"Flash" Dispersion on Trees

Liviu Ignat

Institute of Mathematics of the Romanian Academy

June 2017, CIRM, Marseille

Figure: Star shaped trees

Figure: A regular/general tree

Schrödinger equation on each segment (finite or infinite) + coupling Type of couplings:

- Kirchhoff: continuity & $\sum u_x^k = 0$, Banica & L.I. 2010
- 3 δ -coupling, continuity & $\sum u_x^k = \delta u$, Banica & L.I. 2014
- (a) δ' -coupling, cotinuity of $u_x \& \sum u^k = \delta u_x$, Adami 2011 for star shaped trees

Kostrykin & Schrader 2000

 $\bullet \ \Delta(A,B)$ self-adjoint operator

$$AU + BU' = 0$$

satisfying

- $\bullet~A,B$ are $n\times n$ real matrices
- $\operatorname{rank}(A|B) = n$
- $\bullet \ AB^t = BA^t$

New results on the star shaped case. Joint work with Andreea Grecu

To prove the dispersion property it is sufficient to evaluate

$$\int_0^\infty e^{itk^2} e^{ikx} G(k,A,B) dk$$

where

$$G(k, A, B) = (A + ikB)^{-1}(A - ikB)$$

Two important properties:

- det(A + ikB) = 0 has no real root $k \neq 0$
- G(k, A, B) is unitary for any $k \neq 0$: $G\overline{G}^t = I_n$

Van der Corput
|G_{ij}(k)| ≤ 1 for all k ∈ ℝ \ {0}
G_{ij}(k) = P_{ij}(k)/Q_{ij}(k) with deg P_{ij} ≤ deg Q_{ij}
P_{ij}(k) = k^{α_{ij}} P̃_{ij}(k), Q_{ij}(k) = k^{β_{ij}} Q̃_{ij}(k) with α_{ij} ≥ β_{ij}

No idea how to continue in the general case using this approach

Van der Corput
|G_{ij}(k)| ≤ 1 for all k ∈ ℝ \ {0}
G_{ij}(k) = P_{ij}(k) / Q_{ij}(k) with deg P_{ij} ≤ deg Q_{ij}
P_{ij}(k) = k^{α_{ij}} P̃_{ij}(k), Q_{ij}(k) = k^{β_{ij}} Q̃_{ij}(k) with α_{ij} ≥ β_{ij}

No idea how to continue in the general case using this approach

THANKS for your attention !!!