Scattering for Nonlinear Klein-Gordon equations posed on product spaces.

Lysianne Hari LMB, Université Bourgogne Franche Comté

joint work with N. Visciglia (Unipi Pisa)

French-American Conference on Nonlinear Dispersive PDEs, CIRM, June 2017

- 1. Introduction
- 2. What happens for (NLS) posed on \mathbf{R}^d and \mathcal{M}^k ?
- 3. What happens in "mixed" settings ?
- 4. Same questions for the Klein-Gordon equation.

In this talk, total dimension = 3.

The equations

(NLS): $i\partial_t u + \Delta_X u = \pm |u|^{\alpha} u$; $u(0,.) = u_0 \in H^1(X)$,

(NLKG):
$$\begin{cases} \partial_{tt}u - \Delta_X u + u = \pm |u|^{\alpha}u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

Question 1: According to the choices of X and α , do we have **global** solutions ?

Question 2: For the global solutions, what is the behaviour when $|t| \rightarrow +\infty$?

Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The equations

(NLS): $i\partial_t u + \Delta_X u = \pm |u|^{\alpha} u$; $u(0,.) = u_0 \in H^1(X)$,

(NLKG):
$$\begin{cases} \partial_{tt}u - \Delta_X u + u = \pm |u|^{\alpha}u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

Question 1: According to the choices of X and α , do we have **global** solutions ?

Question 2: For the global solutions, what is the behaviour when $|t| \rightarrow +\infty$?

Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The equations

(NLS): $i\partial_t u + \Delta_X u = \pm |u|^{\alpha} u$; $u(0,.) = u_0 \in H^1(X)$,

(NLKG):
$$\begin{cases} \partial_{tt}u - \Delta_X u + u = \pm |u|^{\alpha}u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

Question 1: According to the choices of X and α , do we have **global** solutions ?

Question 2: For the global solutions, what is the behaviour when $|t| \rightarrow +\infty$?

Aim: compare solutions to (NLS) or (NLKG) with "linear" solutions.

The Schrödinger equation on \mathbf{R}^3

 $\frac{4}{3} \leq \alpha \leq 4$

$$i\partial_t u + \Delta_{\mathbf{R}^d} u = \pm \kappa |u|^{\alpha} u \quad ; \quad u(0,.) = u_0 \in H^1(\mathbf{R}^3),$$

Study of the equation thanks to **Strichartz estimates:** Consider *admissible* pairs: $0 \le 2/q_j = 3/r_j - 3/2 < 1$. Then

- 1. $\|e^{it\Delta}f\|_{L^q_t L^r_x} \leq C(r)\|f\|_{L^2_x}$
- 2. $\|e^{it\Delta} *_t f\|_{L^{q_1}_t L^{r_1}_x} \leq C(r_1, r_2) \|f\|_{L^{q'_2}_t L^{r'_2}_x}$.

"Symptoms of dispersive nature of the equation".

Used to prove local existence with **fixed point argument** Also used to prove "scattering".

The Schrödinger equation on \mathbf{R}^3

 $\frac{4}{3} \leq \alpha \leq 4$

$$i\partial_t u + \Delta_{\mathbf{R}^d} u = \pm \kappa |u|^{\alpha} u \quad ; \quad u(0,.) = u_0 \in H^1(\mathbf{R}^3),$$

Study of the equation thanks to **Strichartz estimates:** Consider *admissible* pairs: $0 \le 2/q_j = 3/r_j - 3/2 < 1$. Then

1.
$$\|e^{it\Delta}f\|_{L^q_t L^r_x} \leq C(r)\|f\|_{L^2_x}$$

2.
$$\|e^{it\Delta} *_t f\|_{L^{q_1}_t L^{r_1}_x} \leq C(r_1, r_2) \|f\|_{L^{q'_2}_t L^{r'_2}_x}.$$

"Symptoms of dispersive nature of the equation".

Used to prove local existence with fixed point argument.

Also used to prove "scattering".

