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Presentation of the equation

The Camassa-Holm equation reads

_ _ 2
(CH) Up — Upxx Buuy + 2uy sy + uusy , (t,x) € R* |
u(0,x) = up(x) ,

where u(t, x) is real-valued.

It has been derived in 93" by Camassa and Holm, starting from the
Green-Naghdi equations and making an asymptotic expansion that
keeps the hamiltonian structure.

Rigorous derivation from the full water waves problem obtained by
Constantin and Lannes 2009'.



Presentation of the equation

A lot of properties :
e An infinite number of conservation laws.

M(u):/R(u—uXX)dx, E(u):/Ru2—|—u)2<
F(u):/Ru?’—&-uuﬁ

The equation may be rewritten in Hamiltonian form :
OE'(u) = =0y F'(u)

e Non smooth solitary waves
u(t,x) = ce >t = o (x —ct), ceR*

where ¢ = ce " is the unique H!-weak solutions to

3 1
—Cpe + ol + 59 = el + 5(0L)



Presentation of the equation

To give a sense to the peakon-solutions one rewrites (CH) as
u + uy + (1 — 0210 (v® + u2/2) =0

It is also worth noticing that the momentum density y = u — Uy
satisfies the transport equation

Ve + uyx +2uyy =0

Local well-posedness results
e Locally well-posed in H*(R) for s > 3/2.
e There exist solutions that blow up in finite time by wave

breaking

liminf uy(t, x) = —o0 .
t /T

Prob : e Xl ¢ H3/2(R) |



Well-posedness results

Theorem (Constantin-M 00')

Let ug € HY(R) with yo = up — Upxx € M (R) then 3! solution
u € C(R; HY(R)) such that y = u — ux € L°(R; M, (R)).
Moreover, M, E and F are conserved along the flow.

We set Y, := {u € HY(R),u — ux € M (R)}.
Note that e~ ¥ € Y, since (1 — 92)e~ X = 254

Theorem (Constantin-Strauss 00")
Let u € C([0, T]; HY(R)) such that

o — ce || < * < b
then
sup _[lu(t) — ce” ¢l < O(e)
te[0,T]

where £(t) is any point where u(t) reaches it maximum (c > 0).



Presentation of the results

Definition

We say that a solution v € C(R; H'(RR)) with

U — Uy € Cy(R; M) of (C-H) is Y-almost localized if there exist
c > 0 and a C'-function x(-), with x; > ¢ > 0, for which for any
e > 0, there exists R. > 0 such that for all t € R and all ¢ € C(R)
with 0 < ® <1 and supp® C [—R., R:]°.

/R (() + u2(£))B(- = x(£)) dx+ (S(- = x(£)), u(t) — (1)) < .
(1)



Let u € C(R; HY(R)), with u — u € Co(R; M), be a Y-almost

localized solution of (C-H) that is not identically vanishing. Then
there exists ¢* > 0 and xg € R such that

u(t) = c* (- —x0 — ct),

vVt eR.
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Presentation of the results

Theorem (asymptotic stability)

Let ¢ > 0 be fixed. There exists an universal constant 0 < n < 1
such that for any 0 < 6 < c and any ug € Y. satisfying

oo — el <n(2)’ ®

there exists c* > 0 with |c — ¢*| < ¢ and a C-function
x : R — R with lim x = c¢* such that
t—o0

u(t, -+ x(t)) = per in H'(R), (3)

t—+

where u € C(R; H') is the solution emanating from ug. Moreover,

lim Ju(t) — @ (- = x(0)ll 11 ot,+00p) =0 - (4)

t—+00



Presentation of the results

Using that (C-H) is invariant by the change of unknown u(t,x) —
—u(t,—x), we obtain as well the asymptotic stability of the an-
tipeakon profile co with ¢ < 0 in the class of H!-function with a
momentum density that belongs to M _(R).

This theorem implies the growth of the high Sobolev norms for some
smooth solutions of the Camassa-Holm equation. Indeed, it follows
from this theorem that any solution of the Camassa-Holm equa-
tion emanating from an initial datum vy € Yy N H*(R), s > 3/2,
satisfying (2), has a H*(R)-norm that tends to +oco as t tends to
infinity.



e The proof of the rigidity result uses the finite speed
propagation of the momentum density y.

e The proof of the asymptotic stability follows the framework
developed by Martel and Merle.
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Let up € Y, such that

luo — col|pr < €°
31 Cl-function x(-) with |%(t) — ¢| < ¢ and

such that

Ju(z.") = cpl- = ()l = OC)
[ = x(®)ult.) =

=0, VteR.
Let {t,} /" +o0. By Ascoli theorem

x(th+ ) — x(ty) — X in C(—T,T]

and by local compactness (Y < H%_(R))

u(ty, -+ x(t,)) — o in Hi(R)
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Proof of the asymptotic stability

Denoting by i the solution of (C-H) emanating from @ this yields
u(ty +t,- + x(ty + t)) — b(t,- + %(t)) in HE(R), VteER,

where we used a continuous dependence result for (C-H) with

respect to the weak H!-topology.
This enables to prove that & is an Y-almost localized solution and

thus
o = cop(- — xo)

It remains to prove that ¢y and xg does not depend on {t,}.

