Poisson-saddlepoint approximation for spatial point processes

Adrian Baddeley & Gopalan Nair

Curtin University & University of Western Australia

Luminy, May 2017

イロト イヨト イヨト イヨト

 Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.

・ロト ・回ト ・ヨト

- ∢ ≣ >

1. Motivation

- Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.
- Many important properties of a Gibbs process are not known as an explicit function of the model parameters

▲ □ ► ▲ □ ►

1. Motivation

- Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.
- Many important properties of a Gibbs process are not known as an explicit function of the model parameters
 - intensity

- ∢ ⊒ →

1. Motivation

- Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.
- Many important properties of a Gibbs process are not known as an explicit function of the model parameters
 - intensity
 - pair correlation function

- ∢ ⊒ ⊳

1. Motivation

- Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.
- Many important properties of a Gibbs process are not known as an explicit function of the model parameters
 - intensity
 - pair correlation function
 - • •

イロト イポト イヨト イヨト

1. Motivation

- Gibbs point processes are important models in statistical physics, spatial statistics and stochastic geometry.
- Many important properties of a Gibbs process are not known as an explicit function of the model parameters
 - intensity
 - pair correlation function
 - • •
- Approximations exist, but have limitations.

イロト イポト イヨト イヨト

Example: mean field approximation

Classical "mean field" approximation to λ for a Strauss process with parameters $\beta=$ 100, r= 0.05 for various values of γ

Intractability of the moments of Gibbs processes is a major obstacle in applications,

イロト イヨト イヨト イヨト

Intractability of the moments of Gibbs processes is a major obstacle in applications, and was the original motivation for developing Markov chain Monte Carlo methods.

- 4 同 6 4 日 6 4 日 6

Chapman & Hall/CRC Interdisciplinary Statistics Series

Spatial Point Patterns

Methodology and Applications with R

Software for spatial point process data spatstat.org

イロン イヨン イヨン イヨン

Dataset swedishpines

・ロト ・日子・ ・ヨト

< ∃→

Э

```
library(spatstat)
fit <- ppm(swedishpines ~ 1, Strauss(9))
parameters(fit)
X <- simulate(fit)</pre>
```

<ロ> (日) (日) (日) (日) (日)

X is a stationary Gibbs point process on ℝ^d, with intensity λ > 0 and conditional intensity Λ_X(u; X).

イロン イヨン イヨン イヨン

3

- X is a stationary Gibbs point process on ℝ^d, with intensity λ > 0 and conditional intensity Λ_X(u; X).
- ► Typically A_X(u; X) is known/given explicitly as a function of the model parameters

イロト イヨト イヨト イヨト

- X is a stationary Gibbs point process on ℝ^d, with intensity λ > 0 and conditional intensity Λ_X(u; X).
- ► Typically A_X(u; X) is known/given explicitly as a function of the model parameters
- Our aim is to find an approximation to λ

イロト イポト イヨト イヨト

Setting

- X is a stationary Gibbs point process on ℝ^d, with intensity λ > 0 and conditional intensity Λ_X(u; X).
- ► Typically A_X(u; X) is known/given explicitly as a function of the model parameters
- Our aim is to find an approximation to λ
- By Georgii-Nguyen-Zessin formula

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \mathbf{X})]. \tag{1}$$

イロト イポト イヨト イヨト

- X is a stationary Gibbs point process on ℝ^d, with intensity λ > 0 and conditional intensity Λ_X(u; X).
- ► Typically A_X(u; X) is known/given explicitly as a function of the model parameters
- Our aim is to find an approximation to λ
- By Georgii-Nguyen-Zessin formula

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \mathbf{X})]. \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

Typically the expectation on the RHS of (1) is intractable.

Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \prod_{i} g(x_{i} - u),$$

where $\beta > 0$ is a parameter and $g : \mathbb{R}^d \to [0, \infty)$ is the interaction function.

・ロン ・回と ・ヨン・

Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \prod_{i} g(x_{i} - u),$$

where $\beta > 0$ is a parameter and $g : \mathbb{R}^d \to [0, \infty)$ is the interaction function. Equation (1) becomes

$$\lambda = \beta \mathbb{E}\left[\prod_{i} g(x_{i})\right].$$
 (2)

・ロン ・回と ・ヨン ・ヨン

Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \prod_{i} g(x_{i} - u),$$

where $\beta > 0$ is a parameter and $g : \mathbb{R}^d \to [0, \infty)$ is the interaction function. Equation (1) becomes

$$\lambda = \beta \mathbb{E}\left[\prod_{i} g(x_{i})\right].$$
 (2)

The RHS of (2) is not known explicitly (it involves the probability generating functional of X).

Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \prod_{i} g(x_{i} - u),$$

where $\beta > 0$ is a parameter and $g : \mathbb{R}^d \to [0, \infty)$ is the interaction function. Equation (1) becomes

$$\lambda = \beta \mathbb{E}\left[\prod_{i} g(x_{i})\right].$$
 (2)

ロト 不得下 不足下 不足下

The RHS of (2) is not known explicitly (it involves the probability generating functional of X). "Self-consistency equation"

Special case: Strauss process

The Strauss process is the pairwise interaction process with

$$egin{aligned} g(u) = \left\{ egin{aligned} \gamma & ext{if } \|u\| \leq r \ 1 & ext{otherwise} \end{aligned}
ight. \end{aligned}$$

where r > 0 is a fixed threshold, and $0 \le \gamma \le 1$ is the interaction parameter.

Special case: Strauss process

イロン 不同と 不同と 不同と

Special case: Strauss process

 $\lambda pprox 50$

イロン イヨン イヨン イヨン

The conditional intensity is

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \gamma^{t(u,\mathbf{x})}$$

where

$$t(u, \mathbf{x}) = \sum_{i} \mathbf{1}\{\|x_i - u\| \le r\}.$$

The conditional intensity is

$$\Lambda_{\mathbf{X}}(u;\mathbf{x}) = \beta \gamma^{t(u,\mathbf{x})}$$

where

$$t(u, \mathbf{x}) = \sum_{i} \mathbf{1}\{\|x_i - u\| \leq r\}.$$

Equation (1) becomes

$$\lambda = \beta \mathbb{E}\left[\gamma^{t(0,\mathbf{X})}\right].$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Using

$$\lambda = \beta \mathbb{E}\left[\gamma^{t(0,\mathbf{X})}\right],\,$$

it's easy to prove that

Using

$$\lambda = \beta \mathbb{E}\left[\gamma^{t(0,\mathbf{X})}\right],\,$$

it's easy to prove that

•
$$\lambda \leq \beta$$
;

Using

$$\lambda = \beta \mathbb{E}\left[\gamma^{t(0,\mathbf{X})}\right],\,$$

it's easy to prove that

- $\blacktriangleright \ \lambda \leq \beta;$
- λ is an increasing function of γ ;

イロン イヨン イヨン イヨン

Using

$$\lambda = \beta \mathbb{E}\left[\gamma^{t(0,\mathbf{X})}\right],\,$$

it's easy to prove that

- $\blacktriangleright \ \lambda \leq \beta;$
- λ is an increasing function of γ ;

• • • •

・ロン ・回 と ・ヨン ・ヨン

3

2. Poisson-saddlepoint approximation

▶ Replace 𝔼[Λ_X(0, X)] by 𝔼[Λ_X(0, Π_λ)] where Π_λ is the homogeneous Poisson process with intensity λ.

イロト イヨト イヨト イヨト

2. Poisson-saddlepoint approximation

- ▶ Replace 𝔼[Λ_X(0, X)] by 𝔼[Λ_X(0, Π_λ)] where Π_λ is the homogeneous Poisson process with intensity λ.
- Solve for λ in

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})] \tag{3}$$

イロン イヨン イヨン イヨン

3

2. Poisson-saddlepoint approximation

- Replace 𝔼[Λ_X(0, X)] by 𝔼[Λ_X(0, Π_λ)] where Π_λ is the homogeneous Poisson process with intensity λ.
- Solve for λ in

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})] \tag{3}$$

イロン イヨン イヨン イヨン

i.e. solve

$$\lambda = M(\lambda)$$

where $M(\lambda) = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})].$

2. Poisson-saddlepoint approximation

- Replace 𝔼[Λ_X(0, X)] by 𝔼[Λ_X(0, Π_λ)] where Π_λ is the homogeneous Poisson process with intensity λ.
- Solve for λ in

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})] \tag{3}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

i.e. solve

$$\lambda = M(\lambda)$$

where $M(\lambda) = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})].$

 Solution (if it exists uniquely) is called the Poisson-saddlepoint approximation λ^{PS} for λ.

