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Presentation of the equation

The Camassa-Holm equation reads

(CH)

{
ut − utxx = −3uux + 2uxuxx + uu3x , (t, x) ∈ R2 ,
u(0, x) = u0(x) ,

where u(t, x) is real-valued.

It has been derived in 93’ by Camassa and Holm, starting from the
Green-Naghdi equations and making an asymptotic expansion that
keeps the hamiltonian structure.

Rigorous derivation from the full water waves problem obtained by
Constantin and Lannes 2009’.



Presentation of the equation

A lot of properties :

• An infinite number of conservation laws.

M(u) =

∫
R

(u − uxx) dx , E (u) =

∫
R

u2 + u2
x

F (u) =

∫
R

u3 + uu2
x

The equation may be rewritten in Hamiltonian form :

∂tE
′(u) = −∂xF ′(u) .

• Non smooth solitary waves

u(t, x) = ce−|x−ct| = ϕc(x − ct), c ∈ R∗

where ϕc = ce−|x] is the unique H1-weak solutions to

−cϕc + cϕ′′c +
3

2
ϕ2
c = ϕcϕ

′′
c +

1

2
(ϕ′c)2



Presentation of the equation

To give a sense to the peakon-solutions one rewrites (CH) as

ut + uux + (1− ∂2
x )−1∂x(u2 + u2

x/2) = 0

It is also worth noticing that the momentum density y = u − uxx
satisfies the transport equation

yt + uyx + 2uxy = 0

Local well-posedness results

• Locally well-posed in Hs(R) for s > 3/2.

• There exist solutions that blow up in finite time by wave
breaking

lim inf
t↗T∗

ux(t, x) = −∞ .

Prob : e−|x] 6∈ H3/2(R) !



Well-posedness results

Theorem (Constantin-M 00’)

Let u0 ∈ H1(R) with y0 = u0 − u0,xx ∈M+(R) then ∃! solution
u ∈ C (R; H1(R)) such that y = u − uxx ∈ L∞(R;M+(R)).
Moreover, M, E and F are conserved along the flow.

We set Y+ := {u ∈ H1(R), u − uxx ∈M+(R)}.
Note that e−|x | ∈ Y+ since (1− ∂2

x )e−|x | = 2δ0

Theorem (Constantin-Strauss 00’)

Let u ∈ C ([0,T ]; H1(R)) such that

‖u0 − ce−|x |‖H1 < ε4 ≤ ε4
0

then
sup

t∈[0,T ]
‖u(t)− ce−|x−ξ(t)|‖H1 < O(ε)

where ξ(t) is any point where u(t) reaches it maximum (c > 0).



Presentation of the results

Definition

We say that a solution u ∈ C (R; H1(R)) with
u − uxx ∈ Cw (R;M+) of (C-H) is Y -almost localized if there exist
c > 0 and a C 1-function x(·), with xt ≥ c > 0, for which for any
ε > 0, there exists Rε > 0 such that for all t ∈ R and all Φ ∈ C (R)
with 0 ≤ Φ ≤ 1 and suppΦ ⊂ [−Rε,Rε]

c .∫
R

(u2(t)+ u2
x (t))Φ(·−x(t)) dx +

〈
Φ(·−x(t)), u(t)−uxx(t)

〉
≤ ε .

(1)



Presentation of the results

Theorem (rigidity property)

Let u ∈ C (R; H1(R)), with u − uxx ∈ Cw (R;M+), be a Y -almost
localized solution of (C-H) that is not identically vanishing. Then
there exists c∗ > 0 and x0 ∈ R such that

u(t) = c∗ ϕ(· − x0 − c∗t), ∀t ∈ R .



Presentation of the results

Theorem (asymptotic stability)

Let c > 0 be fixed. There exists an universal constant 0 < η � 1
such that for any 0 < θ < c and any u0 ∈ Y+ satisfying

‖u0 − ϕc‖H1 ≤ η
(θ

c

)8
, (2)

there exists c∗ > 0 with |c − c∗| � c and a C 1-function
x : R→ R with lim

t→∞
ẋ = c∗ such that

u(t, ·+ x(t)) ⇀
t→+∞

ϕc∗ in H1(R) , (3)

where u ∈ C (R; H1) is the solution emanating from u0. Moreover,

lim
t→+∞

‖u(t)− ϕc∗(· − x(t))‖H1(]θt,+∞[) = 0 . (4)



Presentation of the results

Using that (C-H) is invariant by the change of unknown u(t, x) 7→
−u(t,−x), we obtain as well the asymptotic stability of the an-
tipeakon profile cϕ with c < 0 in the class of H1-function with a
momentum density that belongs to M−(R).

