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Plan of the Talk

• Introduction and Cauchy Theory: local and global.

• The problem of the Growth of Sobolev norms.

• The method of Modified Energies.

• Applications to NLS in 2d.

• Applications to cubic NLS in 3d.

• Applications to the harmonic oscillator.
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Introduction to the Problem

Let us consider the following Cauchy problems:i∂tu+ ∆gu = |u|2u, (t, x) ∈ R×Md

u(0, x) = ϕ(x) ∈ Hm

where

• (Md, g) is a compact d-dimensional Riemannian manifold;

• ∆g is the Laplace Beltrami operator;

• m the regularity of the initial data.
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Conserved Quantity

Since the nonlinearity is defocusing we have the following positive

energy which is preserved along the flow:

E(u(t, x)) = const

where

E(u) =
1

2
‖u‖2

H1(Md) +
1

p+ 1
‖u‖4

L4(Md);

moreover

‖u(t, x)‖L2(Md) = const
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Local and Global Cauchy Theory

• 2d: the Cauchy problem is Locally Well Posed in H1(M2);

• 3d: the Cauchy problem is Locally Well Posed in H1+ε(M3);

• 2d: it is easy to globalize the solution thanks to the conservation

law;

• 3d: the globalization argument is more involved (see Burq-Gérard-

Tzvetkov).
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Cheap Cauchy Theory

One can get some cheap results by using the Sobolev embedding

Hd/2+ε(Md) ⊂ L∞(Md)

• 2d: the Cauchy problem is Locally Well Posed in H1+ε(M2) and

the solution leaves in C((0, T );H1+ε(M2))

• 3d: the Cauchy problem is Locally Well Posed in H3/2+ε(M3) for

cubic nonlinearity, and the solution leaves in C((0, T );H3/2+ε(M2))

.
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Dispersion and Strichartz Estimates

• On a generic manifold (Md, g) we have for free waves:

‖eit∆gϕ‖Lp((0,1);Lq(Md)) ≤ C‖ϕ‖H1/p(Md)

where
2

p
+
d

q
=
d

2
, p ≥ 2, (p, d) 6= (2,2)

(see Burq-Gérard-Tzvetkov and Staffilani-Tataru).

• Notice that for d = 2 we get ”almost” this estimate

‖eit∆gϕ‖L2((0,1);L∞(M2)) ≤ C‖ϕ‖H1/2(M2)

that compared with Sobolev embedding provides a gain of 1/2

derivative!
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L.W.P. and G.W.P. for NLS in H1(M2)

NLS is the l.w.p. (and hence g.w.p.) in 2d with initial datum

in H1(M2).

• The solutions leave in C((0, T ), H1(M2)) ∩ Lp((0, T );Lq(M2)).
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What about the growth of Hm(M2) for m > 1?

Following Bourgain one can ask the following questions:

QUESTION 1: what can we say about the growth of

‖u(t)‖Hm(M2)

for m > 1 as t→∞ where u(t, x) solves NLS on a compact man-

ifold?

QUESTION 2: does it exists at least one solution of NLS

such that

‖u(t)‖Hm(M2)

for m > 1 is unbounded as t→∞?
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Some references

Bourgain, Staffilani, Sohinger, Colliander-Keel-Staffilani-Tao-Takaoka,

Colliander- Kwon-Oh, Gérard-Grellier, Guardia-Kaloshin, Hani, Hani-

Pausader-Tzvetkov-V., Haus-Procesi-Guardia, Pocovnicu, Wang, Zhong,

Xu, Thirouin, Deng-Germain etc. etc.
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The case: M = Rd

• In the case d = 1 there is not growth of higher order Sobolev

norm as a consequence of the IST by Zakharov-Shabat;

• For d ≥ 2 the question can be settled by using the Nonlinear

Scattering Theory:

For every nonlinearity p ≥ 2 + 4/d and for every ϕ ∈ Hm(Rd)
there exist ϕ± ∈ Hm(Rd) such that:

‖u(t, x)− eit∆ϕ±‖Hm(Rd) → 0 as t→ ±∞.

