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Perturbed energy-critical NLS

(NLS,) ‘—iut:Au+|u|4u+s|u|p_1u‘ xeR} 0<ex1

@ conserved quantities:

1 1

1
M(u) =5 | |uf?dx, Es(U):/ SVl = Zful® ———|ulP* b dx
2 R3 R3 2 6

Cp+1
o (NLS,) energy critical: u(x, t) — Azu(Ax, A2t) preserve (NLSp), E

o solitary waves: u(x,t) = e“tv,(x), v, a c.p. of S., = E. + wM:

0= —AVw - |Vw|4Vw_5‘Vw|p71Vw +wy, = Sé,w(vw)

@ ground states: (non-trivial) solitary waves of least “action” 5.,

@ (NLSp) admits no solitary wave, only static solutions (¢ = w = 0)

W(x) = (1 + %)_% ¢ 12(R%), AW+ W5 =0

Question: does (NLS,) have solitary waves/ground states for ¢ # 07 220



1. Perturbative construction of solitary waves (from W(x))
2. “Ground state” variational characterization

3. Implications for (NLS). dynamics
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1: Perturbative construction of solitary waves
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Solitary waves as perturbations of W/(x)

We seek real, radially-symmetric solutions v = v(|x|) € R of

=-S5, (V)=Av+VHelvPlv—wy (%)
1

Since W(x) = <1 + @)7 solves the unperturbed problem
= —S500(W) =AW + wo
it is natural to seek solutions v as small perturbations of W:

Thm[G-Coles]: for 0 < ¢ < 1, 2 < p < 5, there are smooth
solutions v. € H(IR3) of () with
Ve = Wl Se2, v — W, < gl—:, 3<r<oo

~ ~

w = w(e) = A2e2 + o(e?), AL = 12W(p+1 f we+t

@ also works for p > 5, ¢ < 0 (supercritical, defocusing perturbation)
@ [Davila-delPino-Guerra 12]: similar perturbation result
@ [Akahori-lbrahim-Kikuchi-Nawa 12]: variational method in R=*
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Perturbation PDE, linear resonance, resolvent expansion

@ plug v.(x) = W(x)+n(x), w = A?into (*) find equation for :

‘(H—i—)@)n =eWP — X2W + N(n,e) =: f(a,A,n)‘

where H = —A — 5W* is the linearized operator.

@ scale invariance — H has a threshold resonance:

HAW =0, AW(x):= )\1/2 )\x)‘ ¢ [2(R3)

@ with free resolvent Ry()\) := (—A + A2)~1, the resolvent expansion
of [Jensen-Kato 79] for H: as A — 0+,

(H+ X)L = B (- ewAw)aw + 0(1)] Ro())

(in weighted spaces — can convert to Lebesgue spaces).

@ orthogonality condition ’ fL Ro()\)W“/\W‘ removes singularity:

(H+22) M = [(1=5(=8) W4 ™ 4 O (A7) RA(VF
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Solve the perturbation equation: Lyapunov-Schmidt

So we solve, by Lyapunov-Schmidt-type method, the system
{ n=(H+X)" (e A\n)

Ro(M)WAAW L f(g, An) = e WP — X2W + N(n,e)

< €, solve the orthogonality condition

~

0 = (Ry(A)WAAW, f) = (Ro(\)WAAW, e WP — N2 W)

Step 1: given ||7]|o

~e- %(AW, WP) A A(RO()\)W“AW, W)

Lemma: if (x)'*g € LY(R®), h— € L3(R®), then

A(Ro(Mg. h) = (/R g) + 0.

Soi  Ome-H(AW,WP) A V3 [ WAAW
— A=A mMe| M= ik [ WP >0
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Solve the perturbation equation: Lyapunov-Schmidt

n=(H+N)"(e,\n)

Ry(W)WAAW L £(2, ) = WP — \2W + N(n, )
Step 2: with orthogonality satisfied, ||[(H + A\?) 7 f]|, < [[Ro(A)f],, so

Inllr S &+ X73 + RN S 7%

which can be used (together with difference estimates) in a fixed-point
argument to give existence of a solution.

So we have solitary waves for ¢ < 1

Av. + V2 +e|ve P v = w(e)w

Ive = Wl S 77, w(e) ~ A%
Question: are (some of) these “ground states”? Is even v.(x) > 0?7
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2. “Ground state” variational characterization
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Energy critical (NLSp): ground-state static solutions

(NLS) ]—iut =Au+ |u|4 Eo(u /\v = /|u|6
@ Pohozaev relations = solitary waves are static (w = 0):
0= KO(v) = 9r So.(AV)rcn :/|Vv|2—/|v|6—|—w/|v|2
0 = Ko(v) := xS0, (AT v(A))|aet = / |Vv|? — / |v|®

1
oy =1
@ static solution W(x) = (1 + %) ’ (up to scaling, spatial
translation, phase rotation) is the unique ground state in the sense

Eo(W) = min{Eq(v) | 0 # v € HY(R?), Ko(v) = 0} | = Eo(Az W()\))

@ up to scaling, multiples and translates, W is the unique Sobolev
maximizer [Aubin, Talenti 76]:

[lo o fwe g
osverngs) U V0T — (TIVWRY — (TWoP
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Perturbed critical (NLS.): ground-state solitary waves

(NLS,) ’ —iuy = Au+ |ul*u + €\u|P_1u‘

B O R Sy SRRy gy
Sealu) =5 [19f = 5 [l =ty [l oS [

i i _ e(5=p) [ v
@ Pohozaev relations = solitary waves have w = 26F1) VP

0= KO, (v) = 02 (W) rs = / (9P — [v]f—elv[P* + wlv[?)

