Instability of solitary waves in Zakharov-Kuznetsov equation

Luiz Gustavo Farah

Universidade Federal de Minas Gerais (Brazil)

joint with J. Holmer (Brown Univ., USA) and S. Roudenko (GWU, USA)

June 15, 2017 - CIRM French-American Conference on PDE

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

Mass:
$$M[u] = \int |u(x,t)|^2 dx$$

Energy: $E[u] = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{p+1} \int u^{p+1}(t) dx$

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

Mass:
$$M[u] = \int |u(x,t)|^2 dx$$

Energy: $E[u] = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{p+1} \int u^{p+1}(t) dx$

• Scaling: $u_{\lambda}(t,x) = \lambda^{\frac{2}{p-1}} u(\lambda^3 t, \lambda x)$

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

Mass:
$$M[u] = \int |u(x,t)|^2 dx$$

Energy: $E[u] = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{p+1} \int u^{p+1}(t) dx$

• Scaling: $u_{\lambda}(t,x) = \lambda^{\frac{2}{p-1}} u(\lambda^3 t, \lambda x)$ If p=5, this symmetry makes the L^2 norm invariant: $\|u_{\lambda}(0,\cdot)\|_{L^2} = \|u_0\|_{L^2}$

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

Mass:
$$M[u] = \int |u(x,t)|^2 dx$$

Energy: $E[u] = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{p+1} \int u^{p+1}(t) dx$

- Scaling: $u_{\lambda}(t,x) = \lambda^{\frac{2}{p-1}} u(\lambda^3 t, \lambda x)$ If p=5, this symmetry makes the L^2 norm invariant: $\|u_{\lambda}(0,\cdot)\|_{L^2} = \|u_0\|_{L^2}$
- nonlinearity: $p = 5 L^2$ -critical case

$$(\mathsf{gKdV}) \qquad u_t + (u_{xx} + u^p)_x = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}$$

Conserved quantities:

Mass:
$$M[u] = \int |u(x,t)|^2 dx$$

Energy: $E[u] = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{p+1} \int u^{p+1}(t) dx$

- Scaling: $u_{\lambda}(t,x) = \lambda^{\frac{2}{p-1}} u(\lambda^3 t, \lambda x)$ If p=5, this symmetry makes the L^2 norm invariant: $\|u_{\lambda}(0,\cdot)\|_{L^2} = \|u_0\|_{L^2}$
- nonlinearity: $p = 5 L^2$ -critical case
- $p < 5 L^2$ -subcritical case $p > 5 L^2$ -supercritical case

Solitary waves

A soliton is
$$u(t,x) = Q_c(x - ct - x_0), c > 0, x_0 \in \mathbb{R}$$
,

Solitary waves

A soliton is
$$u(t,x) = Q_c(x - ct - x_0), c > 0, x_0 \in \mathbb{R}$$
,

▶ Q_c - a positive, vanishing at infinity solution of $Q_c'' - c Q_c + Q_c^p = 0$ in \mathbb{R}

Solitary waves

A soliton is $u(t,x) = Q_c(x - ct - x_0), c > 0, x_0 \in \mathbb{R}$,

▶ Q_c - a positive, vanishing at infinity solution of $Q_c'' - c \ Q_c + Q_c^p = 0$ in $\mathbb R$

$$egin{aligned} Q_c(x)&=c^{rac{1}{p-1}}\,Q(\sqrt{c}\,x),\ ext{and}\ Q(x)&=Q_1(x)=\left(rac{p+1}{2}
ight)^{rac{1}{p-1}}\operatorname{sech}^{rac{2}{p-1}}(rac{p-1}{2}x) \end{aligned}$$

Let $\alpha > 0$, $s \ge 0$ and define a "tube"

$$U_{\alpha} = \{u \in H^s \mid \inf_{y \in \mathbb{R}} \|u - Q_c(\cdot - y)\|_{H^s} \le \alpha\}$$

Let $\alpha > 0$, s > 0 and define a "tube"

$$U_{\alpha} = \{ u \in H^{s} \mid \inf_{y \in \mathbb{R}} \|u - Q_{c}(\cdot - y)\|_{H^{s}} \leq \alpha \}$$

▶ Q_c is (orbitally) stable in H^s means if for any $\epsilon > 0$ there exists $\delta > 0$ such that $u_0 \in U_\delta \implies u(t) \in U_\epsilon$ for all $t \in \mathbb{R}$.