2. Poisson-saddlepoint approximation

- Replace 𝔼[Λ_X(0, X)] by 𝔼[Λ_X(0, Π_λ)] where Π_λ is the homogeneous Poisson process with intensity λ.
- Solve for λ in

$$\lambda = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})] \tag{3}$$

イロト イポト イヨト イヨト

i.e. solve

$$\lambda = M(\lambda)$$

where $M(\lambda) = \mathbb{E}[\Lambda_{\mathbf{X}}(0, \Pi_{\lambda})].$

 Solution (if it exists uniquely) is called the Poisson-saddlepoint approximation λ^{PS} for λ.

B & N, Electronic J. Statist. 2012
Case of pairwise interaction

٨

For a stationary pairwise interaction process **X** with conditional intensity $\Lambda_{\mathbf{X}}(u, \mathbf{X}) = \beta \prod g(u - x_i)$,

$$\mathcal{M}(\lambda) = \beta \mathbb{E}_{\mathsf{Pois}(\lambda)}[\prod_{i} g(x_{i})]$$
$$= \beta \exp\left(\lambda \int_{\mathbb{R}^{d}} [g(u) - 1] \, \mathrm{d}u\right)$$
$$= \beta \exp(-\lambda G)$$

where

$$G = \int_{\mathbb{R}^d} [1 - g(u)] \, \mathrm{d} u$$

is the "second Mayer cluster integral".

イロン イヨン イヨン イヨン

Case of pairwise interaction

The Poisson saddlepoint equation (3) is

$$\lambda = \beta \exp(-\lambda G)$$

イロン イヨン イヨン イヨン

Case of pairwise interaction

The Poisson saddlepoint equation (3) is

$$\lambda = \beta \exp(-\lambda G)$$

with solution

$$\lambda^{\rm PS} = \frac{W(\beta G)}{G}$$

where W is Lambert's function, the inverse function of $x \mapsto xe^x$.

イロン イヨン イヨン イヨン

Case of pairwise interaction

The Poisson saddlepoint equation (3) is

$$\lambda = \beta \exp(-\lambda G)$$

with solution

$$\lambda^{\rm PS} = \frac{W(\beta G)}{G}$$

where W is Lambert's function, the inverse function of $x \mapsto xe^x$.

Coincides with the Poisson-Boltzmann-Emden approximation

イロン 不同と 不同と 不同と

Example: Strauss process

Approximation to λ for a Strauss process with parameters $\beta=100,~r=0.05$ for various values of γ

A ■

It is not a "Poisson approximation"

The Poisson-saddlepoint approximation is **not** equivalent to approximating \mathbf{X} by a Poisson point process.

It is not a "Poisson approximation"

The Poisson-saddlepoint approximation is **not** equivalent to approximating \mathbf{X} by a Poisson point process.

Rather, a functional of X is approximated by a tilted version of the functional of the Poisson process.

It is not a "Poisson approximation"

The Poisson-saddlepoint approximation is **not** equivalent to approximating \mathbf{X} by a Poisson point process.

Rather, a functional of X is approximated by a tilted version of the functional of the Poisson process.

(The mean field approximation comes from Poisson process approximation: it is the value of λ which minimises Kullback-Leibler divergence $K(\Pi_{\lambda} || \mathbf{X})$.)

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary pairwise interaction process,

イロン イヨン イヨン イヨン

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary pairwise interaction process,

$$\frac{\beta}{1+\beta G} \le \lambda \le \frac{\beta}{2-e^{-\beta G}}$$

イロン イヨン イヨン イヨン

Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary pairwise interaction process,

$$\frac{\beta}{1+\beta G} \le \lambda \le \frac{\beta}{2-e^{-\beta G}}$$

and

$$\frac{\beta}{1+\beta \mathsf{G}} \leq \lambda^{\mathrm{PS}} \leq \frac{\beta}{2-e^{-\beta \mathsf{G}}}$$

イロト イヨト イヨト イヨト

Example: Strauss process

Approximation to λ for a Strauss process with parameters $\beta = 100, r = 0.05$ for various values of γ

< 177 ▶

Implementation in R

- > library(spatstat)
- > fit <- ppm(swedishpines ~ 1, Strauss(9))</pre>
- > parameters(fit)
- beta gamma r
- 0.0546 0.264 9
 - > intensity(fit)

0.0094

イロト イヨト イヨト イヨト

3. Higher order interaction

ヘロン ヘヨン ヘヨン ヘヨン

3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter θ .