The Schrödinger equation on \mathbf{R}^3

 $\frac{4}{3} \leq \alpha \leq 4$

$$i\partial_t u + \Delta_{\mathbf{R}^d} u = \pm \kappa |u|^{\alpha} u \quad ; \quad u(0,.) = u_0 \in H^1(\mathbf{R}^3),$$

Study of the equation thanks to **Strichartz estimates:** Consider *admissible* pairs: $0 \le 2/q_j = 3/r_j - 3/2 < 1$. Then

1.
$$\|e^{it\Delta}f\|_{L^q_t L^r_x} \leq C(r)\|f\|_{L^2_x}$$

2.
$$\|e^{it\Delta} *_t f\|_{L^{q_1}_t L^{r_1}_x} \leq C(r_1, r_2) \|f\|_{L^{q'_2}_t L^{r'_2}_x}$$
.

"Symptoms of dispersive nature of the equation".

Used to prove local existence with fixed point argument.

Also used to prove "scattering".

$$(**)\lim_{|t|\to\pm\infty}\|u(t)-e^{it\Delta}u_{\pm}\|_{H^1}.$$

Every u_0 in H^1 gives a unique global solution u to (NLS), with $u, \nabla u \in C(\mathbf{R}, L^2) \cap L^q(\mathbf{R}, L^r)$, for some (q, r).

Moreover

Asymptotic completeness: For all $u_0 \in H^1$, one can produce a $u_{\pm} \in H^1$ s.t. (**) is satisfied.

Existence of the wave operator: For all $u_{\pm} \in H^1$, one can associate a solution u(t) to (NLS), satisfying (**).

$$(**)$$
 $\lim_{|t|\to\pm\infty} \|u(t)-e^{it\Delta}u_{\pm}\|_{H^1}.$

Every u_0 in H^1 gives a unique global solution u to (NLS), with $u, \nabla u \in C(\mathbf{R}, L^2) \cap L^q(\mathbf{R}, L^r)$, for some (q, r).

Moreover

Asymptotic completeness: For all $u_0 \in H^1$, one can produce a $u_{\pm} \in H^1$ s.t. (**) is satisfied.

Existence of the wave operator: For all $u_{\pm} \in H^1$, one can associate a solution u(t) to (NLS), satisfying (**).

$$(**)$$
 $\lim_{|t|\to\pm\infty} \|u(t)-e^{it\Delta}u_{\pm}\|_{H^1}$

is equivalent to

$$(**)\lim_{|t|\to\pm\infty}\|e^{-it\Delta}u(t)-u_{\pm}\|_{H^1},$$

and $e^{-it\Delta}u(t)$ has to converge in H^1 .

 $\mathsf{Duhamel}
ightarrow$

$$u(t) = e^{it\Delta}u_0 - i\kappa \int_0^t e^{i(t-s)\Delta} |u|^{\alpha}u(s) ds$$
$$e^{-it\Delta}u(t) = u_0 - i\kappa \int_0^t e^{-is\Delta} |u|^{\alpha}u(s) ds.$$

 H^1 -scattering if and only if $\kappa \int_0^\infty e^{-is\Delta} |u|^\alpha u(s) ds$ converges in H^1 .

One needs a bound of $|u|^{\alpha}u$ in some functional space; global-in-time Strichartz estimates are crucial !

$$(**)$$
 $\lim_{|t|\to\pm\infty} \|u(t)-e^{it\Delta}u_{\pm}\|_{H^1}$

is equivalent to

$$(**)\lim_{|t|\to\pm\infty}\|e^{-it\Delta}u(t)-u_{\pm}\|_{H^1},$$

and $e^{-it\Delta}u(t)$ has to converge in H^1 .

