Dynamical and Spectral Properties of

Bose-Einstein Condensates

Benjamin Schlein, University of Zurich

French-American Conference on Nonlinear Dispersive PDEs
CIRM Luminy

June 14, 2017

Based on joint works with
Chiara Boccato, Christian Brennecke, Serena Cenatiempo



I. The Gross-Pitaevskii Limit

Hamiltonian: consider N particles described by

N N
HY™ = 3 [~8e; + Veala))] + 3 N2V (N (i —2y))
J— 1<)

on L2(R3V). Here V > 0, regular, radial, compactly supported.

Scattering length: defined by zero-energy scattering equation
1
—At V@[ @ =0, f@) -1
For |z| large,
f(x) =1— VRN ag = scattering length of V

x|
By scaling

N2
[—A + 7V(N:z;)] f(Nz) =0 = aﬁo — scatt. length of N2V (N.)



Ground state energy: [Lieb-Seiringer-Yngvason, '00] proved

: En - 5 X ,
lim — = min Vol + V. + 4ra do
Nooo N pel2(R3):[o]=1 Vel ext| ] ol

Bose-Einstein condensation: let

1
’YJ(V) = Tro  NIYN){¥N]
be one-particle marginal associated with ground state ;.

[Lieb-Seiringer, '02] proved that

7](\[1) — 10) (ol where g minimizes GP-energy.

Warning: this does not mean that ¢y =~ g0®N. In fact

1 t
N<900 VHN P oY) ~ /[Wsool + Vextleol® +

Correlations are crucial!
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II. Time-evolution of BEC

N N
Let Hy =Y —Asz;+ Y N°V(N(z; — z;)).
1=1 1<9

Theorem [Brennecke - S., '17]: Let ¢ € L2(R3V) such that

ay = Tr 'vj(vl) — |90><90|‘ — 0

by = [, o) — [ (9612 + 4maolel*]| - 0

as N — oco. Let ¢y = e Nl Then, for all t €R,

1 — <90tm(vl,290t> < Clay + by + N1 exp(cexp(clt]))

where ¢; solves time-dependent Gross-Pitaevskii equation

i0ppr = [~ + Vext (2)] ¢ + 8mao|ee|* ¢t
with initial data p;—q0 = .



Remark: result immediately implies

Tr ’Yz(vl,) — o) {(pt]| < Clay + by + N2 exp(cexp(d|t]))
Previous works:

[ErdOs-S.-Yau, '06-'08]: BBGKY approach, no information
on rate of convergence

[Pickl, '10]: alternative approach, uncontrolled rate of con-
vergence

[Benedikter-de Oliveira-S. '12]: precise bounds on rate,
approximately coherent initial data in Fock space.



Orthogonal excitations: for ¢y € L2(R3V) and ¢ € L?(R3),
write

oy = agp® + a1 @5 ®WV D 4 @, oW 44y
where a; € Li¢(R3)®$j.

As in [Lewin-Nam-Serfaty-Solovej, '12], [Lewin-Nam-S. '15],
we define unitary map

N
. <N S
Up - L3(RPY) = FT = €D L1, (R%)®
j=0

YN — Uppny ={ap,a1,...,an}

Remark: yy = Uj&y exhibits BEC if and only if &y € FT, has
small number of particles.



Evolution of BEC: define excitation vector ¢y € 71, through
€_zHNtU:Z En =Ub ENt
In other words,

Ent = WnNiEN

with fluctuation dynamics

VYN —iHnt 7% . =<N <N

Need to show

ENLNEN L) = <§N7W]>§[,tNWN,t En) < Cy

Problem: we are neglecting correlations!

Need to modify fluctuation dynamics!



Idea from [Benedikter-de Oliveira-S. '12]: interested in evo-
lution of approximately coherent initial data:

e HNt Woén = Wy gNN,t, with Wy = Weyl operator

Describe correlations through Bogoliubov transformations

~ 1
T, = exp IE/dwdy (nt(w; y)a;az — h.C.)]

Define modified excitation vector &y, through
e N W To ey = Wi Ty ENt
With choice

ne(z,y) = —Nw(N(z —y))o(x)pi(y)
we obtain ({n ¢ Nén ) < Ct.

Goal: apply similar idea for N-particles data. Problem: Bogoli-
ubov transformations do not leave ]—"ii\i invariant.