0= Klv) 1= O3S OVON bt = [ {1977 = oS ]

@ variational problem for ground states:

Mew = inf{S:w(v) | 0 # v € HY(R®), K.(v) =0} ‘
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Perturbed critical (NLS;): ground-state variational problem

_1 2_1 6_i p+1 f/ 2
Sealu) = [196P =5 [1u—e2g [l [l

| Mo = inf{S.(v) |0 £ v € HY(R?), Ko(v) =0} |

"Classical’ facts:

mg ., < moo = Eo(W): use cut-off, rescaled W(x) as test function

if mg , < EO(W) Mg, IS attained [Brezis-Nirenberg 83]

— prevents “bubbling” A2 W(Ax), A — oo

e = inf{ o5 [ Vull3 + 5255 ullg + ul3 | Ko(v) < 0}
€ 2(p-1) 2 T s(p—1) 1706 T 2NEH2 1 e TS =
and minimizers agree [AIKN 12]

yields positive, radial ground state v = v(|x|) >0, S, ,(v) =0
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Existence of ground states for p > 3

@ [Akahori-lbrahim-Kikuchi-Nawa 12]: in RN, N > 4, m_ ,, < mq for
1+ 3 < p <1+ 575. Hence ground states exist.

@ back to R3: compute (delicate) for constructed solitary waves v.:

<E0(W) P>3

3—p)e
e )-Eo(W) = S [eviore) { > E(W) p<3
(p+1) 27 p=13
3<p<b ground states exist
@ so for S (e), 2 < p <3 v, are not ground states

p=3 7

Natural questions:
1. are v. indeed ground states for 3 < p < 57
— yesl!
2. do ground states exist for p =37 p < 37
-7
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Constructed solitary waves are ground states for p > 3

Thm[G-Coles]: for 3 < p <5, ¢ < 1, v, is the unique ground state
(up to phase and translation) for S (c).

Strategy:
1. as e — 0, ground states w. converge, up to rescaling, to W
2. after further rescaling, the orthogonality condition for w. — W holds

3. the difference estimates of the fixed-point argument show that
(rescaled) w. and v. must agree.
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Rescaled ground states converge to W

@ S o) (we) = me o) < Bo(W) = forw=w,,

Jrvw, [1we, e [ 1w, we) [wp <1

@ moreover interpolation gives

5—p

p—1 sp
e/|W|P+1 < e </|w6) (w/|w|2) 50

if 655 < w(e) ~ N2, ie. p> 3.

@ so w, is a maximizing sequence for the critcal (Sobolev) problem.
Concentration-compactness (eg. [Gérard 98])) = convergence mod
scaling:

1 .
pewe(pe) = W in H

15/20



Rescaled ground states converge to W

@ after further scaling fi. = p-(1+ o(1)), orthogonality holds:
1 « .
pEwe(fie) — W L Ro(A)WAAW, e = fiew(e)

@ then we can quantify the convergence:

5—p

~3 . 13 -
1712 we(fie-) — W], §51 " =i’ €

@ local uniqueness from the fixed-point construction —>

1
2 we(fie-) = ve for e sufficiently small.
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3. Implications for (NLS). dynamics
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Energy critical (NLSp): dynamics below the ground state

—iug = Au+ |ul*u,  u(x,0) = up(x) € H(R3)

1 1
=5 [1ver =g [P, Katw) = [1vup = [1u

If E(u(-,t)) = E(up) < E(W), the sets

{IVul2 s [[VW]2} « {Ko(u) = 0}

are invariant (Sobolev inequality). Moreover, if’ Eo(uo) < Eo(W) ‘:

@ [Kenig-Merle 06]: up radial, ||Vugll2 < |[VW]2 = solution scatters
( [Killip-Visan 10] N > 5; [Dodson 15] N=4 )

@ up radial, [|[Vup|2 > [[VW|2 = blow-up [Ogawa-Tsutsumi 91]

Among the tools: concentration-compactness, and virial identity:

[ Plutx 0 = 4r(w)
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Perturbed critical (NLS.): dynamics below ground state

‘ —iuy = Au+ |ul*u + elulP~tu, up € HY(R?), 0<ex 1 ‘

© Seu(u) =3 [IVul = § [|ul® 555 [|ulP™ +% [ |ul
° K fIVu|2 J o= [ e+t

@ m., :=inf{S.,(v)|0#veHY(R?), K(v)=0}
If Sew(u(-,t)) = Sew(uo) < me,, the sets {K.(up) < 0} are invariant, &

Thm: for uy = up(|x|) € H(R?) radial,

K.(up) >0 = scattering

S w < w =
ew(Uo) < mg, {Kg(uo) <0 = blow up

@ [Akahori-lbrahim-Kikuchi-Nawa 12], [Killip-Oh-Pocovnicu-Visan 14]
@ [Kenig-Merle 06]

@ virial identity: j—; S IxPu(x, t)|2dx = 4K (u). 1920



Conclusions

(NLS.) —iuy = Au+ |ul*u + elulP~u xeR3 0<ex1

—jwt

solitary waves e~ '“fv_(x) constructed perturbatively:
ve(x) = W(x) +o(1), w=uw(e)~ e
for2<p<b5

for 3 < p < 5, ground states exist for w < w(e) ~ 2, and for
w = w(g), v¢ is the unique ground state

V. is not a ground state for p < 3

dynamics of radial solutions of (NLS.) below these ground
states is classified into scattering and blow-up sets

the ground state situation for p = 3, p < 3 is unclear
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