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Introduction to the Problem

et us consider the following Cauchy problems:

0+ Agu = |ul?u, (t,z) € R x M¢
u(0,x2) = o(x) € H™

where
e (M? ¢) is a compact d-dimensional Riemannian manifold;
e Ay is the Laplace Beltrami operator,

e m the regularity of the initial data.



Conserved Quantity

Since the nonlinearity is defocusing we have the following positive
energy which is preserved along the flow:

E(u(t,z)) = const

where

1 1
E(u) — _HquQtIl Md + —HUH24 Md )
2 (M%) " p41 (M)

maoreover

|u(t, x)HLQ(Md) = const



Local and Global Cauchy Theory

2d: the Cauchy problem is Locally Well Posed in H(M?):

3d: the Cauchy problem is Locally Well Posed in H1tTe(M3);

2d. it is easy to globalize the solution thanks to the conservation
law;

3d: the globalization argument is more involved (see Burg-Gérard-
Tzvetkov).



Cheap Cauchy Theory

One can get some cheap results by using the Sobolev embedding

e 2d: the Cauchy problem is Locally Well Posed in H1t¢(M?2) and
the solution leaves in C((0,T); H1T¢(M?2))

e 3d: the Cauchy problem is Locally Well Posed in H3/2t€(p3) for
cubic nonlinearity, and the solution leaves in C((0,T); H3/2t¢(M?2))



Dispersion and Strichartz Estimates

e On a generic manifold (M¢%, g) we have for free waves:

€292 Lo 0,1); Lacaryy < Clel gumcasay

where

2 d d
_‘I‘_:_a p =2, (p,d)#(Q,Q)
p q 2

(see Burqg-Gérard-Tzvetkov and Staffilani-Tataru).

e Notice that for d = 2 we get "almost” this estimate

it/
e YellL2((0,1):Lo0(m2)) < C||90||H1/2(M2)
that compared with Sobolev embedding provides a gain of 1/2
derivative!



L.W.P. and G.W.P. for NLS in H}(M?)

NLS is the l.w.p. (and hence g.w.p.) in 2d with initial datum
in H1(M?).

e The solutions leave in C((0,T), HY(M?2)) n LP((0,T); LI(M?)).



What about the growth of H™(M?2) for m > 17

Following Bourgain one can ask the following questions:

QUESTION 1: what can we say about the growth of

()| pm(ar2y
for m > 1 as t — oo where u(t,z) solves NLS on a compact man-
ifold?

QUESTION 2: does it exists at least one solution of NLS
such that

[u(] gm(ar2)
for m > 1 is unbounded as t — oco?



Some references

Bourgain, Staffilani, Sohinger, Colliander-Keel-Staffilani- Tao-Takaoka,
Colliander- Kwon-Oh, Gérard-Grellier, Guardia-Kaloshin, Hani, Hani-
Pausader-T zvetkov-V., Haus-Procesi-Guardia, Pocovnicu, Wang, Zhong,
Xu, Thirouin, Deng-Germain etc. etc.



The case: M = R?

e In the case d = 1 there is not growth of higher order Sobolev
norm as a consequence of the IST by Zakharov-Shabat;

e For d > 2 the question can be settled by using the Nonlinear
Scattering Theory:

For every nonlinearity p > 2 4+ 4/d and for every ¢ € H™(R?)
there exist p4+ € H™(R®) such that:

|u(t, x) — eitAgpi||Hm(Rd) — 0 ast — too.
In particular since || 1| ym g2y = ¢+l gym(g2y in the Euclidean
setting there is not growth of higher order Sobolev norm.
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Cheap Growth on M2: Exponential Growth

e To prove exponential growth of H™ is not complicated, once a
nice local Cauchy theory in H! is available.

e In general along with the well—posedness result in H1(M?2) one
can deduce, via elementary estimates, a bound of the type
luCt + )l gmearzy < Clul gmear)

where 7 = 7(||¢||z1). An elementary iteration gives exponential
bound:

|u(t, z)||gm < CexpCt.
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Stronger Result on M2: Polynomial Growth of H$(M?)

e Following Bourgain's work, one can prove even more than expo-
nential growth. In fact the higher order Sobolev nhorms of solutions
to cubic NLS on T2 have at most a polynomial growth.

e T he method pioneered by Bourgain is based on smoothing effect
related with the X$? spaces, namely