. : _ <N : 2 3
Modified fields: on ]-"L%, we define, for f € met(R ),

(= s =M

Remark that

U b () Up, = a*(f)a\(/%t)

Hence b*(f) creates an excitation and, at the same time, it
annihilates a particle in condensate.

Generalized Bogoliubov transformations: define

1
T; = exp lafdxdy (nt(az; y)byby, — h.C.)]

Then 1} . .ng — ]—"i];i.



Modified fluctuation dynamics: let

4 < <
Wiy =Tf Up e NV US Ty - FT) = FT

Lot

Generator: define Gy ; such that

OWN = OGN VN1

We find
ONt=CNt+HN T ENG
with
1
Hy = /an;;vxax -+ 5 / dxdy N2V (N (z — Y)) Ay Gy Qg

and, for any 6 >0, a C > 0 s.t.
+ENt < OHN +CWN + 1)
+ |En g iN| < 6Hy + CWN +1)
+dEny/dt < SHNy +CN + 1)
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Control of N: by Gronwall, we conclude

EN WNNWN 1 EN) < Crlén, (N +Hy) En)

With assumptions on initial data, theorem follows.
Main challenge: action of Bogoliubov transf. Tt is explicit, i.e.

Ty a*(f) Ty = a*(coshy, f) + a(sinhy,(f))

For generalized Bogoliubov transformations, no explicit formula
IS available.

Instead, we expand

T (NTi= Y —ad™(a*(f))

n>o ™
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III. Spectral properties of Bose gases
Consider N bosons in A = [0; 1]><3, periodic boundary conditions.

Hamiltonian: In momentum space, with A* = 27‘(‘Z3, we have
K

5 _
Hy= ) p apap + N > V(T/N)a;_|_ra2apaq_|_r
pENT P,q,rEN*

for coupling constant k > 0.

For p € A", aj,ap are creation and annihilation operators, with
[ap, aZ] = 0p,q; [ap,aq] = [a;;,a(ﬂ =0

From [Lieb-Seiringer-Yngvason ’'00], [Lieb-Seiringer '02],
EN — 47Ta0N —|— O(N)

and

'Y](\rl) — |©0) ol

with ¢g(z) = 1 for all z € A.
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Mean-field regime: for

Z p2a’ pap + ﬁ Z V(T)a;+ra2apaq+r
peEN* p,q,mrEN*

more information is available; [Seiringer], [Grech-Seiringer],
[Lewin-Nam-Serfaty-Solovej], [Derezinski-Napiorkowski], [Pizzo].

Strong BEC bounds: 1 — (goc),’y](\})gom <CN-1

Precise ground state energy estimate: we find
(N —1)V(0)
2

~5 Z [P + &V (p) — \/|p|4+2ﬁp2‘7(p) + o(1)
pEAi

Emf

Low-lying excitation spectrum: consists of finite sums

> np\/|p|4 + 26p°V (p) + o(1), with np € N
pEAi
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Natural question: can we establish Bogoliubov theory for
Gross-Pitaevskii regime as well?

Theorem [Boccato - Brennecke - Cenatiempo - S., '17]:
Suppose k > 0 is small enough. Let ¢ € L2(AN) such that

(WN, HyYn) < 4magN + K

Then there exists C' > 0 such that

C(K +1
1—<soo,vj(vl)soo>§ (N )

Excitation Hamiltonian: we use unitary map

N
.72/ AN <N 2 3
U:Ly(ANY) = F3 = @OLMO(A)@)”
n—

to define
Ly =UHNU* : FEN — 72N
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A long but straightforward computation shows that

Ly =

N =1 7o)V - N) + ”V(O)N(N %
1
+ Z anZap—I— Z nV(p/N) [b;;bp—ﬁapap]
pE/\’_"_ PG/\:ﬁ_
+ > V(p/N) [bpb*, + bpbp]
pEAi
— 3 V(p/N) |bhy 0t paq +h.c.]
\/_p qeN’ :p+q#0 o
+ % > V(r/N)ay agapagy,

p,qEN ;TEN* 1% —p,—¢q

where A% = A*\{0} = 27Z>\{0}.

Remark: applying U reminds of Bogoliubov approximation.
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In contrast with mean-field regime, after conjugation with U
there are still large contributions in higher order terms.