First the orthogonality condition forces xp = 0.



Proof of the asymptotic stability

Now, since there is local strong convergence in L°°(R) we must hat

max u(tn, ) — co

We set \(t) = maxg u(t) so that

u(tn, -+ x(t)) — A(ta)p  — 0 in HY(R)

n—-+00

Since this is true for any {t,} " oo we get that

u(t,-+x(t)) = At)e — 0 in HYR

(£ +x(0) =MD = ()

It remains to prove that A(t) — c*. This uses an almost
monotonicity result or the part of E that travels at the right or the
left of an almost localized solution



Proof of the rigidity result

Step 1: Uniform exponential decay of Y localized solutions.

This is a consequence of almost monotonicity results for the parts
of E and M that travel at the right or the left of an almost
localized solution.

Step 2: Proof of the compact support of y at the right side.
Let g(-,-) be the flow associated with u

q:(t,x) = u(t,q(t,x)) , (t,x) € R
q(0,x) = x , xeR
ye + uyx = —2ucy = 3 (y(t, q(t, )€’ ) wlalsDds) —
On the other hand 0xq(0, x) =1 and
ath(t7x) = qX(tvx)uX(t’ q(t,x))

ensure that

a(t.) = exp( [ un(s.a(5:)) o)



Proof of the rigidity result
This yields
vteR, y(t,q(t,))ax(t,-) = y(0,").
By the Y localization of u there exists Ry > 0 such that

Vt € R,V|x| > Ro, u(t, x(t) + Ro) < lio

In particular %/tzoq(t,x(O) + Ro) = u(0,x(0) + Ro) < 15 and by
continuity

vt <0, q(t,x(t) + Ro) — x(t) = Ro + %]t|
Combining this with |uy| < u and the exponential decay we get

VE<O0,Vx >0, |ux(t, q(t,x(0) + R+ x)| < Ce A(RHt)



Proof of the rigidity result
This ensures that for Vi <0, Vx > 0,
1
o S ax(t:x(0) + Ro+x) < Go
0

Assume that y(0) is not compactly supported at the right. Then
there exists R > Rj such that

x(0)+R
/ y(0,x)dx =¢09 >0
X(O)+Ro

x(0)+R 5
:>/ y(t,q(t,x))qx(,t,x) dXZgO
0)+Ro

N / y(t, gt x))ax(, £,x) dx > 22
o)+R Go

and performing the change of variables z = q(t, x)
q(t,X(O)JrR) EO
/ y(t,z)dz > — :>/ y(t,z)dz > —
q(t,x(0)+Ro) (£)+Ro+clt] /2 Co
that contradicts the Y-localization of v as t = —c&o:



Proof of the rigidity result

Therefore supp y(t) C [—o0, x(t) + Ro] for all t € R. Now it will
be useful to notice that

u(t,x(t) + ro) = —ux(t, x(t) + Ro) > e o \/ =aqg.

Indeed, by the Y-localization of u, the conservation of E(u) and
the choice of Ry

1
lut, - = (D Hrq-ro,RoD = 5 E(W) -

But y = u— ux > 0 ensures that —u < uy, < v on R. This forces

1 1
2 2
[mroa7>r;] u“(t,- — x(t)) > 2r0||u(t,- X(t))HLQ] rorol) > 810 E(u)

But since u, > —u on R?, for any (t,xp) € R? it holds

u(t,x) < u(t,xo)e ™0, V¥x < xp.



Applying this estimate with xo = x(t) + Ry we obtain that

u(t, x(t) + Ro) > : nﬁlax u(t,- — X(t))e_2R°

- OvRO]
which yields the desired result.
Now we set

x4 (t) = inf{x € R, suppy(t) C] — oo, x(t) + x|}
and

g°(8) = a(£,x(0) + x1(0)) = x(t) + x: (£)
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Proof of the rigidity result

Step 3: Study of the jump of ux(t,-) at g*(t).
We set

a(t) = ux(t,q°(t)=) — ux(t, g7 (t)+), VteR. (5)
Then a(-) is a bounded non decreasing derivable function on R

with values in [, 2./E(u)] such that

#(1) = 5( — B)(t,°(5)), Ve e R (6)

First we prove that u,(t) has got a jump at g*(t). We proceed by
contradiction assuming that there exists x; < g*(0) such that

1y (O) ]| m(1x 400y < /8.



On |x1,¢*(0)[ it holds

q*(0)
ux(0,x) < —ap _/ N
qa*(0) )

< —3aop/4
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This ensures that g« (0, x) > 1 on |x1, g*(0)][.
We can extend this for any t < 0 on |q(t, x1), g*(t)[ since

q*(t)
uy(t,x) < ao-l-/

ao+/ POt a(1)au(t %) dx

—1(¢t,x)
q* 0)
—ag + y(t, q(t))g3(t, x) dx
X1

q*(0)
< —ayg +/ y(0, x) dx
x1
—3ap/4
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This forces g*(t) — q(t,x1) — +o00 as t — —oo and
u(t,q(t,x1)) > u(t,g*(t)) > o that contradicts the almost
localization of v .
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