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1. Motivation

I Gibbs point processes are important models
in statistical physics, spatial statistics and stochastic
geometry.

I Many important properties of a Gibbs process are not
known as an explicit function of the model parameters

I intensity
I pair correlation function
I · · ·

I Approximations exist, but have limitations.
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Example: mean field approximation

Classical “mean field” approximation to λ for a Strauss process
with parameters β = 100, r = 0.05 for various values of γ
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Intractability of the moments of Gibbs processes
is a major obstacle in applications,

and was the original motivation for developing
Markov chain Monte Carlo methods.
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Software for spatial point process data
spatstat.org
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Dataset swedishpines

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

library(spatstat)

fit <- ppm(swedishpines ~ 1, Strauss(9))

parameters(fit)

X <- simulate(fit)

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

Setting

I X is a stationary Gibbs point process on Rd , with
intensity λ > 0 and conditional intensity ΛX(u;X).

I Typically ΛX(u;X) is known/given explicitly as a function
of the model parameters

I Our aim is to find an approximation to λ

I By Georgii-Nguyen-Zessin formula

λ = E[ΛX(0,X)]. (1)

I Typically the expectation on the RHS of (1) is intractable.
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Pairwise interaction Gibbs processes

A stationary pairwise interaction process has conditional intensity

ΛX(u; x) = β
∏
i

g(xi − u),

where β > 0 is a parameter and g : Rd → [0,∞) is the interaction
function.

Equation (1) becomes

λ = β E

[∏
i

g(xi )

]
. (2)

The RHS of (2) is not known explicitly (it involves the probability
generating functional of X). “Self-consistency equation”
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Special case: Strauss process

The Strauss process is the pairwise interaction process with

g(u) =

{
γ if ‖u‖ ≤ r
1 otherwise

where r > 0 is a fixed threshold, and 0 ≤ γ ≤ 1 is the interaction
parameter.
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The conditional intensity is

ΛX(u; x) = βγt(u,x)

where
t(u, x) =

∑
i

1{‖xi − u‖ ≤ r}.

Equation (1) becomes

λ = β E
[
γt(0,X)

]
.

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

The conditional intensity is

ΛX(u; x) = βγt(u,x)

where
t(u, x) =

∑
i

1{‖xi − u‖ ≤ r}.

Equation (1) becomes

λ = β E
[
γt(0,X)

]
.

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

Using

λ = β E
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γt(0,X)

]
,

it’s easy to prove that

I λ ≤ β;

I λ is an increasing function of γ;

I · · ·
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2. Poisson-saddlepoint approximation

I Replace E[ΛX(0,X)] by E[ΛX(0,Πλ)] where Πλ is the
homogeneous Poisson process with intensity λ.

I Solve for λ in
λ = E[ΛX(0,Πλ)] (3)

i.e. solve
λ = M(λ)

where M(λ) = E[ΛX(0,Πλ)].

I Solution (if it exists uniquely) is called the
Poisson-saddlepoint approximation λPS for λ.

B & N, Electronic J. Statist. 2012
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Case of pairwise interaction

For a stationary pairwise interaction process X with conditional
intensity ΛX(u,X) = β

∏
g(u − xi ),

M(λ) = β EPois(λ)[
∏
i

g(xi )]

= β exp

(
λ

∫
Rd

[g(u)− 1] du

)
= β exp(−λG )

where

G =

∫
Rd

[1− g(u)] du

is the “second Mayer cluster integral”.
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Case of pairwise interaction

The Poisson saddlepoint equation (3) is

λ = β exp(−λG )

with solution

λPS =
W (βG )

G

where W is Lambert’s function, the inverse function of x 7→ xex .

Coincides with the Poisson-Boltzmann-Emden approximation
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Example: Strauss process

Approximation to λ for a Strauss process with parameters
β = 100, r = 0.05 for various values of γ
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It is not a “Poisson approximation”

The Poisson-saddlepoint approximation is not equivalent to
approximating X by a Poisson point process.

Rather, a functional of X is approximated by a tilted version of the
functional of the Poisson process.

(The mean field approximation comes from Poisson process
approximation: it is the value of λ which minimises
Kullback-Leibler divergence K (Πλ‖X).)
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Bounds

Stucki & Schuhmacher (2014) proved that, for a stationary
pairwise interaction process,

β

1 + βG
≤ λ ≤ β

2− e−βG

and
β

1 + βG
≤ λPS ≤ β

2− e−βG
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Approximation to λ for a Strauss process with parameters
β = 100, r = 0.05 for various values of γ
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Implementation in R

> library(spatstat)

> fit <- ppm(swedishpines ~ 1, Strauss(9))

> parameters(fit)

beta gamma r

0.0546 0.264 9

> intensity(fit)

0.0094
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3. Higher order interaction

Consider any stationary Gibbs model depending on a parameter θ.
Denote the conditional intensity by Λθ(u,X). Define

M(λ, θ) = E[Λθ(0,Πλ)]

so that the Poisson-saddlepoint approximation is the solution of

λ = M(λ, θ).
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Existence and uniqueness

Suppose the conditional intensity is monotone increasing in the
sense that, for two point patterns x and y,

x ⊂ y ⇒ λθ(u, x) ≤ λθ(u, y).

Then M(λ, θ) = E[Λθ(0,Πλ)] is a nondecreasing, continuous
function of λ, by a simple coupling argument. This can be used
to prove that λPS exists, and under additional conditions, that it is
unique.
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Series expansion

Suppose the process has finite interaction range R in the sense that

Λθ(0,X) = Λθ(0,X ∩ b(0,R)),

Then

M(λ, θ) = e−µ
∞∑
n=0

µn

n!
E[Λθ(0,Zn)],

where µ = λπR2, and Zn = Zn,R is the binomial point process
consisting of exactly n points independently and uniformly
distributed in b(0,R).

