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Introduction

This talk is devoted to solitons and wave collapses which
can be considered as two alternative scenarios pertaining
to the evolution of nonlinear wave systems describing by
a certain class of dispersive PDEs of the Hamiltonian
type (see, for instance, review: V.E. Zakharov and E.A.
Kuznetsov, Solitons and collapses - two scenarios of the evolution

of nonlinear wave systems , Physics Uspekhi 55, 535 - 556
(2012)).

Solitons are solitary waves propagating in a nonlinear
medium with a constant velocity without changing their
form. Usually solitons are stationary points of the
Hamiltonian for fixed another integral of motion (number
of waves or quasi-particles, momentum, etc.).
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Introduction
For this case, the soliton realizing minimum (or maximum)
of the Hamiltonian is Lyapunov stable. The latter means it
is sufficient the Hamiltonian to be bounded from below (or
above). The extremum is approached via the radiation of
small-amplitude waves, a process absent in systems with
finitely many degrees of freedom.

The framework of the nonlinear Schrodinger equation, the
ZK equation and the three-wave system will be used to
show how the boundedness of the Hamiltonian H can be
understood by using simple argumentation based on the
scaling transformations.

The linear stability for solitons in the NLS with arbitrary
nonlinearity, as it was shown by Vakhitov and Kolokolov
(1973), can be effectively analyzed that leads to the
so-called VK criterion. Solitons vs Collapses – p. 4



Introduction

In this lecture it will be shown how such criterion can be
derived for the generalized ZK equation.

The stability of the soliton minimizing H can be proved
rigorously using the integral estimate method based on
the Sobolev embedding theorems - Lyapunov stability.

Wave collapse is the process of singularity formation in a
finite time for smooth initial conditions. Historically the
notation ’collapse’ in physics was first intended in general
relativity for catastrophic compression of astrophysical
objects. In seventies-eighties of the last century the word
‘collapse’ became to be applied to wave systems. First
time it was implied in 1972 by Zakharov (1972) in his
famous paper about collapse of Langmure waves in
isotropic plasma. Solitons vs Collapses – p. 5



Introduction

Later this notation became to be used widely also in
nonlinear optics not only for stationary selffocusing but
also for the nonstationary self-compression of light
pulses. See reviews: Zakharov (1984), Rasmussen &
Rypdal (1986), Kuznetsov (1996), Berge (1998) and the
book: C.Sulem and P.L. Sulem, The Nonlinear Schrodinger

Equation (Springer-Verlag, New York, 1999), G. Fibich, The

Nonlinear Schrodinger Equation (Springer, 2015).

What kind of singularities appear as the result of the
collapse development depends on a physical model. For
instance, in gas-dynamics collapse is connected with
wave breaking resulting in the formation of shocks. For
water waves collapse leads to the formation of wedges of
fluid surface. For self-focusing of light the intensity of
electromagnetic waves becomes extremely large.
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Introduction

For many wave systems collapse is associated with the
Hamiltonian unboundedness from below. In this case the
wave system evolution to collapse can be considered as
the fall of a particle in an unbounded potential. The
radiation of small-amplitude waves promotes collapse in
this case.

As known, exact sufficient criterion for collapse is based
on the virial theorem (which was applied first time to the
critical NLS equation by Vlasov, Petrishchev & Talanov,
1971) and its generalizations. Such generalizations, for
example, concern criteria for the sub-critical NLS
(Zakharov, 1972; Turitsyn, 1993; K., Turitsyn, Rypdal,
Rasmussen, 1995) and KP equations (Turitsyn,
Falkovich, 1985) which will be considered in this lecture.
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Solitons in NLS, 3-wave system and KZ equation

Let us start from the NLS

iψt +
1

2
∆ψ + |ψ|2ψ = 0.