 $\mathsf{Duhamel} \to$

$$\begin{split} u(t) &= e^{it\Delta}u_0 - i\kappa \int_0^t e^{i(t-s)\Delta} |u|^{\alpha} u(s) \ ds \\ e^{-it\Delta}u(t) &= u_0 - i\kappa \int_0^t e^{-is\Delta} |u|^{\alpha} u(s) \ ds. \\ H^1 &- \text{scattering if and only if } \kappa \int_0^\infty e^{-is\Delta} |u|^{\alpha} u(s) \ ds \text{ converges in } H^1. \end{split}$$

One needs a bound of $|u|^{\alpha}u$ in some functional space; global-in-time Strichartz estimates are crucial !

$$(**)$$
 $\lim_{|t|\to\pm\infty} \|u(t)-e^{it\Delta}u_{\pm}\|_{H^1}$

is equivalent to

$$(**)\lim_{|t|\to\pm\infty}\|e^{-it\Delta}u(t)-u_{\pm}\|_{H^1},$$

and $e^{-it\Delta}u(t)$ has to converge in H^1 .

 $\mathsf{Duhamel} \to$

$$\begin{split} u(t) &= e^{it\Delta}u_0 - i\kappa \int_0^t e^{i(t-s)\Delta} |u|^{\alpha} u(s) \ ds \\ &e^{-it\Delta}u(t) = u_0 - i\kappa \int_0^t e^{-is\Delta} |u|^{\alpha} u(s) \ ds. \\ &H^1 \text{-scattering if and only if } \kappa \int_0^\infty e^{-is\Delta} |u|^{\alpha} u(s) \ ds \text{ converges in } H^1. \end{split}$$

One needs a bound of $|u|^{\alpha}u$ in some functional space; global-in-time Strichartz estimates are crucial !

On (\mathcal{M}^k, g)

See works done by J. Bourgain, N. Burq-P.Gérard-N.Tzvetkov... Ex.: \mathcal{M}^k is the flat torus, the sphere...

$$i\partial_t u + \Delta_{\mathcal{M}^k} u = \kappa |u|^{\alpha} u \quad ; \quad u(0, \cdot) = u_0 \in H^1(\mathcal{M}^k);$$

Basis of $L^2(\mathcal{M}^k)$ given by $(\Phi_j(y))_{j \in \mathbb{N}}, -\Delta_{\mathcal{M}^k} \Phi_j = \lambda_j \Phi_j$.

Existence of linear periodic solutions s.t.: forall K compact subset, $\|1_{K}u_{lin}(t)\|_{L^{2}} = C$, whereas ; $\lim_{|t|\to\infty} \|1_{K}u_{lin}(t)\|_{L^{2}} = 0$ on \mathbb{R}^{3} .

One cannot expect scattering.

On (\mathcal{M}^k, g)

See works done by J. Bourgain, N. Burq-P.Gérard-N.Tzvetkov... Ex.: \mathcal{M}^k is the flat torus, the sphere...

$$i\partial_t u + \Delta_{\mathcal{M}^k} u = \kappa |u|^{\alpha} u \quad ; \quad u(0, \cdot) = u_0 \in H^1(\mathcal{M}^k);$$

Basis of $L^2(\mathcal{M}^k)$ given by $(\Phi_j(y))_{j\in\mathbb{N}}, -\Delta_{\mathcal{M}^k}\Phi_j = \lambda_j\Phi_j$.

Existence of linear periodic solutions s.t.: forall K compact subset, $\|1_{K}u_{lin}(t)\|_{L^{2}} = C$, whereas ; $\lim_{|t|\to\infty} \|1_{K}u_{lin}(t)\|_{L^{2}} = 0$ on \mathbb{R}^{3} .

One cannot expect scattering.

On a product space

What we expect for d + k = 3,

 $i\partial_t u + \Delta_{\mathbf{R}^d \times \mathcal{M}^k} u = \kappa |u|^{\alpha} u \quad ; \quad u(0,.) = u_0 \in H^1(\mathbf{R}^d \times \mathcal{M}^k);$

Natural restrictions on α :

Can we prove Strichartz estimates estimates for $i\partial_t u + \Delta_{\mathbf{R}^d \times \mathcal{M}^k} u = F$; $u(0, \cdot) = u_0(\cdot)$?