3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter θ . Denote the conditional intensity by $\Lambda_{\theta}(u, \mathbf{X})$.

イロン イヨン イヨン イヨン

3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter θ . Denote the conditional intensity by $\Lambda_{\theta}(u, \mathbf{X})$. Define

 $M(\lambda, \theta) = \mathbb{E}[\Lambda_{\theta}(0, \Pi_{\lambda})]$

3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter θ . Denote the conditional intensity by $\Lambda_{\theta}(u, \mathbf{X})$. Define

$$M(\lambda, heta) = \mathbb{E}[\Lambda_{ heta}(0, \Pi_{\lambda})]$$

so that the Poisson-saddlepoint approximation is the solution of

$$\lambda = M(\lambda, \theta).$$

Existence and uniqueness

Suppose the conditional intensity is **monotone increasing** in the sense that, for two point patterns x and y,

$$\mathbf{x} \subset \mathbf{y} \; \Rightarrow \; \lambda_{ heta}(u, \mathbf{x}) \leq \lambda_{ heta}(u, \mathbf{y}).$$

Image: A image: A

Existence and uniqueness

Suppose the conditional intensity is **monotone increasing** in the sense that, for two point patterns x and y,

$$\mathbf{x} \subset \mathbf{y} \; \Rightarrow \; \lambda_{ heta}(u, \mathbf{x}) \leq \lambda_{ heta}(u, \mathbf{y}).$$

Then $M(\lambda, \theta) = \mathbb{E}[\Lambda_{\theta}(0, \Pi_{\lambda})]$ is a nondecreasing, continuous function of λ , by a simple coupling argument.

・ロト ・日本 ・モート ・モート

Existence and uniqueness

Suppose the conditional intensity is **monotone increasing** in the sense that, for two point patterns x and y,

$$\mathbf{x} \subset \mathbf{y} \; \Rightarrow \; \lambda_{ heta}(u, \mathbf{x}) \leq \lambda_{ heta}(u, \mathbf{y}).$$

Then $M(\lambda, \theta) = \mathbb{E}[\Lambda_{\theta}(0, \Pi_{\lambda})]$ is a nondecreasing, continuous function of λ , by a simple coupling argument. This can be used to prove that λ^{PS} exists, and under additional conditions, that it is unique.

Series expansion

Suppose the process has finite interaction range R in the sense that

$$\Lambda_{ heta}(0, \mathbf{X}) = \Lambda_{ heta}(0, \mathbf{X} \cap b(0, R)),$$

・ロン ・回と ・ヨン・

Series expansion

Suppose the process has finite interaction range R in the sense that

$$\Lambda_{ heta}(0, \mathbf{X}) = \Lambda_{ heta}(0, \mathbf{X} \cap b(0, R)),$$

Then

$$M(\lambda, \theta) = e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^n}{n!} \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_n)],$$

where $\mu = \lambda \pi R^2$, and $\mathbf{Z}_n = \mathbf{Z}_{n,R}$ is the binomial point process consisting of exactly *n* points independently and uniformly distributed in b(0, R).

・ロン ・回と ・ヨン・

Series expansion

$$M(\lambda, \theta) = e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^n}{n!} m_n(\theta, R)$$

where

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

General strategy

$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$

Baddeley & Nair Poisson-saddlepoint approximation

◆□ > ◆□ > ◆臣 > ◆臣 > ○

General strategy

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

1. Use scaling properties to reduce $m_n(\cdot, \cdot)$ to $m_n(\cdot, 1)$

・ロン ・回 と ・ ヨ と ・ ヨ と

General strategy

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

- 1. Use scaling properties to reduce $m_n(\cdot, \cdot)$ to $m_n(\cdot, 1)$
- 2. For small n = 0, 1, 2, ..., compute $m_n(\theta, 1)$ accurately, by numerical integration or simulation

<ロ> (日) (日) (日) (日) (日)

General strategy

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

- 1. Use scaling properties to reduce $m_n(\cdot, \cdot)$ to $m_n(\cdot, 1)$
- 2. For small n = 0, 1, 2, ..., compute $m_n(\theta, 1)$ accurately, by numerical integration or simulation
- 3. Find the limiting behaviour of $m_n(\theta, 1)$ as $n \to \infty$.