In the nonlinear optics ψ has the meaning of the wave
envelope of the electric field with definite polarization. The
second term describes both diffraction and the group velocity
dispersion (anomalous dispersion). The nonlinear term
corresponds to account of the Kerr effect.
The NLS belongs to the Hamiltonian type:

iψt =
δH

δψ∗
.
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Solitons in NLS, 3-wave system and KZ equation

Here the Hamiltonian

H =
1

2

(∫
|∇ψ|2dr−

∫
|ψ|4dr

)
≡

1

2
(I1 − I2).

Besides H, this equation has two another simple integrals:
number of waves N =

∫
|ψ|2dr and momentum.

The standing soliton describes by the solution of the NLS
ψs = ψ0(r)eiλ

2/2t., where −λ2/2 has a meaning of the energy
of soliton as a bound state. The moving soliton hence can be
easily constructed by applying the Gallilean transform.
Solitons are stationary point of H for the fixed N :

δ(H +
λ2

2
N) = 0.
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Solitons in NLS

This is equivalent to the stationary NLSE:

−λ2ψ +∆ψ + 2|ψ|2ψ = 0.

Hence one can get the dependence of N on the soliton
solutions

Ns = λ2−DN0, N0 =

∫
|f(ξ)|2dξ,

where f obeys the equation: −f +∆f + 2|f |2f = 0. This is
the key dependence for the linear stability criterion - the
Vakhitov-Kolokolov (VK) criterion (1973). If

∂Ns/∂λ
2 < 0,

then such solitons are unstable. In the opposite case solitons
will be stable.
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Solitons in NLS

To understand stability problem for solitons perform scaling
transformation remaining the number of waves, N = const:

ψs(r) → a−D/2ψs

(
r

a

)
.

Under this transform H becomes the function of the scaling
parametera:

H(a) =
I1s
2a2

−
I2s
2aD

.
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Solitons in NLS

Hence one can see that for D = 1 the function has a
minimum at a = 1 corresponding to one-dimensional soliton
that hints its stability.
A rigorous proof of the stability can be obtained on the base
of Sobolev inequality, which follows from the general Sobolev
embedding theorem. The theorem states that the space Lp

can be embedded in the Sobolev space W 1
2 if

D <
2

p
(p+ 4).

This implies that between the norms

‖u‖p =

[∫
|u|pdDx

]1/p
, (p > 0), ‖u‖W 1

2
=

[∫
(µ2|u|2 + |∇u|2)dDx

]1/2
, (µ2
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Solitons in NLS

there is the inequality:

‖u‖p ≤M‖u‖W 1

2
,

where constant M > 0. For D = 1 and p = 4, this inequality
reads as

∫
∞

−∞

|ψ|4dx ≤M1

[∫
∞

−∞

(µ2|ψ|2 + |ψx|
2)dx

]2
.

Hence one can easily derive the so-called multiplicative
Gagliardo-Nirenberg inequality if one performs the scaling
transformation and then seek for the corresponding minimum:

I2≤CN
3/2I

1/2
1

where C is a new constant.
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Solitons in NLS

This inequality can be improved by finding the minimal value
of the constant C. To find it, we need to consider all extrema
of

J{ψ} =
I2

N3/2I
1/2
1

,

which are defined from δJ = 0. This variational problem
reduces to finding solution of the stationary NLS

−λ2ψ + ψxx + 2|ψ|2ψ = 0.

Hence the best constant Cbest is a value of J{ψ} on 1D
soliton:

Cbest =
I2s

N
3/2
s I

1/2
1s

=
2I

1/2
1s

N
3/2
s

.
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Solitons in NLS

For H it gives the estimate

H ≥
1

2
[I1 − CbestI

1/2
1 N3/2] = Hs +

1

2
(I

1/2
1 − I

1/2
1s )2.