Modified excitation Hamiltonian: let

1 Cag
Np = —mw(p/N) (SO that np ~ p—2>

and construct generalized Bogoliubov transformation

1
T = exp 5 > mp <b;;b*_p — bpb_p)
pEAi

We define then

Gy = T*LNT = T*UHNUT : F& — F2Y
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Bounds on excitation Hamiltonian: as in dynamics, we find

gN — 47Ta0N —|— HN —|— gN
Hy = ) an;ap + > V(T/N)a;+ra2apaq_|_r

and &y is such that, for every 6 > 0, there exists C > 0 such that

+EN < dHN + Ox(N + 1)

Observation: kinetic energy has a gap, i.e.

K= ) paap>(27r)2N
pEAi

Hence

1
QN—47raON2§’HN—CZCN—C
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Next question: is strong BEC enough to establish Bogoliubov
theory for excitation spectrum in Gross-Pitaevskii regime?

Answer: no, some of higher order terms in G are not negligible,
for N — oco.

Not surprising: quasi-free states can only approximate ground
state energy up to errors of order one [Erd6s-S.-Yau, '08],
[Napiorkowski-Reuvers-Solovej, '15]

Intermediate regimes: for 8 € [0; 1], let
1

SN > V(T/Nﬂ)a;_l_raz;apaq_w

p,q,rEN*

Hy =Y pPajap+
peEN*

Notice: 5 =0 is mean field, 8 = 1 is Gross-Pitaevskii regime.
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Theorem [Boccato - Brennecke - Cenatiempo - S. '17]:
Let 0O < 8 < 1. Let k > 0 be small enough. Then

EN = 4m]5\,(N —1)

2‘72 0
-3 X R+ TO - Vit 20200 - L0 o)
pEAi p
where
2772 3
8ral = KV (0) b and (g/N )
2N E/\i D
1)kgk V(py/NO) BV ((p; — pja1)/NP) | ~
"‘Z(szfk 5 (p1/N7) I ((p 229+1)/ >V(pk/N5)
(2N) PiENY, P1 i=1 Pia

Moreover, spectrum of Hﬁ, — E]B\, below K consists of

Z Np \/|p|4 + 2kp2V(0) 4 o(1), with ny € N
pEAi
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Remark: k-th term in Born series gives contribution O(Nk5—(k=1))
Hence, for § < 1, series can be truncated at finite order.

Excitation Hamiltonian: we define
B __ B . <N <N
gN _T*UHNU*T ; ]—"+ —>]—'+
As before
GN = dmay N +HS + &N
where

+EY < SHP + Cr(N + 1)

This implies that low-energy states ¢y = U*T& are so that

En,NEN) < C

and, with some more work, that

En, (N + 1M + Dey) < C
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Quadratic Hamiltonian: more careful analysis shows
Gp
Gy =Cn+ X Fpbybp + 7 [bpb™, + bpb—p] + 8y
pEAi
= Cy+9+6%
where

F, = p2(sinh2 1, + cosh?np) + xV (p/NP)(sinh 1 + cosh )

Gp = 2p? sinhn, cosh i, + &V (p/NP)(sinh 7, 4 cosh )2

+ 5 2 V(b - a)/N g
qeEN

and
+67, < CNTYN + 1)(Hy + 1)

for some a > 0.
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Diagonalization: for p € A¥_, let 7 s.t.

G
tanh, = ?p

p

Define generalized Bogoliubov transformation

1

pEAi
so that
F
5'Qs= Y [~ JHVE -G+ X VF - Ghajap+dg
pE/\f}_ pE/\j_
with

+ig < CN YW+ 1)(Hy+ 1)
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Diagonal excitation Hamiltonian: we define

] <N <N
My = 5*GyS = S*T*UHNU*TS : F5 — F5

Then
MP = 4ral (N — 1)
1 N ~ 2V 2(0
3 3 [P Vipl + 2PV (0) - 1O
pEAi p
+ Z \/|p|4 + 2f<:p2\7(0) a,;;ap + SJBV
pEAi

with
+67 < CNTYN + 1)(Hy + 1)

Important ingredient: F, ~ p?, G, ~ 1/p?, and hence 1, ~ |p|~+.
Therefore S “preserves’ N and also Hp!
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