Let $\alpha > 0$, s > 0 and define a "tube"

$$U_{\alpha} = \{ u \in H^{s} \mid \inf_{\mathbf{y} \in \mathbb{R}} \| u - Q_{c}(\cdot - \mathbf{y}) \|_{H^{s}} \le \alpha \}$$

- ▶ Q_c is (orbitally) stable in H^s means if for any $\epsilon > 0$ there exists $\delta > 0$ such that $u_0 \in U_\delta \implies u(t) \in U_\epsilon$ for all $t \in \mathbb{R}$.
- ▶ Otherwise, Q_c is unstable.

Let $\alpha > 0$, s > 0 and define a "tube"

$$U_{\alpha} = \{ u \in H^{s} \mid \inf_{y \in \mathbb{R}} \|u - Q_{c}(\cdot - y)\|_{H^{s}} \leq \alpha \}$$

- \triangleright Q_c is (orbitally) stable in H^s means if for any $\epsilon > 0$ there exists $\delta > 0$ such that $u_0 \in U_\delta \quad \Rightarrow \quad u(t) \in U_\epsilon \text{ for all } t \in \mathbb{R}.$
- \triangleright Otherwise, Q_c is unstable.
- \triangleright Q_c is
 - stable for p < 5 (in H^1) Benjamin '72, Bona-Souganidis-Strauss '87, Weinstein '85
 - unstable for p > 5 (in H^1) Bona-Souganidis-Strauss '87 (via Grillakis-Shatah-Strauss '87)

Let $\alpha > 0$, s > 0 and define a "tube"

$$U_{\alpha} = \{ u \in H^s \mid \inf_{y \in \mathbb{R}} \|u - Q_c(\cdot - y)\|_{H^s} \le \alpha \}$$

- ▶ Q_c is (orbitally) stable in H^s means if for any $\epsilon > 0$ there exists $\delta > 0$ such that $u_0 \in U_\delta \implies u(t) \in U_\epsilon$ for all $t \in \mathbb{R}$.
- ▶ Otherwise, Q_c is unstable.
- \triangleright Q_c is
 - stable for p < 5 (in H^1) Benjamin '72, Bona-Souganidis-Strauss '87, Weinstein '85
 - unstable for p > 5 (in H^1) Bona-Souganidis-Strauss
 - '87 (via Grillakis-Shatah-Strauss '87)
- ▶ Delicate case p = 5: unstable (in H^1 and L^2) Martel-Merle '01

Let $\alpha > 0$, s > 0 and define a "tube"

$$U_{\alpha} = \{ u \in H^s \mid \inf_{y \in \mathbb{R}} \|u - Q_c(\cdot - y)\|_{H^s} \le \alpha \}$$

- Q_c is (orbitally) stable in H^s means if for any $\epsilon > 0$ there exists $\delta > 0$ such that $u_0 \in U_\delta \implies u(t) \in U_\epsilon$ for all $t \in \mathbb{R}$.
- ▶ Otherwise, Q_c is unstable.
- \triangleright Q_c is
 - stable for p < 5 (in H^1) Benjamin '72,
 - Bona-Souganidis-Strauss '87, Weinstein '85 unstable for p > 5 (in H^1) Bona-Souganidis-Strauss

'87 (via Grillakis-Shatah-Strauss '87)

- ▶ Delicate case p = 5: unstable (in H^{1} and L^{2}) Martel-Merle '01
- ► Asymptotic stability (Pego-Weinstein '94, Martel-Merle '01, Mizumachi '01, ...)

$$L^2$$
-critical gKdV ($p = 5$)

• Instability of Q (Martel-Merle '01)

$$L^2$$
-critical gKdV ($p = 5$)

- Instability of Q (Martel-Merle '01)
- ▶ Linearization around Q: $u(t) = Q + \epsilon(t)$

$$L^2$$
-critical gKdV ($p = 5$)

- Instability of Q (Martel-Merle '01)
- ▶ Linearization around Q: $u(t) = Q + \epsilon(t)$
- ▶ known/explicit spectral properties on $\mathcal{L} = -\Delta + 1 5Q^4$

$$L^2$$
-critical gKdV ($p = 5$)

