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We	will	discuss	the	focusing	Nonlinear	Schrodinger	equation	(NLSE)	with the following	
Initial	Conditions	(IC):

I.						Condensate	IC	

II.					Cnoidal wave	IC

III.					Soliton gas	IC



Statistics of waves for linear systems.

Let us suppose, that wave field ψ is a random superposition of a multitude of uncorrelated 
linear waves, 

If phases φk are random and uncorrelated, the number of waves {k} is large, and 
amplitudes ψk fall under the conditions of central limit theorem, then real Re ψ and 
imaginary Im ψ parts are Gaussian-distributed, and the probability density function (PDF) 
for wave amplitude is Rayleigh distribution,

Here σ2 = <|ψ|2>, and the PDF is normalized as

For convenience, we study PDFs for relative intensity I = |ψ|2 / σ2, and Rayleigh PDF in 
this case takes a simple form:

For nonlinear systems (1) the spectrum ψk changes with time and may have 
singularities and (2) the phases φk are correlated. This means that evolution may lead to 
non-Rayleigh PDF and enhanced appearance of rogue waves. 
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Numerical experiments with NLSE – condensate IC.

We study statistics of waves for the Nonlinear Schrodinger equation (NLSE),

for the problem of modulational instability (MI) of the condensate

Initial perturbation т(x) is statistically homogeneous in space (not localized). We use 
Runge-Kutta 4th-order method on adaptive grid, which conserves very well the first 12 
integrals of motion (with error smaller than 10-6). To calculate statistics, we use ensembles 
of 1000 initial distributions. Note that in our case σ2 = <|ψ|2> = 1, so that the relative 
intensity is equal to the square amplitude, I = |ψ|2.

We observe that the system asymptotically approaches to its stationary state in oscillatory 
way (left – kinetic and potential energies, right – moments of 1st, 3rd and 4th orders):
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Numerical experiments with NLSE – condensate IC.

Oscillations of the moments are very well approximated by the model function,

where MA(n) is asymptotic (Rayleigh) value, s ≈ 2 is the frequency (equal to the double 
maximum growth rate of the MI), and ϕnl is the nonlinear phase shift. The first 4 
extremums of the oscillations are: t = 13.7 (minimum), t = 15.8 (maximum), t = 17.7 
(minimum), t = 19.6 (maximum). 
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Numerical experiments with NLSE – condensate IC.

In the asymptotic state the PDF and the moments are Rayleigh ones (black –
experimental values, red – Rayleigh ones),

while the potential energy, <H4> = -1, is two times larger than the kinetic one, <Hd> = 0.5.
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Numerical experiments with NLSE – condensate IC.

While the system asymptotically approaches to its stationary state, the PDF of wave 
intensity oscillates around Rayleigh PDF (thick red line),

After the system reaches its nonlinear stage of the modulational instability, and at times t
when the absolute value of the potential energy |H4(t)| takes its local maximums, the 
probability of rogue waves |ψ|2>8 appearance is about 2-3 times higher than in case of 
Rayleigh PDF. 



Numerical experiments with NLSE – cnoidal wave IC.

We observe the similar results for the modulational instability of cnoidal waves, 

where dn(x) is the Jacobi elliptic function, while ν and s are its parameters. Cnoidal 
waves are the exact periodic solutions of the NLS equation, which can be represented as 
a lattice of solitons (in the figure below: black – cnoidal wave, red – NLS soliton).

2

2
0

| | 0,

| 2 dn( ; ) ( ), | ( ) | 1,
t xx

t

i

x s x x

ψ ψ ψ ψ

ψ ν ν=

+ + =

= + <<т т

Modulational instability of these 
lattices leads to integrable turbulence. 

As for the condensate initial 
conditions, the system asymptotically 
approaches its stationary state in 
oscillatory way.



Numerical experiments with NLSE – cnoidal wave IC.

Oscillations of the moments are very well approximated by the model function,

where MA(n) is asymptotic (non-Rayleigh!) value, s is the frequency, and ϕnl is the 
nonlinear phase shift. 

Note, that in this case the exponent 1<α<1.5 varies for different moments and different 
cnoidal waves. 
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Numerical experiments with NLSE – cnoidal wave IC.

Left figure: in the asymptotic state, the potential to kinetic energy ratio is equal to 2, as 
for the condensate case. Here red circles are the final ratio, and black line is the initial 
one. 