・ロン ・回 と ・ ヨ と ・ ヨ と

General strategy

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

- 1. Use scaling properties to reduce $m_n(\cdot, \cdot)$ to $m_n(\cdot, 1)$
- 2. For small n = 0, 1, 2, ..., compute $m_n(\theta, 1)$ accurately, by numerical integration or simulation
- 3. Find the limiting behaviour of $m_n(\theta, 1)$ as $n \to \infty$.
- 4. Combine these results to compute $M(\lambda, \theta)$ approximately

・ロン ・回と ・ヨン・

General strategy

$$m_n(\theta, R) = \mathbb{E}[\Lambda_{\theta}(0, \mathbf{Z}_{n,R})]$$

- 1. Use scaling properties to reduce $m_n(\cdot, \cdot)$ to $m_n(\cdot, 1)$
- 2. For small n = 0, 1, 2, ..., compute $m_n(\theta, 1)$ accurately, by numerical integration or simulation
- 3. Find the limiting behaviour of $m_n(\theta, 1)$ as $n \to \infty$.
- 4. Combine these results to compute $M(\lambda, \theta)$ approximately
- 5. Solve $\lambda = M(\lambda, \theta)$ to obtain λ^{PS} .

・ロン ・回 と ・ ヨ と ・ ヨ と

Loglinear form

Assume conditional intensity has loglinear form

$$\Lambda_{\theta}(u, \mathbf{x}) = \exp(\theta^{\top} T(u, \mathbf{x})),$$

where $T(u, \mathbf{x})$ is a vector-valued statistic with finite range R:

$$T(u,\mathbf{x})=T(u,\mathbf{x}\cap b(u,R)).$$

・ロン ・回と ・ヨン・

Loglinear form

Assume conditional intensity has loglinear form

$$\Lambda_{\theta}(u, \mathbf{x}) = \exp(\theta^{\top} T(u, \mathbf{x})),$$

where $T(u, \mathbf{x})$ is a vector-valued statistic with finite range R:

$$T(u,\mathbf{x})=T(u,\mathbf{x}\cap b(u,R)).$$

Then

$$m_n(\theta, 1) = \mathbb{E}[\exp(\theta^\top T(0, \mathbf{Z}_{n,1}))]$$

is the moment generating function of $T_n = T(0, \mathbf{Z}_{n,1})$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Strategy for loglinear case

► Tabulate the cumulative distribution function of *T_n* = *T*(0, **Z**_{n,1}) for each *n* = 0, 1, ..., *N* up to a moderately large *N*.

・ロン ・回と ・ヨン・

3

Strategy for loglinear case

- ► Tabulate the cumulative distribution function of *T_n* = *T*(0, **Z**_{n,1}) for each *n* = 0, 1, ..., *N* up to a moderately large *N*.
- Find the asymptotic behaviour of T_n as $n \to \infty$.

・ロン ・回と ・ヨン・

Strategy for loglinear case

- ► Tabulate the cumulative distribution function of $T_n = T(0, \mathbf{Z}_{n,1})$ for each n = 0, 1, ..., N up to a moderately large N.
- Find the asymptotic behaviour of T_n as $n \to \infty$.
- Use these results to approximate the m.g.f. of T_n for all n.

・ロン ・回 と ・ ヨ と ・ ヨ と
4. Area-interaction process

The **area-interaction** process with parameters β , η , $r \ge 0$ has conditional intensity

$$\Lambda(u,\mathbf{x})=\beta\eta^{C(u,\mathbf{x},r)},$$

where

$$C(u,\mathbf{x},r) = \frac{1}{\pi r^2} \left| b(u,r) \cap \bigcup_{i=1}^{n(\mathbf{x})} b(x_i,r) \right|$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

$\Lambda(u, \mathbf{x})$ is monotone in \mathbf{x} ; it can be shown that λ^{PS} exists uniquely.

イロン イヨン イヨン イヨン

 $\Lambda(u, \mathbf{x})$ is monotone in \mathbf{x} ; it can be shown that λ^{PS} exists uniquely. For the series expansion of $M(\lambda, \theta)$ we need

$$m_n(heta, 1) = \mathbb{E}[\eta^{-A_n}]$$

where

$$A_n = 1 - C(0, \mathbf{Z}_{n,2}, 1)$$

is the uncovered area fraction (area fraction of the unit disc which is not covered by n unit discs whose centres are independently uniformly distributed in the disc of radius 2).

