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Current Research Interests

Asymptotic analysis
Dispersive PDE arising from physical contexts (e.g. water waves)
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The Davey-Stewartson System

The Davey-Stewartson system on R× R2 reads in simplied form

ict + ∂2
x1 c ± ∂2

x2 c = µ|c|2c − dx1 c(2.1)

∂2
x1 d ± ∂2

x2 d = −(|c|2)x1(2.2)

where µ ∈ {±1}.
Above, c is a complex-valued amplitude and d is a real-valued velocity
potential.

Ghidalia and Saut classification of the system:

(+,+) Elliptic-Elliptic

(-,+) Hyperbolic-Elliptic

(+,-) Elliptic-Hyperbolic

(-,-) Hyperbolic-Hyperbolic
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Small data theory

We may rewrite the elliptic-elliptic DS system as a nonlocal nonlinear
Schrödinger-type equation

(2.3) iut + ∆u = µ|u|2u +
∂2

1

∆
u

The equation has L2-critical scaling uλ(t , x) := λu(λ2t , λx).

Small-data theory and LWP established by Ghidalia and Saut via fixed-point
argument using Hölder’s inequality, Strichartz estimates, and the
Calderón-Zygmund theorem. In particular, one has the blow-up criterion

(2.4) lim
T↑Tmax

‖u‖L4
t,x ([0,T ]×R2) =∞
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GWP and Scattering of EE DS system at Critical Regularity

Theorem

If µ = 1 or if µ = −1 and M(u) < ‖Q‖L2 , then solutions of the EE DS system
are global and satisfy the uniform space-time estimate

(2.5) ‖u‖L4
t,x
≤ C(‖u0‖L2 )

1 Strategy of proof

Concentration compactness/rigidity roadmap of Kenig-Merle
Long-time Strichartz estimate technique of Dodson
Improved bilinear Strichartz estimates
Frequency-localized interaction Morawetz-type estimate

2 Difficulties

Application of bilinear Strichartz estimates to terms of form
u2

hi
∂2

1
∆

(u2
lo)

No interaction Morawetz estimate for DS system
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3D Gravity-Capillary Waves

The Zakharov/Craig-Sulem formulation of the water waves problem for an
incompressible, irrotational fluid in a domain of infinite horizontal expanse
and finite depth is

∂th = G(h)ψ(3.1)

∂tψ = −gh + σH(h)− 1
2
|∇ψ|2 +

(G(h)ψ +∇h · ∇ψ)2

2(1 + |∇h|2)
(3.2)

The linearization of the system about the rest state (h, ψ) = (0, 0) is the
complex-valued dispersive equation

(3.3) ∂tu + iΛu = 0

where Λ :=
√
|∇| tanh(|∇|)(g + σ|∇|2) and u := h + iΛ−1|∇| tanh(|∇|)ψ.
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Rigorous Justification of Modulation Approximation to GWW

Normalize g = 1 and ignore surface tension. Let 0 < ε� 1 be a small
parameter. By the method of multiple scales, one can seek a wave packet
solution of the Z/CS system with basic wave number k0 = (|k0|, 0) and
dispersion relation ω0 = |k0| tanh(|k0|), which is slowly modulated in space
and time and travelling parallel to the x-axis.

(3.4) ε

(
iω0c(τ,X1,X2)ei(k0·x−ω0t) + c.c.

c(τ,X1,X2)ei(k0·xiω0t) + c.c.+ d(τ,X1,X2)

)
+O(ε2),

where cg is the group velocity and τ = ε2t , X1 = ε(x − cg t), and X2 = εx2 are
slow variables.

Plugging in ansatz to WW equation, one finds (c, d) satisfies a
hyperbolic-elliptic Davey-Stewartson system with respect to the slow
variables.

Goal

Prove that that the multiple scales approximate solution approximates a true
solution of the WW equations with small error over long times.
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