[t ) xse = 106)*(r + [€1%) 0, Ol 2, = e Swlt, @) oy

(roughly speaking one exploits also regularity in time and not
only in space: this is very useful to solve PDEs at low regu-
larity and also PDEs involving derivatives in the nonlinearity,
e.g. KdV, Benjamin-Ono etc etc)
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e More precisely the key point in the Bourgain approach is the es-
timate

[u(t 4+ 7)|7m — Ju(®)]|Fm < Cllu(t)]|Zm

where 7 = (|||l 1) > 0. Then we define an = |lu(n)||%m and we
get

apt1 < an + Cal=®

which in turn implies by a simple iteration argument

1
an S ne.
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The key point in the Bourgain approach is the following computation
(consider for simplicity H? and cubic NLS) aimed to mimic the
conservation of .2 at higher order level:

10w + Au = u\u|2 = 10i(Au) + A(Au) = A(u\u|2)
multiply the equation by Awuw and consider the imaginary part:

d

£||Au||%2 — Im/AﬂA(u|u|2) ~ 2/(Aﬂ)2u2 + l.o.t.
and hence

to o n_
[u(t)e = lu(t2) 72 ~ Im | (AT + Lo.t.
1
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The idea of Bourgain it to estimate (the most dangerous term in-
volving the square of Au) as follows

Im [ (a0 < %)
t1 X(tlatz)
by exploiting the derivatives in time provided by the Xxs:b spaces...
it is very technical step. In order to conclude it is necessary to es-
timate
lull 20 S llu(t)] g2
(t1,t2)

with a time interval (¢1,t>) whose size is uniform for every t1 € R. In
particular in order this approach to be successful it is necessary
to solve in H! the Cauchy problem, since H! is the unique a-
priori conserved quantity.
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Our Result on the Growth of H™(M?2)

We assume that the Riemanian manifold (M?2,g) satisfies:

it/
1290 Lag 0.1y xr2) S Nl gsocar2y-
Following Staffilani-Tataru and Burqg-Gérard-T zvetkov it is true for

every compact manifold with sg = 7.

Theorem 1

Let (M?,g) satisfies the condition above and let u(t,x) be solution to
NLS on M? with nonlinearity u|u|lP~1, p =2k + 1, then we get

m—1
JuuCt, )| g2y S 117507, Ve > 0,m € .
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e [ he previous theorem for cubic NLS on a generic M?2 has been
obtained by Zhong. Our proof is different and as far as we can
see it works in a more general context.

e Our argument is not based on the X s:b spaces, but is more el-
ementary and based essentially on integration by parts and
Strichartz estimates.

e INn our approach we never use the fact that the Cauchy
problem is l.w.p. in H1(M?).
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Consider

The Modified Energy Associated with H?2

the following energy:
1
_ 2 2 1 2,2
E2(w) = | Agull?2 —2Re | Aguulul? =2 [ 1Vglul?Jul.
have

Then we
d

dt

£5(u) = —2Im /Mz(vgu,uvgmﬁ) n 2/M2 IV g 28y 2.
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Estimate of | %&5(u(t, z))|

Since £;(u) ~ [|ull%, then we have roughly after integration in dt

2 2 rd
(T, @) — (0. 2)IIF2 S [ 17 E2(u(s)lds

The typical term on the r.h.s. can be controlled as follows

T 2 I 2
L IVuPlwllul S 10l e pallullzorss [ ulfe

T
2
S NAgull e paliullpgers [ Tulfe

1 2
S VTl &yl ago ryw e

1 2 1+e+2
S VTl ol e s S VTl ™
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Cubic NLS in 3d: exponential growth

Next we state our result in 3d for solutions to

i0pu + Agu = |ul?u, (t,z) € R x M3
u(0,x2) = p(x) € H™

Theorem 2
Let (M3, g) be a Riemanian manifold and p = 3. Then for every m € N
and for every u(t,x) solution we have:

sup ||u(t,:v)||Hm(M3) < Cexp(CT)

)

where C = C(||¢||gm) > O.

e [ he result should be compared with the previous one by Burg-
Gérard-T zvetkov

sup ||u(t,a:)||Hm(M3) < Cexpexp(CT)

Y
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Modified Energies in 3d for cubic NLS

Let us introduce the modified energy:
Ex(u) = || Agul|?, — 2Re/Aguﬂ|u|2 _ 2/ Vo ([ul?)?