In particular since ‖eit∆ϕ±‖Hm(R2) = ‖ϕ±‖Hm(R2) in the Euclidean

setting there is not growth of higher order Sobolev norm.
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Cheap Growth on M2: Exponential Growth

• To prove exponential growth of Hm is not complicated, once a

nice local Cauchy theory in H1 is available.

• In general along with the well–posedness result in H1(M2) one

can deduce, via elementary estimates, a bound of the type

‖u(t+ τ)‖Hm(M2) ≤ C‖u(t)‖Hm(M2)

where τ = τ(‖ϕ‖H1). An elementary iteration gives exponential

bound:

‖u(t, x)‖Hm ≤ C expCt.
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Stronger Result on M2: Polynomial Growth of Hs(M2)

• Following Bourgain’s work, one can prove even more than expo-

nential growth. In fact the higher order Sobolev norms of solutions

to cubic NLS on T2 have at most a polynomial growth.

• The method pioneered by Bourgain is based on smoothing effect

related with the Xs,b spaces, namely

‖w(t, x)‖Xs,b = ‖〈ξ〉s〈τ + |ξ|2〉bw̃(τ, ξ)‖L2
τ,ξ

= ‖eit∆w(t, x)‖
Hb
tH

s
x

(roughly speaking one exploits also regularity in time and not

only in space: this is very useful to solve PDEs at low regu-

larity and also PDEs involving derivatives in the nonlinearity,

e.g. KdV, Benjamin-Ono etc etc)

12



• More precisely the key point in the Bourgain approach is the es-

timate

‖u(t+ τ)‖2Hm − ‖u(t)‖2Hm ≤ C‖u(t)‖2−εHm

where τ = τ(‖ϕ‖H1) > 0. Then we define αn = ‖u(τn)‖2Hm and we

get

αn+1 ≤ αn + Cα1−ε
n

which in turn implies by a simple iteration argument

αn . n
1
ε .
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The key point in the Bourgain approach is the following computation

(consider for simplicity H2 and cubic NLS) aimed to mimic the

conservation of L2 at higher order level:

i∂tu+ ∆u = u|u|2 ⇒ i∂t(∆u) + ∆(∆u) = ∆(u|u|2)

multiply the equation by ∆ū and consider the imaginary part:

d

dt
‖∆u‖2

L2 = Im
∫

∆ū∆(u|u|2) ∼ 2
∫

(∆ū)2u2 + l.o.t.

and hence

‖u(t1)‖2
H2 − ‖u(t2)‖2

H2 ∼ Im
∫ t2

t1
(∆ū)2ū2 + l.o.t.
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The idea of Bourgain it to estimate (the most dangerous term in-

volving the square of ∆ū) as follows

|Im
∫ t2

t1
(∆ū)2u2| . ‖u‖2−γ

X
2,b
(t1,t2)

by exploiting the derivatives in time provided by the Xs,b spaces...

it is very technical step. In order to conclude it is necessary to es-

timate

‖u‖
X

2,b
(t1,t2)

. ‖u(t1)‖H2

with a time interval (t1, t2) whose size is uniform for every t1 ∈ R. In

particular in order this approach to be successful it is necessary

to solve in H1 the Cauchy problem, since H1 is the unique a-

priori conserved quantity.
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Our Result on the Growth of Hm(M2)

We assume that the Riemanian manifold (M2, g) satisfies:

‖eit∆gϕ‖L4((0,1)×M2) . ‖ϕ‖Hs0(M2).

Following Staffilani-Tataru and Burq-Gérard-Tzvetkov it is true for

every compact manifold with s0 = 1
4.

Theorem 1

Let (M2, g) satisfies the condition above and let u(t, x) be solution to

NLS on M2 with nonlinearity u|u|p−1, p = 2k + 1, then we get

‖u(t, x)‖Hm(M2) . t
m−1

1−2s0
+ε
, ∀ε > 0,m ∈ N.
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• The previous theorem for cubic NLS on a generic M2 has been

obtained by Zhong. Our proof is different and as far as we can

see it works in a more general context.

