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A soliton is u(t, x) = Qc(x — ¢t — xp), ¢ > 0,x € R,

» . - a positive, vanishing at infinity solution of
Ql—cQ.+QF=0inR

Qc(x) = c71Q(vex),

and

Q(x) = Qux) = (B22)7 7 sech#'(251x)
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Otherwise, Q. is unstable.

Qc is

- stable for p < 5 (in H') - Benjamin '72,
Bona-Souganidis-Strauss '87, Weinstein '85

- unstable for p > 5 (in H!) - Bona-Souganidis-Strauss
'87 (via Grillakis-Shatah-Strauss '87)

Delicate case p = 5: unstable (in H! and L?) -
Martel-Merle '01

Asymptotic stability (Pego-Weinstein '94, Martel-Merle
'01, Mizumachi '01, ...)
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[%-critical gKdV (p = 5)

e Instability of Q (Martel-Merle '01)
» Linearization around Q: u(t) = Q + €(t)
» known /explicit spectral properties on £L = —A+1—5Q*

» Modulation theory and energy estimates = control of
parameters x(t), A(t)

» Characterization of dispersion
Obstacle: no virial
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[%-critical gKdV (p = 5)(cont.)

v

v

v

v

Consider the scaling operator: AQ = Q + xQ,
£(\Q) = —2Q

. . X ..
Idea: consider the expression [ € (f_OO/\Q> (virial-type)
- it will show that there exists dispersion of mass to the
right
- for small €, a suitable control of linear and nonlinear
terms = dispersion can not occur

this yields a contradiction at a finite time t(up).
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Multidimensional model: ZK

» Generalization of gKdV to two dimensions
u; + 8XI(A(X17X2)U + up) =0

» Introduced by Zakharov and Kuznetsov in 1974:
propagation of ionic-acoustic waves in uniformly
magnetized plasma

» Derivation of ZK from the Euler-Poisson system with
magnetic field in the long wave limit (Lannes, Linares and
Saut '13)

» Derivation of ZK from the Vlasov-Poisson system in a
combined cold ions and long wave limit (Han-Kwan '13)

» Traveling waves in x;-direction:
u(t, xi, x2) = Qc(x1 — ct, x2), Qc(x) — 0 as |x| — oo
Q solves AQ — Q + QP = 0 (take radial vanishing
solution)
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Stability of traveling waves in ZK

e Anne de Bouard '96:
- orbitally stable p < 3,
- unstable p > 3

(Revisited the proof of Bona-Souganidis-Strauss and
adapted to ZK).

e Cote, Munéz, Pilod, Simpson '14:
- Asymptotic stability: p =2
(spectral properties hold for 2 < p < p, = 2.3 ).
- choice of orthogonality conditions (e L {Qx,AQ} )

- for coercivity of a certain bilinear form H,
need (L7IAQ,AQ) < 0.

» we address p = 3 case (L>-critical case in 2d).
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Thm (F. - Holmer - Roudenko '17)
In the case when p = 3: Q is H'-unstable.

There exists ag, by > 0 such that
if ug = Q + €, €¢ € Hl(]R2), with

€12, < bo [ €0 @ and |eo(x, y)| < ce 0N, for some
c>0and >0

then there exists time ty = to(up):
inf [lu(to, ) — Q( = ¥)llm = .
yER?

J x0@

Remark: Example €j = %(Q + ayop), where a = — ol
2
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Ingredients of the proof

e Set Uup = Q+€0: HEoHHl < 1 and H€o”$_,1 < boon Q (bo
tbhd)

» For small enough by we may assume

€p = Up — QL {QX17 QX27XO}

» Assume by contradiction: @ is stable
= u(t) € U,, for some small ag
= 3 A(t), x(t) = (x(t),0) such that
e(t) = A(t) u (£, A(t)y + x(t)) — Q(y)
(with x(0) = 0,\(0) = 1)

and also satisfy €(t) L {Q,, Qu, X0}

» rescale time t — s: % =%

+ modulation of parameters (and u € U,,):
()] S @0 and |A(s) — 1] S o
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A la virial

Y1
Set up J(s) = / (s, y1, 2) (/ AQ(z,y2) dZ) dy,dy>
R2

—0o0

» actually need a localized version Jx:

s = [ o) ([ 1Q) eati) dnate

» furthermore, for more precise time control,
set up Ka(s) = A(s) (Ja(s) — #)

» Easy to see:
(1) [Ka(s)] S (1 +AY?)leoll iz

» Want;

d 1
(2) gKA(s) > 5/60@ fors >0
= for large enough s we get a contradiction.

» Issues : - how to get (2)?
- control /independence of parameters «yg, by, A 7
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Virial estimates

d 1 /xs
e Mass: MOEM[U0+€0]—2/€0Q+/€(2)Z2/€0Q.
So 2A(1 — % (% — 1))Mp > [ €Q.

» Need to control the remainder R:
R(e, A) < lle(s)lliz (Jle(s) ||z + A2

A [ oy (170Q) e

» Problem to control the last two terms

)
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» Define (as in Martel-Merle)
Ixo,to(t) - f u2(t,X,y)1/J(X - X(tO) + %(to - t) - XO)dXdy
where (x) ~ arctan (e~ #) and ||u(- + x(t)) — Q|4 < «

Prop: Iy t,(to) — hx.to(t) < Ce*XVO,

provided x(to) — x(t) > 2(to — t) for every t € [0, to).
Prop: Suppose |ug(x, y)| < e 0l

Then forall t >0 and x5 > 0

/ / V(8 x + x(t),y)dxdy < Ce .
R Jx>xg

In particular, // ez(t,x,y)dxdy < Ce’szofl,
X> X
if o has also exponelgtial decay.
> The 3rd term: AY2|l¢(s)||2xz) < § [ €0Q.
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Dealing with the last term

v

Using monotonicity ?

v

No, does not help: that gives only boundedness, not
smallness

Go back to the “basics”: fundamental solution estimate
(stationary point)

Goal: pointwise decay on €(s)
Allows to show smallness of the last term

v
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Fundamental solution estimate
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Fundamental solution estimate

Prop: Let A(x,y, t // It +ten* +xE4yn) ge dn
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Let A = and z = L.
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» Then for x >0
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ST N2 if |2| > 4,Ya, 8 >0

» If x <0, then
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» Next, estimate on the linear solution
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Linear Solution

S(t)uo(x,y) = /A(x',y’, ug(x +t — X',y — y') dx'dy’

Prop If up € L3, and |ug(x,y)| < (x)~7 for x > 0, for some
o> 1

» Thenfort >0, x>0 )
1S(t)uo(x, ¥)| < (C + |luoll2) t77/* (x) 7.

» Propagate this to the nonlinear equation.

» via bootstrap
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Pointwise decay of €(s)
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» Then

Prop: Suppose |eo(x, y)| < for x > 0 and any y
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» Thus, the 4th term:

Lo ([ 1) vor
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Finishing the argument

» Choosing «q, by - appropriately small

> R(€7A)§%/€OQ

d 1
> EKA(S)EE/eonoraIIs>O

» Integrating in s:
Ka(s) > 5 [ €0 Q4+ Ka(0) for all s >0
and hence, Ka(s) — 0o as s — o0

» Contradiction with boundedness |Ka(s)|, finishes the
proof!



THANK YQOU for your attention!