This inequality becomes precise at the soliton solution, which
proves that the NLS soliton is Lyapunov stable not only
relative to small but also against finite perturbations.
Similarly, one can prove the stability of the ‘ground-state’
soliton (a radially symmetric solution without nodes) for a
multidimensional NLS equation with a power nonlinearity
which Hamiltonian has the form

H =
1

2

∫
(|∇ψ|2 − |ψ|2σ)dDx ≡ I1 − Iσ.
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Solitons in NLS

The ground-state soliton solution ψs = eiλ
2t/2λ1/(σ−2)g(λr) with

g(ξ) satisfying Eq.

−g +∇2
ξg + σ|g|2σ−2g = 0,

represents stationary point of H for fixed N ,

δ(H + λ2N/2) = 0.

Then scaling transformation, ψs(r) → a−D/2ψs(r/a), shows
existence of minimum for

H(a) =
1

2

[
I1
a2

−
Iσ

a(σ−1)D

]

if

(σ − 1)D < 2.
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Solitons in NLS

To get the stability proof of this soliton one needs to use the
corresponding multiplicative Nirenberg-Gagliardo inequality.
At the next step it is necessary to find the best constant that
finally gives a proof of Lyapunov stability for ground soliton.
NOTE 1: The obtained stability criterion can be considered as
the energy principle.
NOTE 2: Stability proof for solitons based on boundedness of
Hamiltonian turns out to be more ”simple” than a linear
stability analysis.
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Solitons for anisotropic KDV (ZK equation)

Consider the next example, i.e. the anisotropic KdV equation
(ZK equation) derived by Zakharov & K. in 1974:

ut +
∂

∂x
∆u+ 6uux = 0.

This equation describes three-dimensional ion-acoustic
solitons u = us(x− V t, r⊥)? propagating along the magnetic
field (parallel to the x-axis) in a strongly magnetized plasma,
where the plasma thermal pressure nT is small compared to
the magnetic field pressure B2/(8π. These solitons are
stationary points of the Hamiltonian

H =
1

2

∫
(∇u)2dr−

∫
u3dr

with fixed momentum P = 1
2

∫
u2dr: δ(H − V P ) = 0.
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Solitons for anisotropic KDV (ZK equation)

ZK equation belongs to the Hamiltonian type:

ut =
∂

∂x

δH

δu

with symplectic operator ∂/∂x, antisymmetric relative
x→ −x.
After this introduction one can easily see that 3D solitons will
be Lyapunov stable. The corresponding exponent p and
dimension D = 3 satisfy the inequality (for NLS) leading to
stability of the 3D soliton.

Solitons vs Collapses – p. 19



Solitons for anisotropic KDV (ZK equation)

For small perturbations ũ(x− V t, r⊥, t) on the background of
3D soliton us(x− V t, r⊥) linear stability problem reduces to
the VK type criterion: if

∂P

∂V
> 0

then soliton will be stable and, respectively, unstable in the
opposite case. This criterion first time was obtained for the
KDV type equation for arbitrary (non-power) nonlinearity (K,
1984). It can be easily generalized this result to
multi-dimensional case as well.
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Solitons for the 3-wave system

The 3-wave system has the form

i
∂ψ1

∂t
− ω1ψ1+i(v1∇)ψ1 +

1

2
ωαβ
1 ∂2αβψ1 = V ψ2ψ3,

i
∂ψ2

∂t
− ω2ψ2+i(v2∇)ψ2+

1

2
ωαβ
2 ∂2αβψ2 = V ψ1ψ

∗

3,

i
∂ψ3

∂t
− ω3ψ3 + i(v3∇)ψ3+

1

2
ωαβ
3 ∂2αβψ3 = V ψ1ψ

∗

2.

where the amplitudes of three wave packets ψl(x, t) (
l = 1, 2, 3)? are slowly varying functions of x where kl is the
carrier wave vector of the l-th packet, vl = ∂ωl(kl)/∂kl are the

group velocities of packets, ωαβ
l = ∂2ωl(kl)

∂klα∂klβ
is the dispersion

tensor, and V is the three-wave matrix element (real).
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Solitons for the 3-wave system

This is the Hamiltonian system:

i
∂ψl

∂t
=
δH

δψ∗
l

.