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

Series expansion

Suppose the process has finite interaction range R in the sense that

Λθ(0,X) = Λθ(0,X ∩ b(0,R)),

Then

M(λ, θ) = e−µ
∞∑
n=0

µn

n!
E[Λθ(0,Zn)],

where µ = λπR2, and Zn = Zn,R is the binomial point process
consisting of exactly n points independently and uniformly
distributed in b(0,R).

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

Series expansion

Suppose the process has finite interaction range R in the sense that

Λθ(0,X) = Λθ(0,X ∩ b(0,R)),

Then

M(λ, θ) = e−µ
∞∑
n=0

µn

n!
E[Λθ(0,Zn)],

where µ = λπR2, and Zn = Zn,R is the binomial point process
consisting of exactly n points independently and uniformly
distributed in b(0,R).

Baddeley & Nair Poisson-saddlepoint approximation



Motivation & Background
Poisson-saddlepoint approximation

Higher order interaction
Area-interaction process

Conclusions

Series expansion

M(λ, θ) = e−µ
∞∑
n=0

µn

n!
mn(θ,R)

where
mn(θ,R) = E[Λθ(0,Zn,R)]
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General strategy

mn(θ,R) = E[Λθ(0,Zn,R)]

1. Use scaling properties to reduce mn(·, ·) to mn(·, 1)

2. For small n = 0, 1, 2, . . . , compute mn(θ, 1) accurately, by
numerical integration or simulation

3. Find the limiting behaviour of mn(θ, 1) as n→∞.

4. Combine these results to compute M(λ, θ) approximately

5. Solve λ = M(λ, θ) to obtain λPS.
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Loglinear form

Assume conditional intensity has loglinear form

Λθ(u, x) = exp(θ>T (u, x)),

where T (u, x) is a vector-valued statistic with finite range R:

T (u, x) = T (u, x ∩ b(u,R)).

Then
mn(θ, 1) = E[exp(θ>T (0,Zn,1))]

is the moment generating function of Tn = T (0,Zn,1).
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Strategy for loglinear case

I Tabulate the cumulative distribution function of
Tn = T (0,Zn,1) for each n = 0, 1, . . . ,N up to a moderately
large N.

I Find the asymptotic behaviour of Tn as n→∞.

I Use these results to approximate the m.g.f. of Tn for all n.
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4. Area-interaction process

The area-interaction process with parameters β, η, r ≥ 0 has
conditional intensity

Λ(u, x) = βηC(u,x,r),

where

C (u, x, r) =
1

πr2

∣∣∣∣∣∣b(u, r) ∩
n(x)⋃
i=1

b(xi , r)

∣∣∣∣∣∣
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Λ(u, x) is monotone in x; it can be shown that λPS exists uniquely.

For the series expansion of M(λ, θ) we need

mn(θ, 1) = E[η−An ]

where
An = 1− C (0,Zn,2, 1)

is the uncovered area fraction (area fraction of the unit disc which
is not covered by n unit discs whose centres are independently
uniformly distributed in the disc of radius 2).
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Stage 1: Tabulate distribution of An for small n
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Stage 2: Asymptotics of An as n→∞

Peter Hall Roger Miles
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Stage 2: Asymptotics of An as n→∞
Using two theorems of Peter Hall (1988), as n→∞

P {An = 0} ∼ 1−min

{
1, 3

(
1 +

n2

16π

)
e−n/4

}
E[An | An > 0] ∼ 16n−2 exp{n(

1

4
− log

4

3
)}

For better performance for very small n, we replace the latter
expression by

E[An | An > 0] ∼ 16(n + 3)−2 exp{n(
1

4
− log

4

3
)}
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Probability of complete coverage P {An = 0}
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Hall’s limit
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Hall’s limit

A famous theorem of Peter Hall (1988, Theorem 3.7) states that,
in a high-intensity Boolean model, a typical chink (connected
component of the uncovered region) is asymptotically equivalent to
the typical polygon of the Poisson line tessellation.
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Hall’s limit
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Poisson line tessellation

Roger Miles (1973, Section 8) showed that the area A of the
typical polygon in the Poisson line tessellation has
var [A] /E[A]2 = π2/2− 1.
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Conditional distribution of An given An > 0
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Conditional distribution of An/E(An) given An > 0
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Grey: n = 1, 2, . . . , 25
Black: n = 25, . . . , 50
Red: gamma distribution with
mean 1 and variance ζ = π2/2− 1
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Putting it together

Given the parameter values β, η, r and numerical threshold ε, for
each trial value λ ∈ [β, βη],

I let µ = 4λπr2 and find N such that P {Pois(µ) > N} < ε;

I For n = 1, . . . , 25 approximate E[η−An ] by the numerical
integral obtained from the tabulated distribution of An;

I If N > 25, then for 25 < n ≤ N, approximate

E[η−An ] ≈ pn + (1− pn)(1− ζmn log η)−1/ζ

where pn,mn are the asymptotic approximations to
P {An > 0} and E[An | An > 0] while ζ = π2/2− 1;

I For n > N, approximate E[η−An ] ≈ 1.

I Compute the series expansion of M(λ).
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Implementation in R

> library(spatstat)

> fit <- ppm(swedishpines ~ 1, AreaInter(3))

> parameters(fit)

beta eta r

0.0123 0.0123 3

> intensity(fit)

0.0078
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Performance of approximation
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