On a product space

What we expect for d + k = 3,

 $i\partial_t u + \Delta_{\mathbf{R}^d \times \mathcal{M}^k} u = \kappa |u|^{\alpha} u \quad ; \quad u(0,.) = u_0 \in H^1(\mathbf{R}^d \times \mathcal{M}^k);$

Natural restrictions on α :

Can we prove Strichartz estimates estimates for $i\partial_t u + \Delta_{\mathbf{R}^d \times \mathcal{M}^k} u = F \quad ; \quad u(0, \cdot) = u_0(\cdot) ?$

Key argument: Use of the $L^2(\mathcal{M}^k)$ basis, with $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$. Then: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y)$.

each u_k is solution to (NLS) posed on \mathbf{R}^d :

$$i\partial_t u_k + \Delta_{\mathbf{R}^d} u_k - \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot)$$

Consequence: Strichartz for each u_k since $e^{it(\Delta - \lambda_k)} = e^{-it\lambda_k}e^{it\Delta}$:

$$\|u_k\|_{L_t^{q_1}L_x^{r_1}} \leq C \left[\|u_{k,0}\|_{L^2} + \|F_k\|_{L_t^{q'_2}L_x^{r'_2}} \right].$$

Summing in $k (\ell_k^2 - \text{norm})$, one has:

$$\|u\|_{L_t^{q_1}L_x^{r_1}L_y^2} \leq C\left[\|u_0\|_{L_{x,y}^2} + \|F\|_{L_t^{q'_2}L_x^{r'_2}L_y^2}\right].$$

Key argument: Use of the $L^2(\mathcal{M}^k)$ basis, with $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$. Then: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y)$.

each u_k is solution to (NLS) posed on \mathbf{R}^d :

$$i\partial_t u_k + \Delta_{\mathbf{R}^d} u_k - \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot)$$

Consequence: Strichartz for each u_k since $e^{it(\Delta - \lambda_k)} = e^{-it\lambda_k}e^{it\Delta}$:

$$\|u_k\|_{L_t^{q_1}L_x^{r_1}} \leq C\left[\|u_{k,0}\|_{L^2} + \|F_k\|_{L_t^{q'_2}L_x^{r'_2}}\right].$$

Summing in $k (\ell_k^2 - \text{norm})$, one has:

$$\|u\|_{L_t^{q_1}L_x^{r_1}L_y^2} \le C\left[\|u_0\|_{L_{x,y}^2} + \|F\|_{L_t^{q'_2}L_x^{r'_2}L_y^2}\right].$$

Key argument: Use of the $L^2(\mathcal{M}^k)$ basis, with $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$. Then: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y)$.

each u_k is solution to (NLS) posed on \mathbf{R}^d :

$$i\partial_t u_k + \Delta_{\mathbf{R}^d} u_k - \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot)$$

Consequence: Strichartz for each u_k since $e^{it(\Delta - \lambda_k)} = e^{-it\lambda_k}e^{it\Delta}$:

$$\|u_k\|_{L_t^{q_1}L_x^{r_1}} \leq C\left[\|u_{k,0}\|_{L^2} + \|F_k\|_{L_t^{q'_2}L_x^{r'_2}}\right].$$

Summing in $k (\ell_k^2 - \text{norm})$, one has:

$$\|u\|_{L_t^{q_1}L_x^{r_1}L_y^2} \le C\left[\|u_0\|_{L_{x,y}^2} + \|F\|_{L_t^{q'_2}L_x^{r'_2}L_y^2}\right].$$

Theorem

Consider one of the following situations

(1)
$$\mathbb{R}^2 \times \mathcal{M}^1$$
 and $\alpha \in [2,4], X_{data} = H^1, X_{GWP} = L_t^q L_x^r H_y^{\frac{1}{2}+}$
(2) $\mathbb{R} \times \mathbb{T}^2$ and $\alpha = 4, X_{data} = H^1, X_{GWP} =$ "modified atomic space"
(3) $\mathbb{R} \times \mathcal{M}^2$ and $\alpha = 4, X_{data} = L_x^2 H_y^{1+}, X_{GWP} = L_t^q L_x^q H_y^{1+}$

Then, there exists $\delta > 0$ s.t. every data u_0 satisfying $||u_0||_{X_{data}} < \delta$ produces a unique global solution in $u \in C^0(\mathbf{R}, H^1) \cap X_{GWP}$ that scatters to a linear solution in H^1 .