Right figure: the frequency of the oscillations s (black circles) is equal to the double 
maximal growth rate of the modulational instability (black dashed curve). 



Numerical experiments with NLSE – cnoidal wave IC.

The PDF in the asymptotic state depends on the initial cnoidal wave. If the overlapping 
between solitons is small (left), when the PDF is significantly non-Rayleigh one. If the 
overlapping is large (right), then the PDF practically coincides with Rayleigh PDF.
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via	the	NLSE
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Numerical experiments with NLSE – Soliton gas IC. 
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Dressing method + high-precession arithmetic
allows us to generate 128-soliton IC 
with high soliton spatial density 

Scheme	of	the	numerical	experiment:	

1. We	generate	128-soliton	solution	with	tails	decaying	at	the	ends	of	the	numerical	tank.

2. We	run	time	evolution	(numerically)	and	wait	for	stohastization (periodization)	in	soliton gas

𝝍𝟏𝑺𝑺 𝒙, 𝒕 = 𝟐𝜷
𝐞𝐱𝐩	[−𝟐𝒊𝜶 𝒙− 𝒙𝟎 − 𝟐𝒊 𝜶𝟐 − 𝜷𝟐 𝒕 + 𝒊𝜽]

𝒄𝒉[𝟐𝜷(𝒙 − 𝒙𝟎) + 𝟒𝜶𝜷𝒕]
One-soliton solution	(1-SS)	:
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We	choose	all	soliton amplitudes	are	equal:

𝛽a = 𝛽 =
𝜋

4 = 1.6 ,															𝐴a= 𝐴 =
𝜋

2 = 1.6 ≈ 0.98.

All	velocities	are	different,	distributed	uniformly	in	the	interval:
𝛼a = uniform	distribution( −𝜎,𝜎 )

We	skip	the	degenerate	case!𝝀𝒌 = 𝝀𝒋

We	introduce	the	eigenvalue	small		“guard	interval”,	i.e.	in	our	simulations:	

𝚫𝝀:	|𝝀𝒌 − 𝝀𝒋| > 𝚫𝝀, 		 ∀𝒌, 𝒋	

We s𝐭𝐮𝐝𝐲	10x ÷ 10z statistical realizations of IC.
How we distribute soliton parameters?  

soliton eigenvalues	𝜆a = 𝛼a + 𝑖𝛽a distribution:

soliton	phases	𝜃a ∈	random	uniform	distribution( [0, 2𝜋]),

soliton	positions	𝑥Ga ∈ random	uniform	distribution( [−𝐿~/2,𝐿~/2]), 							 𝐿~ < 𝐿	(so	that	IC	
localized	in	L).

𝚫𝝀~𝟏𝟎&𝟗
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So	that	the	influence	of	this	restriction	on	statistics	can	be	neglected	



Example of 128-soliton solution calculated by the dressing method 
using high-precession arithmetic
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On	the	inset	picture	we	plot	distribution	 of	soliton eigenvalues	



We control, that during soliton gas stohastization
(periodization), all statistical characteristics of the 
system become stationary:

Kinetic	energy	𝑯𝟐 =
𝟏
𝑳 ∫ |𝝍𝒙|𝟐

𝑳/𝟐
&𝑳/𝟐 𝒅𝒙 (black	curve)

and	potential	energy	𝑯𝟒 = − 𝟏
𝟐𝑳∫ |𝝍|𝟒𝒅𝒙𝑳/𝟐

&𝑳/𝟐 (blue	curve) Statistical	moments	(first	5)
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The	complete	stochastization of	the	solitonic ensemble	occurs	in	a	short	period	of	time,
since	solitons in	the	dense	gas	frequently	collide	with	each	other	acquiring	additional	phase-spatial	shifts.
After	that	we	study	statistical	properties	of	our	system.



The behaviour of soliton gas at different soliton densities

Probability Density Function for |𝜓|:	
Black	curve	– low	soliton spatial	density,	128	solitons on	the	interval	L	=	256	𝜋;	
Blue	curve	– intermediate	soliton spatial	density,	128	solitons on	L	=	192	𝜋
Red	curve	– high	soliton spatial	density,	128	solitons on	L=128	𝜋.	
Black	dotted	line	- Rayleigh	distribution.

We	found,	that	at	high	soliton densities,	the	PDF	becomes	Rayleigh	distributed.
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