This theorem implies the growth of the high Sobolev norms for some
smooth solutions of the Camassa-Holm equation. Indeed, it follows
from this theorem that any solution of the Camassa-Holm equa-
tion emanating from an initial datum u0 ∈ Y+ ∩ Hs(R), s ≥ 3/2,
satisfying (2), has a Hs(R)-norm that tends to +∞ as t tends to
infinity.



Presentation of the results

• The proof of the rigidity result uses the finite speed
propagation of the momentum density y .

• The proof of the asymptotic stability follows the framework
developed by Martel and Merle.



Proof of the asymptotic stability

Let u0 ∈ Y+ such that

‖u0 − cϕ‖H1 < ε8

∃! C 1-function x(·) with |ẋ(t)− c| � c and

‖u(t, ·)− cϕ(· − x(t))‖H1 = O(ε)

such that ∫
R
ϕ′(· − x(t))u(t, ·) = 0, ∀t ∈ R .

Let {tn} ↗ +∞. By Ascoli theorem

x(tn + ·)− x(tn) −→ x̃ in C (−T ,T ]

and by local compactness (Y ↪→ H
3
2
−(R))

u(tn, ·+ x(tn)) −→ ũ0 in H1
loc(R)



Proof of the asymptotic stability

Denoting by ũ the solution of (C-H) emanating from ũ0 this yields

u(tn + t, ·+ x(tn + t)) −→ ũ(t, ·+ x̃(t)) in H1
loc(R), ∀t ∈ R,

where we used a continuous dependence result for (C-H) with
respect to the weak H1-topology.
This enables to prove that ũ is an Y -almost localized solution and
thus

ũ0 = c0ϕ(· − x0)

It remains to prove that c0 and x0 does not depend on {tn}.

First the orthogonality condition forces x0 = 0.



Proof of the asymptotic stability

Now, since there is local strong convergence in L∞(R) we must hat

max u(tn, ·)→ c0

We set λ(t) = maxR u(t) so that

u(tn, ·+ x(tn))− λ(tn)ϕ ⇀
n→+∞

0 in H1(R)

Since this is true for any {tn} ↗ ∞ we get that

u(t, ·+ x(t))− λ(t)ϕ ⇀
t→+∞

0 in H1(R)

It remains to prove that λ(t)→ c∗. This uses an almost
monotonicity result or the part of E that travels at the right or the
left of an almost localized solution



Proof of the rigidity result

Step 1: Uniform exponential decay of Y localized solutions.

This is a consequence of almost monotonicity results for the parts
of E and M that travel at the right or the left of an almost
localized solution.

Step 2: Proof of the compact support of y at the right side.

Let q(·, ·) be the flow associated with u{
qt(t, x) = u(t, q(t, x)) , (t, x) ∈ R2

q(0, x) = x , x ∈ R .

yt + uyx = −2uxy ⇒ ∂t
(

y(t, q(t, ·))e2
∫ t

0
ux (s,q(s,·)) ds

)
= 0

On the other hand ∂xq(0, x) = 1 and

∂tqx(t, x) = qx(t, x)ux(t, q(t, x))

ensure that

qx(t, x) = exp
(∫ t

0
ux(s, q(s, x)) ds

)



Proof of the rigidity result

This yields

∀t ∈ R, y(t, q(t, ·))q2
x (t, ·) = y(0, ·) .