(Tzvetkov-Visciglia '11, Hani-Pausader '14, Tarulli '16).

Remarques:

• More general results : large data scattering available on $\mathbf{R}^d imes \mathcal{M}^1$ for $4/d \le lpha < 4/(d-1)$.

 \bullet Several works on product spaces that will not be described here (GWP, modified scattering...)

(NLKG):
$$\begin{cases} \partial_{tt} u - \Delta_X u + u = \pm |u|^{\alpha} u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

- X = R^d → P.Brenner, H.Pecher, C.Morawetz,
 C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- ▶ $X = \mathcal{M}^k \rightarrow \text{global existence (J.-M. Delort, J.-M.Delort-J.Szeftel, D.Fang-Q.Zang...) but no scattering is proved.$
- X = R^d × M^k → difficulties when one try to apply the method used for (NLS).

(NLKG):
$$\begin{cases} \partial_{tt} u - \Delta_X u + u = \pm |u|^{\alpha} u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

- X = R^d → P.Brenner, H.Pecher, C.Morawetz,
 C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- X = M^k → global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- X = R^d × M^k → difficulties when one try to apply the method used for (NLS).

(NLKG):
$$\begin{cases} \partial_{tt} u - \Delta_X u + u = \pm |u|^{\alpha} u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

- X = R^d → P.Brenner, H.Pecher, C.Morawetz,
 C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- X = M^k → global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- X = R^d × M^k → difficulties when one try to apply the method used for (NLS).

(NLKG):
$$\begin{cases} \partial_{tt} u - \Delta_X u + u = \pm |u|^{\alpha} u, \\ (u(0,.), \partial_t u(0,.)) = (u_0, u_1) \in H^1(X) \times L^2(X). \end{cases}$$

- X = R^d → P.Brenner, H.Pecher, C.Morawetz,
 C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global existence + scattering (use of smallness of a Strichartz norm)
- X = M^k → global existence (J.-M. Delort, J.-M.Delort-J.Szeftel,D.Fang-Q.Zang...) but no scattering is proved.
- X = R^d × M^k → difficulties when one try to apply the method used for (NLS).

The difficulties

- Order 2 in time: one need to work with $U = \begin{pmatrix} u \\ \partial_t u \end{pmatrix}$, in $H^1 \times L^2$.
- ▶ The propagator is unitary on $H^1 \times L^2$, but not scaling invariant

$$S(t) = \begin{pmatrix} \cos\left(t \cdot \sqrt{1-\Delta}\right) & \frac{\sin\left(t \cdot \sqrt{1-\Delta}\right)}{\sqrt{1-\Delta}} \\ -\sin\left(t \cdot \sqrt{1-\Delta}\right) \cdot \left(\sqrt{1-\Delta}\right) & \cos\left(t \cdot \sqrt{1-\Delta}\right) \end{pmatrix}$$

We want to prove

$$\lim_{|t|\to\pm\infty} \left\| U(t) - S(t) \begin{pmatrix} f_{\pm} \\ g_{\pm} \end{pmatrix} \right\|_{H^1\times L^2} = 0.$$

• Strichartz estimates on \mathbb{R}^3 exist but are stated in Besov spaces: $0 \le 2/q_j = 3/r_j - 3/2 < 1$, $s_j = s_j(r_j)$

$$\|u\|_{L^{q_1}B^s_{r_1,2}} \leq C(r_1,r_2)\left(\|u_0\|_{H^1} + \|u_1\|_{L^2} + \|F\|_{L^{p'_1}B^{1-s_j}_{r'_2}}\right).$$

We still work on the basis of $L^2(\mathcal{M}^k)$ given by $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y).$

Each u_k is solution to

 $\partial_{tt} u_k - \Delta_{\mathbf{R}^d} u_k + u_k + \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot), \ \partial_t u_k(0, \cdot) = u_{k,1}(\cdot)$

Problems: estimates will depend on λ_k . *Scaling* type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to **Lebesgue**.