- Instability of Q (Martel-Merle '01)
- ▶ Linearization around Q: $u(t) = Q + \epsilon(t)$
- ullet known/explicit spectral properties on ${\cal L}=-\Delta+1-5Q^4$
- ▶ Modulation theory and energy estimates \Rightarrow control of parameters $x(t), \lambda(t)$

$$L^2$$
-critical gKdV ($p = 5$)

- Instability of Q (Martel-Merle '01)
- ▶ Linearization around Q: $u(t) = Q + \epsilon(t)$
- ▶ known/explicit spectral properties on $\mathcal{L} = -\Delta + 1 5Q^4$
- ▶ Modulation theory and energy estimates \Rightarrow control of parameters $x(t), \lambda(t)$
- Characterization of dispersion
 Obstacle: no virial

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

▶ Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

- ► Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$
- $\blacktriangleright \mathcal{L}(\Lambda Q) = -2Q$

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

- ▶ Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$
- $\mathcal{L}(\Lambda Q) = -2Q$
- ▶ Idea: consider the expression $\int \epsilon \left(\int_{-\infty}^{x} \Lambda Q \right)$ (virial-type)

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

- ▶ Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$
- $\blacktriangleright \mathcal{L}(\Lambda Q) = -2Q$
- ▶ Idea: consider the expression $\int \epsilon \left(\int_{-\infty}^{x} \Lambda Q \right)$ (virial-type)
 - it will show that there exists dispersion of mass to the right

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

- ▶ Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$
- $\blacktriangleright \mathcal{L}(\Lambda Q) = -2Q$
- ▶ Idea: consider the expression $\int \epsilon \left(\int_{-\infty}^{x} \Lambda Q \right)$ (virial-type)
 - it will show that there exists dispersion of mass to the right
 - for small ϵ , a suitable control of linear and nonlinear terms \Rightarrow dispersion can not occur

$$L^2$$
-critical gKdV $(p = 5)$ (cont.)

- ▶ Consider the scaling operator: $\Lambda Q = \frac{1}{2}Q + xQ_x$
- $\blacktriangleright \mathcal{L}(\Lambda Q) = -2Q$
- ▶ Idea: consider the expression $\int \epsilon \left(\int_{-\infty}^{x} \Lambda Q \right)$ (virial-type)
 - it will show that there exists dispersion of mass to the right
 - for small ϵ , a suitable control of linear and nonlinear terms \Rightarrow dispersion can not occur
- ▶ this yields a contradiction at a finite time $t(u_0)$.

► Generalization of gKdV to two dimensions

$$u_t + \partial_{x_1}(\Delta_{(x_1,x_2)}u + u^p) = 0$$

Generalization of gKdV to two dimensions

$$u_t + \partial_{x_1}(\Delta_{(x_1,x_2)}u + u^p) = 0$$

Introduced by Zakharov and Kuznetsov in 1974: propagation of ionic-acoustic waves in uniformly magnetized plasma

► Generalization of gKdV to two dimensions

$$u_t + \partial_{x_1}(\Delta_{(x_1,x_2)}u + u^p) = 0$$

- Introduced by Zakharov and Kuznetsov in 1974: propagation of ionic-acoustic waves in uniformly magnetized plasma
- Derivation of ZK from the Euler-Poisson system with magnetic field in the long wave limit (Lannes, Linares and Saut '13)

► Generalization of gKdV to two dimensions

$$u_t + \partial_{x_1}(\Delta_{(x_1,x_2)}u + u^p) = 0$$

- Introduced by Zakharov and Kuznetsov in 1974: propagation of ionic-acoustic waves in uniformly magnetized plasma
- Derivation of ZK from the Euler-Poisson system with magnetic field in the long wave limit (Lannes, Linares and Saut '13)
- Derivation of ZK from the Vlasov-Poisson system in a combined cold ions and long wave limit (Han-Kwan '13)

Generalization of gKdV to two dimensions

$$u_t + \partial_{x_1}(\Delta_{(x_1,x_2)}u + u^p) = 0$$

- Introduced by Zakharov and Kuznetsov in 1974: propagation of ionic-acoustic waves in uniformly magnetized plasma
- Derivation of ZK from the Euler-Poisson system with magnetic field in the long wave limit (Lannes, Linares and Saut '13)
- Derivation of ZK from the Vlasov-Poisson system in a combined cold ions and long wave limit (Han-Kwan '13)
- ► Traveling waves in x_1 -direction: $u(t, x_1, x_2) = Q_c(x_1 ct, x_2), \ Q_c(x) \to 0$ as $|x| \to \infty$ Q solves $\Delta Q Q + Q^p = 0$ (take radial vanishing solution)

Wellposedness for ZK

2d Faminski '95: l.w.p. for p = 2 in H^s , $s \ge 1$.