We have the following identity:

d

22t ) = 2/M3 IV gul?8;(Ju|?) — 2Im /M3(vgu,uvg(|u|4))

which implies

Eo(u(to, x)) — E2(u(ta, x))

> tQ/ 1V 28, ([u[2) dzdt — 2Im /”/ (V o, u¥ o (Jul*))dadt
— u u X — u,u u X
t1 M3 g t t1 M3 g J
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How to estimate | %&(u(t,z))|?

Let's deal with the most dangerous term:
2 2 2
[ IV gulPou(ul®)] 5 100l e 2l 1 6l oo o
by using the equation and the Sobolev embedding H! c 1% we get
2

e S ||u||L%on||ullL%W1,6

If we show that
2

||u||L%W1,6 S llull g2

then by recalling that £ (u) ~ ||lul|%,, we get

2 2 2
(D2 = lu(O) g2 < Nlullpoo 2

then we conclude by Gronwall the exponential growth.
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W1,6?

How to deal with |[ju]|, >
T

We have the Strichartz estimate:

<
||7TNU||L%O’T);L6(M3) < CHWNU”L%O,T)HVQ(M% + ||7TNF||L%O7T);L6/5(M3)
where m are the Littlewood-Paley localization operators and
i+ Agu=F, (t,z) eRx M3

Now we square and we get
2 2 2
Z ||7TNU||L2W1,6 S Z ||7TNU||L2H3/2 + Z ||7TNF||L2W1,6/5
N T N T N T

that implies

lull 216 < l1ull L2 32 arzy + 1F I 216/
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if u solves cubic NLS

2
||U||L%W1,6 N ||u||L%H3/2 + ||ulul ||L%;W1,6/5

1 1
5 5 2
and hence (by the conservation of the energy)

2 <T 4T
||UI|L%W1,6N + IIUIIL%OHz
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T he Harmonic Oscillator

Consider NLS perturbed by the potential \x|2:

O+ Hu 4+ ulul? =0, (t,z) € R x R?
uw(0,2) = p(x) € H™

where, H = —A + |z|?.

e \We have discrete spectrum hence no global Strichartz esti-
mates and hence no scattering;

e [ he Cauchy theory is well-established since we have Strichartz
estimates local in time;

e What about the large-time behavior of higher order Sobolev
norms?
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Modified Energy for the Harmonic Oscillator

1d 1 1 _ 1 _
S+ 5 [ lePlul® = [ullul? 4+ SRe(9r,8)%u? + S Re(9r,@)%u?]

= / (IVul?)84|ul? + %Re / (02, )° 0 (u”) + %Re / (0w20) 28y (u?)
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In the context of the harmonic oscillator (see A. Poiret) we have the
following bilinear effect that allows us to estimate better the r.h.s

tH tH min{N, M}
16 - Maurllpp < o Il xoslloarl oo
where WN(fN) = fny and WM(QM) = gps, that implies
min{N, M}

low - warllp2 < lon Il xopllwarll o6

max{N, M}
where WN(UN) = v and WM(wM) = W)/ -
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Thanks to this bilinear effect and the introduction of the modified
energy we get

Theorem 3

Let u(t,z) be solution to cubic NLS perturbed by the harmonic oscil-
lator, then we have the bound

2
lut, )| g + |||z ™l 2 < CT3(M— e
e Recall that for NLS on T2 we get ||u(t,z)| gm < CT™ 1T

e Notice that ee control the momentum together with the Sbolev
norm H™:

e the result is an extension of previous one by Colliander-Delort-
Kenig-Staffilani in the euclidean setting RZ.
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We integrate w.r.t. dt the expression %S(u(t)) and after integration
we are reduced to estimate terms of the following type

//AuOVu1Vu2u3da:dt
where u* can be u or %. Then by Fourier localization we get

0 1 2.3 — 2.0 1 2 .3
//Au Vu - Vu u dxdt = Z NO“NON1UN1N2UN2UN3
NOaN17N27N3

0 1 2 3
S lutll s/ repllu [l x1+esllu®ll xr+enllull 17240

and we can continue by using the l.w.p. in the Bourgain spaces, that
still follows by the bilinear effect.
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e A technical point is that it is not completely clear that

TnVu ~ Nmnu

since you have straight derivatives and you localize along the op-
erator H and hence they don’'t commute.

e Of course no problems if we replace V by v H but this is not the
case.

e Indeed one can prove

IVullxso S llull x4+

where X34 is the Bourgain space associated with the operator H.
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T hank You for Your Attention!
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