For eack k

 $C_{0}(\lambda_{k})\|u_{k}\|_{L_{t}^{q_{1}}L_{x}^{r_{1}}} \leq C\left[\sqrt{1+\lambda_{k}}\|u_{k,0}\|_{L^{2}}+\|u_{k,0}\|_{\dot{H}^{1}}+\|u_{k,1}\|_{L^{2}}+\|F_{k}\|_{L_{t}^{1}L_{x}^{2}}\right]$ **Consequence:** for some particular pairs, such that the embeddings are valid,

$$\|u\|_{L_t^{q_1}L_{x,y}^{q_1}} \le \|u\|_{L_t^{q_1}L_x^{r_1}H_y^{\gamma}} \le C\left[\|u_0\|_{H^1} + \|u_1\|_{L^2} + \|F\|_{L_t^{1}L_{x,y}^{2}}\right].$$

We still work on the basis of $L^2(\mathcal{M}^k)$ given by $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y).$

Each u_k is solution to

 $\partial_{tt}u_k - \Delta_{\mathbf{R}^d}u_k + u_k + \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot), \ \partial_t u_k(0, \cdot) = u_{k,1}(\cdot)$

Problems: estimates will depend on λ_k . *Scaling* type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to **Lebesgue**.

For eack k $C_0(\lambda_k) \|u_k\|_{L_t^{q_1}L_x^{r_1}} \leq C \left[\sqrt{1 + \lambda_k} \|u_{k,0}\|_{L^2} + \|u_{k,0}\|_{\dot{H}^1} + \|u_{k,1}\|_{L^2} + \|F_k\|_{L_t^1L_x^2} \right]$ **Consequence:** for some particular pairs, such that the embeddings are valid,

$$\|u\|_{L^{q_1}_t L^{q_1}_{x,y}} \le \|u\|_{L^{q_1}_t L^{r_1}_x H^{\gamma}_y} \le C \left[\|u_0\|_{H^1} + \|u_1\|_{L^2} + \|F\|_{L^1_t L^2_{x,y}} \right].$$

We still work on the basis of $L^2(\mathcal{M}^k)$ given by $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y).$

Each u_k is solution to

 $\partial_{tt} u_k - \Delta_{\mathbf{R}^d} u_k + u_k + \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot), \ \partial_t u_k(0, \cdot) = u_{k,1}(\cdot)$

Problems: estimates will depend on λ_k . *Scaling* type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to **Lebesgue**.

For eack k

 $C_{0}(\lambda_{k})\|u_{k}\|_{L_{t}^{q_{1}}L_{x}^{r_{1}}} \leq C\left[\sqrt{1+\lambda_{k}}\|u_{k,0}\|_{L^{2}}+\|u_{k,0}\|_{\dot{H}^{1}}+\|u_{k,1}\|_{L^{2}}+\|F_{k}\|_{L_{t}^{1}L_{x}^{2}}\right].$ Consequence: for some particular pairs, such that the embeddings are valid,

$$\|u\|_{L^{q_1}_t L^{r_1}_{x,y}} \le \|u\|_{L^{q_1}_t L^{r_1}_x H^{\gamma}_y} \le C \left[\|u_0\|_{H^1} + \|u_1\|_{L^2} + \|F\|_{L^1_t L^2_{x,y}} \right].$$

We still work on the basis of $L^2(\mathcal{M}^k)$ given by $-\Delta_{\mathcal{M}^k}\Phi_k = \lambda_k\Phi_k$: $u(t, x, y) = \sum_k u_k(t, x)\Phi_k(y).$

Each u_k is solution to

 $\partial_{tt} u_k - \Delta_{\mathbf{R}^d} u_k + u_k + \lambda_k u_k = F_k, \ u_k(0, \cdot) = u_{k,0}(\cdot), \ \partial_t u_k(0, \cdot) = u_{k,1}(\cdot)$

Problems: estimates will depend on λ_k . *Scaling* type argument needed to quantify that dependence \rightarrow homogeneous spaces are needed: embeddings from Besov to **Lebesgue**.

