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In spite of enormous success of the theory of integrable systems, at least
three important problems are not resolved yet or are resolved only partly.
They are the following:

1. The IST in the case of arbitrary bounded initial data.

2. The statistical description of the systems integrable by the IST.
Albeit, the development of the theory of integrable turbulence.

3. Integrability of the deep water equations.

These three problems will be discussed in the talk.

Vladimir Zakharov Unresolved problems in the theory of integrable systems



Bounded non-vanishing
solutions of the KdV equation

In collaboration with Dmitry Zakharov (Courant Institute, New
York) and Sergey Dyachenko (University of Illinois,

Urbana-Champaign)
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The Korteweg-de Vries equation

The KdV equation on u(x , t):

ut =
3

2
uux +

1

4
uxxx .

Major open problem: For what classes of initial data can we solve the
initial value problem for KdV by the use of the Inverse Scattering
Transform or by other analytical methods?
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Spectral theory of L and the initial value problem for KdV

To solve the initial value problem for KdV, we need to study the spectral
theory of the one-dimensional Schrödinger operator L:

Lψ = [−∂2x + u(x)]ψ = Eψ, ψ bounded.

There are two important classes of potentials u(x) for which the spectral
theory of L is well-understood, and the corresponding initial value
problem has an effective solution:

If u(x) vanishes sufficiently fast as x → ±∞, we can solve the initial
value problem for KdV by using the inverse scattering transform (IST).

If u(x) is periodic, we can approximate it and solve the initial value
problem by using finite-gap potentials.

Motivating question. What is the relationship between the IST and
finite-gap solutions?
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u(x) rapidly vanishing: scattering data

Suppose that u(x) rapidly vanishes at infinity:

u(x) = O(1/x2+ε), x → ±∞.

For E = k2 ≥ 0, the solution space has dimension 2, so there is a solution

ψ(x , k) =

{
e−ikx + c(k)e ikx + o(1) as x → +∞,

d(k)e−ikx + o(1) as x → −∞.

For finitely many negative E = −κ2n, n = 1, . . . ,N, there is one solution:

ψn(x) =

{
eκnx(1 + o(1)) as x → −∞,

e−κnx(bn + o(1)) as x →∞.

The set s = {c(k), κn, bn} is the scattering data of the potential u(x).
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KdV equations and the inverse scattering transform

If u(x , t) satisfies KdV, then the spectral data s(t) evolves trivially:

c(k , t) = c(k)e8ik
3t , κn(t) = κn, bn(t) = bne

8κ3
nt .

We can solve the initial value problem for KdV for vanishing u(x):

u(x , 0)→ s(0)→ s(t)→ u(x , t).

Introduce the function F (x , t), where Mn is the L2-norm ψn(x).

F (x , t) =
1

2π

∫ ∞
−∞

c(k , t)e ikxdk +
N∑

n=1

M2
ne
−κnx ,

where the Mn are the L2-norms of the eigenfunctions ψn(x).

Solve the Marchenko equation for K (x , y , t):

K (x , y , t) + F (x + y , t) +

∫ ∞
x

K (x , z , t)F (z + y , t)dz = 0.

Find the potential
u(x , t) = −∂xK (x , x , t).
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Bargmann potentials and N-soliton solutions of KdV

The Marchenko equation can be solved explicitly in the important case
c(k) = 0.

If s = {0, κn, bn}, n = 1, . . . ,N, then u(x) is a reflectionless Bargmann
potential and u(x , t) is an N-soliton solution of KdV.

For N = 1 we get a traveling solitary wave:

−u(x , t) =
2κ2

cosh2 κ(x − 4κ2t − x0)
.

In general we have N interacting solitary waves, given by the Bargmann
formula

−u(x , t) = 2∂2x ln det |Mnm|,

Mnm = δnm+cne
8κ3

nt
e−(κn+κm)x

κn + κm
, cn =

bn
ia′(iκn)

> 0, a(k) =
N∏

n=1

k − iκn
k + iκn

.
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u(x) periodic: finite-gap theory

Suppose that u(x) is periodic:

u(x + T ) = u(x).

The spectrum of the Schrödinger operator L is described by
Bloch–Floquet theory consists of an infinite sequence of closed intervals

S = [λ1, λ2] ∪ [λ3, λ4] ∪ [λ5, λ6] ∪ · · · , λ1 < λ2 < λ3 < · · ·

For each E ∈ S, there is a two-dimensional space of solutions
(one-dimensional at boundary points λi ).

The eigenfunction ψ(x , k) is defined on the spectral curve C : a
hyperelliptic Riemann surface of infinite genus that is a double cover of
the complex plane branched over the points λ1, λ2, . . .
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Finite-gap potentials

For an L2-dense subset of periodic potentials, the spectrum has only
finitely many gaps

S = [λ1, λ2] ∪ · · · ∪ [λ2g−2, λ2g−1] ∪ [λ2g ,∞)

The spectral curve C is an algebraic Riemann surface of genus g .

The eigenfunction ψ(x , k) has a pole divisor D of degree g on C .

ψ(x , k) and u(x) can be reconstructed from C and D.