where

H = H0 +H1,

H0 =
3∑

l=1

[∫
ωl|ψl|

2dr−i

∫
ψ∗

l (vl∇)ψldr+
1

2

∫
∇αψ

∗

l ω
αβ
l ∇βψldr

]
,

H1 = V

∫
(ψ1ψ

∗

2ψ
∗

3 + ψ∗

1ψ2ψ3)dr.
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Solitons for the 3-wave system

In the 1D case this system can be reduced as follows

i
∂ψ1

∂t
− Ωψ1+

1

2
ω

′′

1ψ1xx = −ψ2ψ3,

i
∂ψ2

∂t
+
1

2
ω

′′

2ψ2xx = −ψ1ψ
∗

3,

i
∂ψ3

∂t
+
1

2
ω

′′

3ψ3xx = −ψ1ψ
∗

2.

Here Ω = ω1 − ω2 − ω3 is the frequency mismatch which is
assumed to be small in comparison with carrying frequencies.
These equations have two additional integrals of motion, the
so-called Manley-Rowe integrals,

N1 =

∫
(|ψ1|

2 + |ψ2|
2)dx, N2 =

∫
(|ψ1|

2 + |ψ3|
2)dx.
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Solitons for the 3-wave system

Soliton solution in 3-wave system

ψ1(x, t) = ψ1s(x)e
i(λ1+λ2)t,

ψ2(x, t) = ψ2s(x)e
iλ1t,

ψ3(x, t) = ψ3s(x)e
iλ2t.

represents stationary point of H for fixed Manley-Rowe
integrals, δ(H + λ1N1 + λ2N2) = 0. To prove their stability one
needs to consider two spaces, L3,3 and W 1

2 , with the norms

||u||L3,3
=

[∫
(|ψ1|

3 + |ψ2|
3 + |ψ3|

3)dDx

]1/3
,

||u||W 1

2
=

[
λ̃1

∫
(|ψ1|

2 + |ψ2|
2)dDx+ λ̃2

∫
(|ψ1|

2 + |ψ3|
2)dDx

∑∫ ]1/2Solitons vs Collapses – p. 24



Solitons for the 3-wave system

Here constants λ̃1,2 > 0 and tensors ωαβ
l are assumed to be

positive definite. Then the Sobolev inequality reads as

||u||L3,3
< M ||u||W 1

2
.

Hence one can obtained the Gagliardo-Nirenberg type
inequality. In 1D case it is written as

J ≤ C(N1N2)
5/8I1/4.

where

J =

∫
(ψ∗

1ψ2ψ3 + c.c.)dx, I =
1

2

∑

l

∫
ω′′

l |ψxl|
2dx.
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Solitons for the 3-wave system

After finding the best constant Cbest it is possible to
demonstrate that at Ω = 0

H ≥ I − 2I3/4s I1/4 ≥ Hs(Ω = 0).

This inequality becomes precise on the soliton solution that
proves its stability. At Ω > 0 we have evident inequality
H ≥ Hs(Ω = 0), hence boundedness of H from below follows.
At Ω < 0 we have estimate H ≥ Hs(Ω = 0)− |Ω|min(N1, N2).

We have thus proved the stability of ground-state solitons
(those without nodes) describing a coupled state of three
wave packets. Notably, in the absence of detuning, the soliton
realizes a minimum of the Hamiltonian, which is rigorously
proved with the help of majorizing Sobolev inequalities.
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Collapse in NLS

At D = 2 scaling transforms give H(a) ≡ 0. This straight line
(on H − a – plane) shows that solitons can be treated as
separatrices between collapsing and noncollapsing solutions.
In the three-dimensional geometry the function H(a) attains
its maximum on the three-dimensional soliton that indicates to
its instability. Notice also that the Hamiltonian becomes
unbounded as a→ 0. It is necessary to underline that
unboundedness of H represents one of the main criteria for
wave collapses. In such a case collapse can be considered
as the nonlinear stage of soliton instability.
To clarify the latter we apply the variational approach taking a
trial function for the NLSE in the form