For eack k

 $C_{0}(\lambda_{k})\|u_{k}\|_{L_{t}^{q_{1}}L_{x}^{r_{1}}} \leq C\left[\sqrt{1+\lambda_{k}}\|u_{k,0}\|_{L^{2}}+\|u_{k,0}\|_{\dot{H}^{1}}+\|u_{k,1}\|_{L^{2}}+\|F_{k}\|_{L_{t}^{1}L_{x}^{2}}\right].$ Consequence: for some particular pairs, such that the embeddings are valid,

$$\|u\|_{L_t^{q_1}L_{x,y}^{r_1}} \leq \|u\|_{L_t^{q_1}L_x^{r_1}H_y^{\gamma}} \leq C\left[\|u_0\|_{H^1} + \|u_1\|_{L^2} + \|F\|_{L_t^{1}L_{x,y}^{2}}\right].$$

Theorem (H'-Visciglia '17)

Consider one of the following situations

$$\label{eq:relation} \begin{split} \mathbf{R} \times \mathcal{M}^2 \mbox{ and } \alpha &= \mathbf{4}, \\ \mathbf{R}^2 \times \mathcal{M}^1 \mbox{ and } \alpha \in [\mathbf{2}, \mathbf{4}] \end{split}$$

then there exists $\delta > 0$ s.t. any data (u_0, u_1) with $||u_0||_{H^1_{x,y}} + ||u_1||_{L^2_{x,y}} < \delta$ produces a unique global solution

$$u \in C^0(\mathbf{R}, H^1) \cap C^1(\mathbf{R}, L^2) \cap L^{\alpha+1}(\mathbf{R}, L^{2\alpha+2}).$$

Moreover, those solutions scatter to a linear solution in H^1 .

General statement k = 1, 2 and $d + k \in [3, 6]$, and $\frac{4}{d} \le \alpha \le \frac{4}{d+k-2}$.

Scattering follow from $\|u\|_{L^{\alpha+1}_t L^{2\alpha+2}_{x,y}} < \infty$:

$$egin{aligned} &U(t)=S(t) \begin{pmatrix} f \ g \end{pmatrix} + \int_0^t S(t-s) \begin{pmatrix} 0 \ \pm |u|^lpha u \end{pmatrix} ds \ &V(t)=S(-t)U(t)=\begin{pmatrix} f \ g \end{pmatrix} + \int_0^t S(-s) \begin{pmatrix} 0 \ \pm |u|^lpha u \end{pmatrix} ds. \end{aligned}$$

V(t) exists/has some sense if it converges in $H^1 \times L^2$. We prove that $\lim_{t,\tau \to \infty} \|V(t) - V(\tau)\|_{H^1 \times L^2} = 0$:

$$\|V(t) - V(\tau)\|_{H^1 \times L^2} \le C \int_t^\tau \left\| \begin{pmatrix} 0 \\ \pm |u|^{\alpha} u \ ds \end{pmatrix} \right\|_{H^1 \times L^2} ds$$
$$\le C \int_t^\tau \| |u|^{\alpha} u\|_{L^2} ds$$
$$\le C \|u\|_{L^{\alpha+1}([t,\tau],L^{2\alpha+2})}^{\alpha+1}$$

which tends to zero as t, τ tend to infinity.