By the Y localization of u there exists R0 > 0 such that

∀t ∈ R,∀|x | > R0, u(t, x(t) + R0) <
c

10

In particular d
dt /t=0

q(t, x(0) + R0) = u(0, x(0) + R0) < c
10 and by

continuity

∀t ≤ 0, q(t, x(t) + R0)− x(t) ≥ R0 +
c

2
|t|

Combining this with |ux | ≤ u and the exponential decay we get

∀t ≤ 0, ∀x ≥ 0, |ux(t, q(t, x(0) + R + x)| ≤ Ce−β(R+|t|)



Proof of the rigidity result

This ensures that for ∀t ≤ 0, ∀x ≥ 0,

1

C0
≤ qx(t, x(0) + R0 + x) ≤ C0

Assume that y(0) is not compactly supported at the right. Then
there exists R > R0 such that∫ x(0)+R

x(0)+R0

y(0, x)dx = ε0 > 0

⇒
∫ x(0)+R

x(0)+R0

y(t, q(t, x))qx(, t, x)2 dx = ε0

⇒
∫ x(0)+R

x(0)+R
y(t, q(t, x))qx(, t, x) dx ≥ ε0

C0

and performing the change of variables z = q(t, x)∫ q(t,x(0)+R)

q(t,x(0)+R0)
y(t, z)dz ≥ ε0

C0
⇒
∫ +∞

x(t)+R0+c|t|/2
y(t, z)dz ≥ ε0

C0

that contradicts the Y -localization of u as t → −∞.



Proof of the rigidity result

Therefore supp y(t) ⊂ [−∞, x(t) + R0] for all t ∈ R. Now it will
be useful to notice that

u(t, x(t) + r0) = −ux(t, x(t) + R0) ≥ e−2r0

4
√

R0

√
E (u) = α0 .

Indeed, by the Y -localization of u, the conservation of E (u) and
the choice of R0

‖u(t, · − x(t))‖H1(]−R0,R0[) ≥
1

2

√
E (u) .

But y = u− uxx ≥ 0 ensures that −u ≤ ux ≤ u on R. This forces

max
[−r0,r0]

u2(t, · − x(t)) ≥ 1

2r0
‖u(t, · − x(t))‖2

L2]−r0,r0[) ≥
1

8r0
E (u)

But since ux ≥ −u on R2, for any (t, x0) ∈ R2 it holds

u(t, x) ≤ u(t, x0)e−x+x0 , ∀x ≤ x0 .



Proof of the rigidity result

Applying this estimate with x0 = x(t) + R0 we obtain that

u(t, x(t) + R0) ≥ max
[−R0,R0]

u(t, · − x(t))e−2R0

which yields the desired result.
Now we set

x+(t) = inf{x ∈ R, suppy(t) ⊂]−∞, x(t) + x ]}

and
q∗(t) = q(t, x(0) + x+(0)) = x(t) + x+(t)



Proof of the rigidity result

Step 3: Study of the jump of ux(t, ·) at q∗(t).

We set

a(t) = ux(t, q∗(t)−)− ux(t, q∗(t)+), ∀t ∈ R . (5)

Then a(·) is a bounded non decreasing derivable function on R
with values in [α0

8 , 2
√

E (u)] such that

a′(t) =
1

2
(u2 − u2

x )(t, q∗(t)−), ∀t ∈ R. (6)

First we prove that ux(t) has got a jump at q∗(t). We proceed by
contradiction assuming that there exists x1 < q∗(0) such that
‖y(0)‖M(]x1,+∞[) < α/8.



Proof of the rigidity result

On ]x1, q
∗(0)[ it holds

ux(0, x) ≤ −α0 −
∫ q∗(0)

x
uxx

≤ −α0 −
∫ q∗(0)

x
u +

∫ q∗(0)

x
y

≤ −3α0/4



Proof of the rigidity result

This ensures that qx(0, x) ≥ 1 on ]x1, q
∗(0)[.

We can extend this for any t < 0 on ]q(t, x1), q∗(t)[ since

ux(t, x) ≤ −α0 +

∫ q∗(t)

x
y

≤ −α0 +

∫ q∗(0)

q−1(t,x)
y(t, q(t))qx(t, x) dx

≤ −α0 +

∫ q∗(0)

x1

y(t, q(t))q2
x (t, x) dx

≤ −α0 +

∫ q∗(0)

x1

y(0, x) dx

≤ −3α0/4



Proof of the rigidity result

This forces q∗(t)− q(t, x1)→ +∞ as t → −∞ and
u(t, q(t, x1)) ≥ u(t, q∗(t)) ≥ α0 that contradicts the almost
localization of u .
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