・ロン ・回と ・ヨン・

< □ > < □ > < □ > < □ > < □ > < □ > = □

Stage 1: Tabulate distribution of A_n for small n

・ロン ・回 と ・ヨン ・ヨン

Stage 2: Asymptotics of A_n as $n \to \infty$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Stage 2: Asymptotics of A_n as $n \to \infty$

Peter Hall

Roger Miles

3

Stage 2: Asymptotics of A_n as $n \to \infty$ Using two theorems of Peter Hall (1988), as $n \to \infty$

$$\mathbb{P}\{A_n = 0\} \sim 1 - \min\left\{1, 3\left(1 + \frac{n^2}{16\pi}\right)e^{-n/4}\right\}$$
$$\mathbb{E}[A_n \mid A_n > 0] \sim 16n^{-2}\exp\{n(\frac{1}{4} - \log\frac{4}{3})\}$$

イロン イヨン イヨン イヨン

Stage 2: Asymptotics of A_n as $n \to \infty$ Using two theorems of Peter Hall (1988), as $n \to \infty$

$$\mathbb{P}\{A_n = 0\} \sim 1 - \min\left\{1, 3\left(1 + \frac{n^2}{16\pi}\right)e^{-n/4}\right\}$$
$$\mathbb{E}[A_n \mid A_n > 0] \sim 16n^{-2}\exp\{n(\frac{1}{4} - \log\frac{4}{3})\}$$

For better performance for very small n, we replace the latter expression by

$$\mathbb{E}[A_n \mid A_n > 0] \sim 16(n+3)^{-2} \exp\{n(\frac{1}{4} - \log \frac{4}{3})\}$$

・ロト ・回ト ・ヨト ・ヨト

Probability of complete coverage $\mathbb{P}\left\{A_n = 0\right\}$

▲ @ > < ≥</p>

くヨ♪

Hall's limit

・ロン ・回 と ・ ヨン ・ モン

A famous theorem of Peter Hall (1988, Theorem 3.7) states that, in a high-intensity Boolean model, a typical chink (connected component of the uncovered region) is asymptotically equivalent to the typical polygon of the Poisson line tessellation.

イロト イヨト イヨト イヨト

Hall's limit

(ロ) (四) (注) (注) (注) [

Poisson line tessellation

Roger Miles (1973, Section 8) showed that the area A of the typical polygon in the Poisson line tessellation has $\operatorname{var}[A] / \mathbb{E}[A]^2 = \pi^2/2 - 1$.

・ロン ・回と ・ヨン ・ヨン

Conditional distribution of A_n given $A_n > 0$

・ロン ・回 と ・ヨン ・ヨン

Conditional distribution of $A_n/\mathbb{E}(A_n)$ given $A_n > 0$

・ロト ・回ト ・ヨト

- ∢ ⊒ →

Putting it together

Given the parameter values β, η, r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

・ロト ・回ト ・ヨト ・ヨト

Putting it together

Given the parameter values β , η , r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

• let $\mu = 4\lambda \pi r^2$ and find N such that $\mathbb{P} \{ \text{Pois}(\mu) > N \} < \epsilon;$

・ロン ・回 と ・ 回 と ・ 回 と

3

Putting it together

Given the parameter values β , η , r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

- let $\mu = 4\lambda \pi r^2$ and find N such that $\mathbb{P} \{ \text{Pois}(\mu) > N \} < \epsilon;$
- For n = 1,..., 25 approximate 𝔼[η^{−A_n}] by the numerical integral obtained from the tabulated distribution of A_n;

イロン イヨン イヨン イヨン

Putting it together

Given the parameter values β , η , r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

- let $\mu = 4\lambda \pi r^2$ and find N such that $\mathbb{P} \{ \text{Pois}(\mu) > N \} < \epsilon;$
- For n = 1,..., 25 approximate E[η^{-A_n}] by the numerical integral obtained from the tabulated distribution of A_n;
- If N > 25, then for $25 < n \le N$, approximate

$$\mathbb{E}[\eta^{-\mathcal{A}_n}] \approx \rho_n + (1-\rho_n)(1-\zeta m_n \log \eta)^{-1/\zeta}$$

where p_n, m_n are the asymptotic approximations to $\mathbb{P} \{A_n > 0\}$ and $\mathbb{E}[A_n \mid A_n > 0]$ while $\zeta = \pi^2/2 - 1$;

・ロン ・回 と ・ ヨ と ・ ヨ と

Putting it together

Given the parameter values β , η , r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