ψ(r, t) = a−3/2ψs

(
r

a

)
exp(iλ2t+ iµr2).
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Collapse in NLS

Here a = a(t) and µ = µ(t). After substitution of this anzats
into the action

S =
i

2

∫
(ψtψ

∗ − c.c.)dtdr−

∫
Hdt

and integration over spatial variables we arrive at the Newton
equation for a,

Cä = −
∂H

∂a
,

where C =
∫
ξ2|ψ0(ξ)|

2 and the function H(a) has a meaning
of the potential energy. Behavior of a(t) depends on the total
energy,

E = C
ȧ2

2
+H(a)

and the dimension D.
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Collapse in NLS

At D = 1 soliton realizes the minimal value of the potential
energy H(a) and it is a reason why 1D soliton is stable. At
D = 3 if a ’particle’ stands at the maximal point of H(a)

initially then depending on the its motion direction (toward or
upwards the center a = 0) the system will collapse (ψ → ∞)
or expand (ψ → 0). For collapse (falling at the center) a(t)
behaves near singularity like a(t) ∼ (t0 − t)2/5. As shown by
Zakharov & K.1986, this behavior for a(t) near singular time
coincides with that following from the exact semi-classical
collapsing solution which asymptotically (as t→ t0) tends to

|ψ| → λ
√
1− ξ2 for ξ = r/a(t) ≤ 1

with λ ∼ (t0 − t)−3/5.
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Collapse in NLS

However the picture is more complicated than considered
above. From the very beginning we have a
spatially-distributed system with an infinite number of degrees
of freedom and therefore, rigorously speaking, it is hardly
feasible to describe such a system by its reduction to a
system of ODEs. The NLSE is the wave system and
therefore, first of all, here we deal with waves. Waves may
propagate, may radiate and so on.
Let us try to understand the influence of wave radiation on the
wave collapse. Consider an arbitrary region Ω with HΩ < 0.
Then using the mean value theorem for the integral I2,

∫

Ω

|ψ|4dr ≤ max
x∈Ω

|ψ|2
∫

Ω

|ψ|2dr,

we have Solitons vs Collapses – p. 30



Collapse in NLS

max
x∈Ω

|ψ|2 ≥
|HΩ|

NΩ

.

This estimate shows that radiation of waves promotes
collapse: far from the region Ω radiative waves can be
considered almost linear. These waves carry out the positive
portion of Hamiltonian making HΩ more negative with
simultaneous vanishing of the number of waves NΩ that
results in growth of the r.h.s. of the inequality (Zakharov
1972). It is why we can say that wave radiation promotes
collapse which play the role of friction in the nonlinear wave
dynamics. Simultaneously radiation turns out to accelerate
compression of the collapsing area with the self-similarity,
r ∼ (t0 − t)1/2, different from the semiclassical answer.
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Collapse in NLS: virial theorem

The exact criterion for singularity formation within the NLSE
can be obtained from the virial theorem. In classical
mechanics the virial theorem can be easily got if one first
calculates the second time derivative from the moment of
inertia and then averages the obtained result. It gives the
relation between mean kinetic and potential energies of
particles if the interaction between particles is of power type.
In 1971 Vlasov, Petrishchev and Talanov found that this
theorem can be applied also to the 2D NLS:

d2

dt2

∫
r2|ψ|2dr = 8H.