Wellposedness for ZK

2d Faminski '95: I.w.p. for p=2 in H^s , $s\geq 1$. Linares-Pastor '11: I.w.p. for $2\leq p\leq 8$, in H^s , $s>\frac{3}{4}$.

Wellposedness for ZK

2d Faminski '95: l.w.p. for p=2 in H^s , $s\geq 1$. Linares-Pastor '11: l.w.p. for $2\leq p\leq 8$, in H^s , $s>\frac{3}{4}$. Ribaud-Vento '12: l.w.p. for p=3, in H^s , $s>\frac{1}{4}$.

Wellposedness for ZK

2d Faminski '95: l.w.p. for p=2 in H^s , $s\geq 1$. Linares-Pastor '11: l.w.p. for $2\leq p\leq 8$, in H^s , $s>\frac{3}{4}$. Ribaud-Vento '12: l.w.p. for p=3, in H^s , $s>\frac{1}{4}$. Grunrock-Herr '13 and Molinet-Pilod '15: l.w.p. for p=2 in H^s , $s>\frac{1}{2}$.

Wellposedness for ZK

- 2d Faminski '95: l.w.p. for p=2 in H^s , $s\geq 1$. Linares-Pastor '11: l.w.p. for $2\leq p\leq 8$, in H^s , $s>\frac{3}{4}$. Ribaud-Vento '12: l.w.p. for p=3, in H^s , $s>\frac{1}{4}$. Grunrock-Herr '13 and Molinet-Pilod '15: l.w.p. for p=2 in H^s , $s>\frac{1}{2}$.
- 3d Ribaud-Vento '12: I.w.p for p = 2 in H^s , s > 1.

Wellposedness for ZK

- 2d Faminski '95: l.w.p. for p=2 in H^s , $s\geq 1$. Linares-Pastor '11: l.w.p. for $2\leq p\leq 8$, in H^s , $s>\frac{3}{4}$. Ribaud-Vento '12: l.w.p. for p=3, in H^s , $s>\frac{1}{4}$. Grunrock-Herr '13 and Molinet-Pilod '15: l.w.p. for p=2 in H^s , $s>\frac{1}{2}$.
- 3d Ribaud-Vento '12: l.w.p for p = 2 in H^s , s > 1. Molinet-Pilod '15: g.w.p. for p = 2 in H^s , s > 1.

- Anne de Bouard '96:
 - orbitally stable p < 3,
 - unstable p > 3

(Revisited the proof of Bona-Souganidis-Strauss and adapted to ZK).

- Anne de Bouard '96:
 - orbitally stable p < 3,
 - unstable p > 3 (Revisited the proof of Bona-Souganidis-Strauss and adapted to ZK).
- Côte, Munõz, Pilod, Simpson '14:
 - Asymptotic stability: p=2 (spectral properties hold for $2 \le p < p_2 \approx 2.3$).

- Anne de Bouard '96:
 - orbitally stable p < 3,
 - unstable p > 3 (Revisited the proof of Bona-Souganidis-Strauss and adapted to ZK).
- Côte, Munõz, Pilod, Simpson '14:
 - Asymptotic stability: p=2 (spectral properties hold for $2 \le p < p_2 \approx 2.3$).
 - choice of orthogonality conditions ($\epsilon \perp \{Q_{x_i}, \Lambda Q\}$)

- Anne de Bouard '96:
 - orbitally stable p < 3,
 - unstable p > 3

(Revisited the proof of Bona-Souganidis-Strauss and adapted to ZK).

