-,1)

2. Forsmall n=0,1,2,..., compute my(0,1) accurately, by
numerical integration or simulation

3. Find the limiting behaviour of m,(6,1) as n — oo.
4. Combine these results to compute M(\, 6) approximately
5. Solve A = M(), ) to obtain AFS.
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Higher order interaction

Loglinear form

Assume conditional intensity has loglinear form
No(u,x) = exp(8" T(u,x)),
where T(u,x) is a vector-valued statistic with finite range R:

T(u,x) = T(u,xN b(u, R)).
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Higher order interaction

Loglinear form

Assume conditional intensity has loglinear form
No(u,x) = exp(8" T(u,x)),

where T(u,x) is a vector-valued statistic with finite range R:
T(u,x) = T(u,xN b(u, R)).

Then
mn(0,1) = E[exp(8" T(0,Z,1))]

is the moment generating function of T, = T(0,Z,1).
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Higher order interaction

Strategy for loglinear case

» Tabulate the cumulative distribution function of
Thn=T(0,Z,;) for each n=10,1,..., N up to a moderately
large M.
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Higher order interaction

Strategy for loglinear case

» Tabulate the cumulative distribution function of
Thn=T(0,Z,;) for each n=10,1,..., N up to a moderately
large M.

» Find the asymptotic behaviour of T, as n — oc.
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Higher order interaction

Strategy for loglinear case

» Tabulate the cumulative distribution function of
Thn=T(0,Z,;) for each n=10,1,..., N up to a moderately
large M.

» Find the asymptotic behaviour of T, as n — oc.

> Use these results to approximate the m.g.f. of T, for all n.

Baddeley & Nair Poisson-saddlepoint approximation



Area-interaction process

4. Area-interaction process

The area-interaction process with parameters 3,7, r > 0 has
conditional intensity

/\(U, X) _ BnC(u,x,r)’

where
n(x)

1
C(u,x, r) = —5 |b(u,r) N L blxi,r)
i=1
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Area-interaction process

A(u,x) is monotone in x; it can be shown that ATS exists uniquely.
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Area-interaction process

A(u,x) is monotone in x; it can be shown that ATS exists uniquely.
For the series expansion of M(\,6) we need

ma(6,1) = E[n~ "]

where

Ap=1-C(0,Z,2,1)

is the uncovered area fraction (area fraction of the unit disc which
is not covered by n unit discs whose centres are independently
uniformly distributed in the disc of radius 2).
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Area-interaction process

Stage 1: Tabulate distribution of A, for small n
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Area-interaction process

Stage 2: Asymptotics of A, as n — oo

Baddeley & Nair Poisson-saddlepoint approximation



Area-interaction process

Stage 2: Asymptotics of A, as n — oo

Peter Hall
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Area-interaction process

Stage 2: Asymptotics of A, as n — oo
Using two theorems of Peter Hall (1988), as n — oo

2
P{A, =0} ~ 1—min{1,3<1+l6)e_”/4}
E[A, | A, >0] ~ 16n2exp{n (f—log )}
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Area-interaction process

Stage 2: Asymptotics of A, as n — oo
Using two theorems of Peter Hall (1988), as n — oo

2
P{A, =0} ~ 1—min{1,3<1—|—l6)e_”/4}
E[A, | A, >0] ~ 16n2exp{n (f—log )}

For better performance for very small n, we replace the latter
expression by

1 4
E[A, | Ay, > 0] ~ 16(n 4 3) 72 exp{n(; ~ |og§)}
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Area-interaction process

Probability of complete coverage P{A, = 0}

Probability of coverage
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Area-interaction process

Hall's limit

Baddeley & Nair Poisson-saddlepoint approximation



Area-interaction process

Hall's limit

A famous theorem of Peter Hall (1988, Theorem 3.7) states that,
in a high-intensity Boolean model, a (connected
component of the uncovered region) is asymptotically equivalent to
the of the Poisson line tessellation.

Baddeley & Nair Poisson-saddlepoint approximation



Hall's limit
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Area-interaction process

Poisson line tessellation

Roger Miles (1973, Section 8) showed that the area A of the

typical polygon in the Poisson line tessellation has
var[A] /E[A]? = 72/2 — 1.
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Area-interaction process

Conditional distribution of A, given A, >0

cumulative probability
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Area-interaction process

Conditional distribution of given A, > 0
gJ Grey: n=1,2,...,25
2 A Black: n=25,...,50

oot 224 s e T Red: gamma distribution with
rescaled fraction -
mean 1 and variance ( = 72/2 1
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],

» let u = 4A7r? and find N such that P {Pois(u) > N} < ¢;
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],
» let u = 4A7r? and find N such that P {Pois(u) > N} < ¢;

» For n=1,...,25 approximate E[~#"] by the numerical
integral obtained from the tabulated distribution of Ap;
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],
» let u = 4A7r? and find N such that P {Pois(u) > N} < ¢;

» For n=1,...,25 approximate E[~#"] by the numerical
integral obtained from the tabulated distribution of Ap;

» If N > 25, then for 25 < n < N, approximate
E[n~""] & pn + (1 — pn)(1 — Cm, logn) =1/

where p,, m, are the asymptotic approximations to
P{A, > 0} and E[A, | A, > 0] while ¢ = 72/2 — 1;
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],
» let u = 4A7r? and find N such that P {Pois(u) > N} < ¢;

» For n=1,...,25 approximate E[~#"] by the numerical
integral obtained from the tabulated distribution of Ap;

» If N > 25, then for 25 < n < N, approximate
E[n~""] & pn + (1 — pn)(1 — Cm, logn) =1/

where p,, m, are the asymptotic approximations to
P{A, > 0} and E[A, | A, > 0] while ¢ = 72/2 — 1;
» For n > N, approximate E[p~""] ~ 1.
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Area-interaction process

Putting it together

Given the parameter values 3,7, r and numerical threshold ¢, for
each trial value A € [, 7],
» let u = 4A7r? and find N such that P {Pois(u) > N} < ¢;

» For n=1,...,25 approximate E[~#"] by the numerical
integral obtained from the tabulated distribution of Ap;

» If N > 25, then for 25 < n < N, approximate

Ely~*] ~ pp+ (1 — pa)(1 — ¢mylogn) /¢
where p,, m, are the asymptotic approximations to
P{A, > 0} and E[A, | A, > 0] while ¢ = 72/2 — 1;

» For n > N, approximate E[p~""] ~ 1.
» Compute the series expansion of M(\).
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Area-interaction process

Implementation in R

> library(spatstat)
> fit <- ppm(swedishpines ~ 1, Arealnter(3))
> parameters(fit)
beta eta r
0.0123 0.0123 3
> intensity(fit)
0.0078
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Performance of approximation
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Performance of approximation
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v

General strategy, applicable to infinite-order Gibbs models

v

Requires asymptotic results

v

Delivers a good approximation to A for the area-interaction
process

v

Also works for Geyer saturation process

v

Can be extended to non-stationary Gibbs models
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