Scattering follow from $\|u\|_{L^{\alpha+1}_t L^{2\alpha+2}_{x,y}} < \infty$:

$$egin{aligned} U(t) &= S(t) egin{pmatrix} f \ g \end{pmatrix} + \int_0^t S(t-s) egin{pmatrix} 0 \ \pm |u|^lpha u \end{pmatrix} ds \ V(t) &= S(-t) U(t) = egin{pmatrix} f \ g \end{pmatrix} + \int_0^t S(-s) egin{pmatrix} 0 \ \pm |u|^lpha u \end{pmatrix} ds. \end{aligned}$$

V(t) exists/has some sense if it converges in $H^1 \times L^2$. We prove that $\lim_{t,\tau \to \infty} \|V(t) - V(\tau)\|_{H^1 \times L^2} = 0$:

$$\begin{split} \|V(t) - V(\tau)\|_{H^1 \times L^2} &\leq C \int_t^\tau \left\| \begin{pmatrix} 0 \\ \pm |u|^\alpha u \, ds \end{pmatrix} \right\|_{H^1 \times L^2} ds \\ &\leq C \int_t^\tau \| |u|^\alpha u\|_{L^2} ds \\ &\leq C \|u\|_{L^{\alpha+1}([t,\tau],L^{2\alpha+2})}^{\alpha+1} \end{split}$$

which tends to zero as t, τ tend to infinity.

- **Ongoing work** (with L. Forcella SNS, Pisa): what about large data ? "simpler" case: defocusing, H^1 -subcritical α .
- Try to exploit the "flat" variables carrying the dispersive behaviour. Use of concentration-compactness method ("à la Kenig-Merle").
 - ▶ Prove that for $||u_0||_{H^1} < E_0$ small enough, H^1 holds.
 - ► Assume there is no H¹-scattering for solutions above some critical energy E_c ≥ E₀. For those solutions ||u||_{L_t^{α+1}L_{x,v}^{2α+2}} = +∞.
 - Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory).
 Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia.
 - ▶ Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_c = +\infty$.

Ongoing work (with L. Forcella - SNS, Pisa): what about large data ? "simpler" case: defocusing, H^1 -subcritical α .

- ▶ Prove that for $||u_0||_{H^1} < E_0$ small enough, H^1 holds.
- ► Assume there is no H¹-scattering for solutions above some critical energy E_c ≥ E₀. For those solutions ||u||_{L_t^{α+1}L_{x,v}^{2α+2}} = +∞.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory).
 Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia.
- Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_c = +\infty$.

Ongoing work (with L. Forcella - SNS, Pisa): what about large data ? "simpler" case: defocusing, H^1 -subcritical α .

- ▶ Prove that for $||u_0||_{H^1} < E_0$ small enough, H^1 holds.
- ► Assume there is no H¹-scattering for solutions above some critical energy E_c ≥ E₀. For those solutions ||u||_{L^{α+1}L^{2α+2}} = +∞.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory).
 Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia.
- Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that $E_c = +\infty$.

Ongoing work (with L. Forcella - SNS, Pisa): what about large data ? "simpler" case: defocusing, H^1 -subcritical α .

- ▶ Prove that for $||u_0||_{H^1} < E_0$ small enough, H^1 holds.
- ► Assume there is no H¹-scattering for solutions above some critical energy E_c ≥ E₀. For those solutions ||u||_{L^{α+1}L^{2α+2}} = +∞.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory).
 Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia.
- ► Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that E_c = +∞.

Ongoing work (with L. Forcella - SNS, Pisa): what about large data ? "simpler" case: defocusing, H^1 -subcritical α .

- ▶ Prove that for $||u_0||_{H^1} < E_0$ small enough, H^1 holds.
- ► Assume there is no H¹-scattering for solutions above some critical energy E_c ≥ E₀. For those solutions ||u||_{L^{α+1}L^{2α+2}} = +∞.
- Build such critical element with profile decomposition and try to understand its particular properties (compactness of trajectory).
 Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag, Banica-Visciglia.
- ► Exploit those properties, together with adapted "Morawetz estimates" instead of Virial estimates, to obtain a contradiction and deduce that E_c = +∞.

THANK YOU