If u(x , t) satisfies KdV, then C does not depend on t, while D evolves
linearly on the Jacobian variety Jac(C ). The solution is given by the
Matveev–Its formula

u(x , t) = 2∂2x ln θ(xU + tV + Z ) + c ,

where θ is the theta function of Jac(C ).

For generic spectral data, this solution is quasi-periodic in x and t.
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IST and finite-gap solutions

What is the relationship between the IST and finite-gap solutions?

Mumford: degenerating the spectral curve to a rational nodal curve
reduces N-gap solutions to N-soliton solutions.

Idea. View finite-gap solutions as limits of soliton solutions as N →∞.

Lundina, Marchenko: Proved that periodic finite-gap solutions are
contained in a suitable closure of the set of N-soliton solutions (no
effective formulas).
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Motivation: Fourier transform vs. d’Alembert’s formula

There are two approaches to the wave equation

utt = uxx , −∞ < x <∞.

For initial data u(x , 0) = A(x), ux(x , 0) = B(x), we find their Fourier
transforms, apply time evolution, and then find the inverse Fourier
transform.

Alternatively we can use d’Alembert’s formula:

u(x , t) =
1

2
[A(x − t) + A(x + t)] +

1

2

∫ x+t

x−t
B(s)ds.

The formula is local in x and t.

The IST is a nonlinear version of the Fourier transform.

Our method (we call it the dressing method) can be seen as a nonlinear
version of d’Alembert’s formula.

Vladimir Zakharov Unresolved problems in the theory of integrable systems



Analytic properties of ψ and χ for Bargmann potentials

In the Schrödinger equation substitute ψ(x , k) = χ(x , k)e−ikx :

χxx − 2ikχx − u(x)χ = 0, χ(x , k)→ 1 as |k| → ∞.

We extend χ to an analytic function in the complex k-plane.
We consider a ∂-problem on the complex k-plane of the following kind:

∂χ

∂k
= ie2ikxT (k)χ(x ,−k).

Here T (k) is a compactly supported distribution called the dressing
function of the ∂-problem.

χ(x , k) = 1 + i
N∑

n=1

χn(x)

k − iκn
.

The χn(x) and u(x) are determined by the system

χn(x) = cnχ(x ,−iκn)e−2κnx , u(x) = 2
d

dx

N∑
n=1

χn(x)
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Naive limit N →∞

Krichever, 1980s: define the limit N →∞ by allowing the poles of χ to
coalesce into a jump along the negative imaginary axis.

The function χ then satisfies a singular integral equation, and its
approximations by Riemann sums produce N-soliton solutions.

The resulting potentials u(x) are bounded as x → −∞ but are
decreasing as x → +∞.

We drop the physical assumption that there are poles only along the
negative part of the imaginary axis.
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The IST from the dressing method

Theorem (2014, Z., Zakharov)

Let κ1, . . . , κN and c1, . . . , cn be nonzero real numbers satisfying
κm 6= ±κn for all m 6= n, cn/κn > 0 for all n. There is a unique rational
function χ satisfying the following system:

χ(x , k) = 1 + i
N∑

n=1

χn(x)

k − iκn
, χn(x) = cnχ(x ,−iκn)e−2κnx .

The corresponding potential u(x) is a reflectionless Bargmann potential
having the finite discrete spectrum {−κ21, . . . ,−κ2N}. Furthermore, for
each n, replacing

κ̃i =

{
κi , i 6= n,
−κn, i = n,

c̃i =


(
κi − κn
κi + κn

)2

ci , i 6= n,

−4π2κ2n/cn, i = n,

does not change the potential u(x).
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The dressing method and the symmetric contour problem

Theorem (Z., Zakharov, in progress)

Let 0 < a < b, let R1 and R2 be two positive Hölder functions on [a, b].
Then there is a unique function χ, analytic on the k-plane away from two
cuts [ia, ib] and [−ib,−ia] on the imaginary axis, satisfying χ→ 1 as
|k | → ∞, which satisfies the following contour problem for p ∈ [a, b].

χ+(x , ip)− χ−(x , ip) = iR1(p)e−2px [χ+(x ,−ip) + χ−(x ,−ip)],

χ+(x ,−ip)− χ−(x ,−ip) = −iR2(p)e2px [χ+(x , ip) + χ−(x , ip)].

The corresponding potential u(x) of the Schrödinger operator

u(x) = 2∂xχ0(x), χ(x , k) = 1 +
iχ0(x)

k
+ O(k−2)

is bounded as x → ±∞ and has the spectrum [−b2,−a2] ∪ [0,∞).

Adding time dependence corresponds to replacing e2px with e2px+8p3t .
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Numerical simulations for constant R1 and R2

We can approximately solve the Riemann–Hilbert problem using N-soliton
solutions. We only consider constant R1 and R2 on [a, b] = [2, 4].
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Numerical simulations for constant R1 and R2

We can approximately solve the Riemann–Hilbert problem using
N-soliton solutions. We only consider constants R1 = 10−3, R2 = 10−6

on [a, b] = [2, 4]. Evolution due to the KdV equation.
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