• Our argument is not based on the Xs,b spaces, but is more el-

ementary and based essentially on integration by parts and

Strichartz estimates.

• In our approach we never use the fact that the Cauchy

problem is l.w.p. in H1(M2).
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The Modified Energy Associated with H2

Consider the following energy:

E2(u) = ‖∆gu‖2L2 − 2Re
∫
M2

∆guu|u|2 −
1

2

∫
M2
|∇g|u|2|2|u|.

Then we have

d

dt
E2(u) = −2Im

∫
M2

(∇gu, u∇g|u|4) + 2
∫
M2
|∇gu|2∂t|u|2.
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Estimate of | ddtE2(u(t, x))|

Since E2(u) ∼ ‖u‖2
H2 then we have roughly after integration in dt

‖u(T, x)‖2
H2 − ‖u(0, x)‖2

H2 .
∫ T

0
|
d

dt
E2(u(s))|ds

The typical term on the r.h.s. can be controlled as follows∫ T

0

∫
M2
|∇gu|2|∂tu||u| . ‖∂tu‖L∞T L2‖u‖L∞T L∞

∫ T

0
‖u‖2

W1,4

. ‖∆gu‖L∞T L2‖u‖L∞T L∞
∫ T

0
‖u‖2

W1,4

.
√
T‖u‖1+ε

L∞T H
2‖u‖2L4(0,T )W1,4

.
√
T‖u‖1+ε

L∞T H
2‖u‖2L∞T H1+s0

.
√
T‖u‖1+ε+2s0

L∞T H
2
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Cubic NLS in 3d: exponential growth

Next we state our result in 3d for solutions toi∂tu+ ∆gu = |u|2u, (t, x) ∈ R×M3

u(0, x) = ϕ(x) ∈ Hm

Theorem 2

Let (M3, g) be a Riemanian manifold and p = 3. Then for every m ∈ N
and for every u(t, x) solution we have:

sup
(0,T )

‖u(t, x)‖Hm(M3) ≤ C exp(CT )

where C = C(‖ϕ‖Hm) > 0.

• The result should be compared with the previous one by Burq-

Gérard-Tzvetkov

sup
(0,T )

‖u(t, x)‖Hm(M3) ≤ C exp exp(CT )
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Modified Energies in 3d for cubic NLS

Let us introduce the modified energy:

E2(u) = ‖∆gu‖2L2 − 2Re
∫

∆guū|u|2 − 2
∫
|∇g(|u|2)|2

We have the following identity:

d

dt
E2(u(t, x)) = 2

∫
M3
|∇gu|2∂t(|u|2)− 2Im

∫
M3

(∇gu, u∇g(|u|4))

which implies

E2(u(t2, x))− E2(u(t2, x))

= 2
∫ t2

t1

∫
M3
|∇gu|2∂t(|u|2)dxdt− 2Im

∫ t2

t1

∫
M3

(∇gu, u∇g(|u|4))dxdt
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How to estimate | ddtE2(u(t, x))|?

Let’s deal with the most dangerous term:

|
∫
M3
|∇gu|2∂t(|u|2)| . ‖∂tu‖L∞T L2‖u‖2L2

TW
1,6‖u‖L∞T L6

by using the equation and the Sobolev embedding H1 ⊂ L6 we get

... . ‖u‖L∞T H2‖u‖2L2
TW

1,6

If we show that

‖u‖2
L2
TW

1,6 . ‖u‖L∞T H2

then by recalling that E2(u) ∼ ‖u‖2
H2 we get

‖u(T )‖2
H2 − ‖u(0)‖2

H2 . ‖u‖2
L∞T H

2

then we conclude by Gronwall the exponential growth.
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How to deal with ‖u‖L2
TW

1,6?