This equality is verified by the direct calculation. This Eq. can
be integrated twice
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Collapse in NLS: virial theorem

that results in
∫
r2|ψ|2dr = 4Ht2 + C1t+ C2,

Hence the mean square size 〈r2〉 of any field distribution with
H < 0, independently on C1,2 vanishes in a finite time, which,
with allowance for the conservation of N , means the
formation of a singularity of ψ. This (VPT) criterion, nowadays
it is a cornerstone in the theory of wave collapses. This was
the first rigorous result for nonlinear wave systems with
dispersion, which showed the possibility of the formation of a
wave-field singularity in a finite time, despite the presence of
the linear dispersion of waves, the effect impeding the
formation of point singularities (focii) in the linear optics.
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Strong collapse in NLS

Notice that at D = 2 H = 0 corresponds to the soliton for
which number of waves N = Ns. Moreover, if N < Ns then
H ≥ 1/2I1s(1−N/Ns) > 0 and collapse is impossible
(Weinstein 1983). All waves are spread due to dispersion
(diffraction) vanishing as t→ ∞. Thus, we can say that
solitons in this case represent separatrices between
collapsing and noncollapsing submanifolds.
From the virial theorem for H < 0 one can see that the
characteristic size a of the collapsing area behaves like
a ∼ (t0 − t)1/2 in the correspondence with the self-similar law.
However, the exact analysis (Fraiman 1985) shows that

a2(t) ∼
(t0 − t)

log | log(t0 − t)|
,
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Collapse in NLS: virial theorem at D=3

(Recently it was shown by Lushnikov that the collapsing
asymptotics has a fine structure.) The power (up to some
multiplier, coinciding with N ) captured into the singularity
occurs finite, equal to the power of 2D soliton. It is why such
collapse is called as a strong collapse (Zakharov, 1982) and,
respectively, the 2D NLS as a critical model.
However, the criterion H < 0 is not sharp at D = 3. As it was
shown by Turitsyn 1993, K., Rasmussen, Rypdal, Turitsyn
1995, this criterion can be improved. The sharper criterion of
collapse is given by the conditions: H < Hs and I1 < I1s,
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Collapse in NLS: virial theorem at D=3

The corresponding virial inequality is of the form,

d2

dt2

∫
r2|ψ|2dr = 8(H −Hs),

and, respectively,

N〈r2〉 < 4(H −Hs)t
2 + C1t+ C2.

Here Hs is the value of H on the ground soliton solution
(without nodes). This result was obtained by means of the
GN inequality.
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Conclusion

The influence of nonlinearity grows with increase spatial
dimension D. As a sequence, stable solitons are intrinsic
for low dimensional systems while for higher dimensions
instead of solitons we have to expect blow-up events.

One of the main criteria of collapse is unboundedness of
the Hamiltonian. In this case, the collapse can be
interpreted as the fall off a particle to an attracting center
in a self-consistent unbounded potential (Zakharov,
Kuznetsov, 1986).

There are at least two variants of the wave collapse:
strong and weak. In both cases radiation of waves
promotes collapse. Radiation plays a role of dissipation
providing formation of the most rapid collapse, i.e. weak
collapse. Solitons vs Collapses – p. 37



Open problems

There are a few models for which the Hamiltonian is
unbounded, numerical simulations demonstrated sharp
increasing of the wave intensity of the blow-up, but there are
unknown mathematical rigorous criteria for collapse.

3D KP equation:

∂

∂x
(ut + uxxx + 6uux) = ∆⊥u.

This is physically the most important model which
describes weakly nonlinear acoustic waves in media with
positive dispersion in the real 3D space, for instant in
plasma.
Turitsyn and Falkovich (1985) found the criterion for the
KP equation with cubic nonlinearity. The criterion is the
same: H < 0 (follows from the virial inequality).
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Open problems

Recently this approach was applied by Litvak, and co. to
describe the collapse for the SPE but in 3D with the
so-called plasma dispersion. The criterion in this case the
same as for the Turitsyn-Falkovich case because for
optics the main nonlinearity comes from the Kerr effect.

2D Shrira model.

ut + 6uux =
∂

∂x
k̂u

where the Fourier transform of k̂ is
√
k2x + k2y. This

equation describes the nonlinear behavior of the
boundary layer. It represents the critical collapsing model
(K. & Dyachenko, 1995).

Collapse in 3D EULER!
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T H A N K S
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