- let $\mu = 4\lambda \pi r^2$ and find N such that $\mathbb{P} \{ \text{Pois}(\mu) > N \} < \epsilon;$
- For n = 1,..., 25 approximate E[η^{-A_n}] by the numerical integral obtained from the tabulated distribution of A_n;
- If N > 25, then for $25 < n \le N$, approximate

$$\mathbb{E}[\eta^{-\mathcal{A}_n}] \approx \rho_n + (1-\rho_n)(1-\zeta m_n \log \eta)^{-1/\zeta}$$

where p_n , m_n are the asymptotic approximations to $\mathbb{P} \{A_n > 0\}$ and $\mathbb{E}[A_n \mid A_n > 0]$ while $\zeta = \pi^2/2 - 1$; For n > N, approximate $\mathbb{E}[\eta^{-A_n}] \approx 1$.

・ロット (四) (日) (日)

Putting it together

Given the parameter values β , η , r and numerical threshold ϵ , for each trial value $\lambda \in [\beta, \beta\eta]$,

- let $\mu = 4\lambda \pi r^2$ and find N such that $\mathbb{P} \{ \text{Pois}(\mu) > N \} < \epsilon;$
- For n = 1,..., 25 approximate E[η^{-A_n}] by the numerical integral obtained from the tabulated distribution of A_n;
- If N > 25, then for $25 < n \le N$, approximate

$$\mathbb{E}[\eta^{-\mathcal{A}_n}] \approx \rho_n + (1-\rho_n)(1-\zeta m_n \log \eta)^{-1/\zeta}$$

where p_n, m_n are the asymptotic approximations to $\mathbb{P} \{A_n > 0\}$ and $\mathbb{E}[A_n \mid A_n > 0]$ while $\zeta = \pi^2/2 - 1$;

- For n > N, approximate $\mathbb{E}[\eta^{-A_n}] \approx 1$.
- Compute the series expansion of $M(\lambda)$.

イロト イポト イヨト イヨト

Implementation in R

- > library(spatstat)
- > fit <- ppm(swedishpines ~ 1, AreaInter(3))</pre>
- > parameters(fit)
- beta eta r
- 0.0123 0.0123 3
 - > intensity(fit)
- 0.0078

イロン 不同と 不同と 不同と

Performance of approximation

イロン イヨン イヨン イヨン

Performance of approximation

 $\beta = 10$

・ロト ・回ト ・ヨト

< ∃>

Performance of approximation

 $\beta = 100$

・ロト ・回ト ・ヨト

< ∃>

Conclusions

・ロン ・回 と ・ ヨン ・ モン

General strategy, applicable to infinite-order Gibbs models

・ロト ・回ト ・ヨト ・ヨト

- General strategy, applicable to infinite-order Gibbs models
- Requires asymptotic results

イロン イヨン イヨン イヨン

- General strategy, applicable to infinite-order Gibbs models
- Requires asymptotic results
- \blacktriangleright Delivers a good approximation to λ for the area-interaction process

イロン 不同と 不同と 不同と

- General strategy, applicable to infinite-order Gibbs models
- Requires asymptotic results
- \blacktriangleright Delivers a good approximation to λ for the area-interaction process
- Also works for Geyer saturation process

イロト イポト イヨト イヨト

- General strategy, applicable to infinite-order Gibbs models
- Requires asymptotic results
- Delivers a good approximation to λ for the area-interaction process
- Also works for Geyer saturation process
- Can be extended to non-stationary Gibbs models

イロト イポト イヨト イヨト

References

Anderssen et al., Solution of an integral equation arising in spatial point process theory. *J. Integral Eqns. & Applicns.* **26**, 437–453. Baddeley & Nair, Fast approximation of the intensity of Gibbs point processes. *Electronic J Statist* **6** (2012), 1155–1169.

——, Approximating the moments of a spatial point process. *Stat* **1** (2012), 18–30.

———, Poisson-saddlepoint approximation for spatial point processes with infinite order interaction. Submitted to *Adv. Appl. Prob.*. Schuhmacher & Stucki, Gibbs point process approximation: total variation bound using Stein's method. *Ann. Prob.* 2014. Stucki & Schuhmacher, Bounds for the probability generating functional of a Gibbs point process. *Adv. Appl. Prob.* **46** (2014) 21–34.

・ロト ・回ト ・ヨト ・ヨト

adrian.baddeley@curtin.edu.au

spatstat.org

Baddeley & Nair Poisson-saddlepoint approximation

イロン イヨン イヨン イヨン