We have the Strichartz estimate:

‖πNu‖L2
(0,T )

;L6(M3) ≤ C‖πNu‖L2
(0,T )

H1/2(M3) + ‖πNF‖L2
(0,T )

;L6/5(M3)

where πN are the Littlewood-Paley localization operators and

i∂tu+ ∆gu = F, (t, x) ∈ R×M3

Now we square and we get∑
N

‖πNu‖2L2
TW

1,6 .
∑
N

‖πNu‖2L2
TH

3/2 +
∑
N

‖πNF‖2L2
TW

1,6/5

that implies

‖u‖L2
TW

1,6 . ‖u‖
L2
TH

3/2(M3) + ‖F‖
L2
TW

1,6/5
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if u solves cubic NLS

‖u‖L2
TW

1,6 . ‖u‖
L2
TH

3/2 + ‖u|u|2‖
L2
T ;W1,6/5

.
√
T‖u‖

1
2
L2
TH

1‖u‖
1
2
L2
TH

2 +
√
T‖∇u‖L∞T L2‖u‖2L∞T L6

and hence (by the conservation of the energy)

‖u‖2
L2
TW

1,6 . T + T‖u‖L∞T H2
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The Harmonic Oscillator

Consider NLS perturbed by the potential |x|2:i∂tu+Hu+ u|u|2 = 0, (t, x) ∈ R× R2

u(0, x) = ϕ(x) ∈ Hm

where, H = −∆ + |x|2.

• We have discrete spectrum hence no global Strichartz esti-

mates and hence no scattering;

• The Cauchy theory is well-established since we have Strichartz

estimates local in time;

• What about the large-time behavior of higher order Sobolev

norms?

25



Modified Energy for the Harmonic Oscillator

1

2

d

dt
[‖Hu‖2

L2 +
1

4

∫
|x|2|u|4− |∇u|2|u|2 +

1

2
Re(∂x1ū)2u2 +

1

2
Re(∂x2ū)2u2]

=
∫

(|∇u|2)∂t|u|2 +
1

2
Re

∫
(∂x1ū)2∂t(u

2) +
1

2
Re

∫
(∂x2ū)2∂t(u

2)
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In the context of the harmonic oscillator (see A. Poiret) we have the

following bilinear effect that allows us to estimate better the r.h.s

‖eitHfN · eitHgM‖L2
t,x
≤

min{N,M}
max{N,M}

‖fN‖X0,b‖gM‖X0,b

where πN(fN) = fN and πM(gM) = gM , that implies

‖vN · wM‖L2
t,x
≤

min{N,M}
max{N,M}

‖vN‖X0,b‖wM‖X0,b

where πN(vN) = vN and πM(wM) = wM .
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Thanks to this bilinear effect and the introduction of the modified

energy we get

Theorem 3

Let u(t, x) be solution to cubic NLS perturbed by the harmonic oscil-

lator, then we have the bound

‖u(t, x)‖Hm + ‖|x|mu‖L2 ≤ CT
2
3(m−1)+ε

• Recall that for NLS on T2 we get ‖u(t, x)‖Hm ≤ CTm−1+ε;

• notice that ee control the momentum together with the Sbolev

norm Hm;

• the result is an extension of previous one by Colliander-Delort-

Kenig-Staffilani in the euclidean setting R2.
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We integrate w.r.t. dt the expression d
dtE(u(t)) and after integration

we are reduced to estimate terms of the following type∫ ∫
∆u0∇u1∇u2u3dxdt

where ui can be u or ū. Then by Fourier localization we get∫ ∫
∆u0∇u1∇u2u3dxdt =

∑
N0,N1,N2,N3

N2
0u

0
N0
N1u

1
N1
N2u

2
N2
u3
N3

. ‖u0‖
X3/2+ε,b‖u1‖X1+ε,b‖u2‖X1+ε,b‖u3‖

X1/2+ε,b

and we can continue by using the l.w.p. in the Bourgain spaces, that

still follows by the bilinear effect.
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• A technical point is that it is not completely clear that

πN∇u ∼ NπNu

since you have straight derivatives and you localize along the op-

erator H and hence they don’t commute.

• Of course no problems if we replace ∇ by
√
H but this is not the

case.

• Indeed one can prove

‖∇u‖Xs,b . ‖u‖X1+s,b

where Xs,b is the Bourgain space associated with the operator H.
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Thank You for Your Attention!
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