- Côte, Munõz, Pilod, Simpson '14:
 - Asymptotic stability: p=2 (spectral properties hold for $2 \le p < p_2 \approx 2.3$).
 - choice of orthogonality conditions $(\epsilon \perp \{Q_{x_i}, \Lambda Q\})$
 - for coercivity of a certain bilinear form H, need $(\mathcal{L}^{-1}\Lambda Q, \Lambda Q) < 0$.

- Anne de Bouard '96:
 - orbitally stable p < 3,
 - unstable p>3

(Revisited the proof of Bona-Souganidis-Strauss and adapted to ZK).

- Côte, Munõz, Pilod, Simpson '14:
 - Asymptotic stability: p=2 (spectral properties hold for $2 \le p < p_2 \approx 2.3$).
 - choice of orthogonality conditions $(\epsilon \perp \{Q_{x_i}, \Lambda Q\})$
 - for coercivity of a certain bilinear form H, need $(\mathcal{L}^{-1}\Lambda Q, \Lambda Q) < 0$.
- we address p = 3 case (L^2 -critical case in 2d).

Thm (F. - Holmer - Roudenko '17) In the case when p = 3: Q is H^1 -unstable.

Thm (F. - Holmer - Roudenko '17) In the case when p = 3: Q is H^1 -unstable.

There exists α_0 , $b_0 > 0$ such that if $u_0 = Q + \epsilon_0$, $\epsilon_0 \in H^1(\mathbb{R}^2)$, with

$$\|\epsilon\|_{H^1}^2 \le b_0 \int \epsilon_0 Q$$
 and $|\epsilon_0(x,y)| \le ce^{-\delta|(x,y)|}$, for some $c>0$ and $\delta>0$

Thm (F. - Holmer - Roudenko '17) In the case when p = 3: Q is H^1 -unstable.

There exists $\alpha_0, b_0 > 0$ such that if $u_0 = Q + \epsilon_0$, $\epsilon_0 \in H^1(\mathbb{R}^2)$, with

$$\|\epsilon\|_{H^1}^2 \le b_0 \int \epsilon_0 Q$$
 and $|\epsilon_0(x,y)| \le ce^{-\delta|(x,y)|}$, for some $c>0$ and $\delta>0$

then there exists time $t_0 = t_0(u_0)$:

$$\inf_{\vec{\mathsf{v}}\in\mathbb{R}^2}\|u(\mathsf{t}_0,\cdot)-Q(\cdot-\vec{\mathsf{v}})\|_{H^1}\geq\alpha_0.$$

Thm (F. - Holmer - Roudenko '17) In the case when p = 3: Q is H^1 -unstable.

There exists $\alpha_0, b_0 > 0$ such that if $u_0 = Q + \epsilon_0$, $\epsilon_0 \in H^1(\mathbb{R}^2)$, with

$$\|\epsilon\|_{H^1}^2 \le b_0 \int \epsilon_0 Q$$
 and $|\epsilon_0(x,y)| \le ce^{-\delta|(x,y)|}$, for some $c>0$ and $\delta>0$

then there exists time $t_0 = t_0(u_0)$:

$$\inf_{\vec{\mathbf{y}} \in \mathbb{R}^2} \| \mathbf{u}(\mathbf{t}_0, \cdot) - \mathbf{Q}(\cdot - \vec{\mathbf{y}}) \|_{H^1} \ge \alpha_0.$$

Remark: Example $\epsilon_0^n = \frac{1}{n}(Q + a\chi_0)$, where $a = -\frac{\int \chi_0 Q}{\|\chi_0\|_2^2}$.

• Set $u_0=Q+\epsilon_0$: $\|\epsilon_0\|_{H^1}\leq 1$ and $\|\epsilon_0\|_{H^1}^2\leq b_0\int\epsilon_0\ Q$ (b_0 tbd)

- Set $u_0=Q+\epsilon_0$: $\|\epsilon_0\|_{H^1}\leq 1$ and $\|\epsilon_0\|_{H^1}^2\leq b_0\int\epsilon_0\,Q$ (b_0 tbd)
- For small enough b_0 we may assume $\epsilon_0 = u_0 Q \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$

- Set $u_0=Q+\epsilon_0$: $\|\epsilon_0\|_{H^1}\leq 1$ and $\|\epsilon_0\|_{H^1}^2\leq b_0\int\epsilon_0\,Q$ (b_0 tbd)
- For small enough b_0 we may assume $\epsilon_0 = u_0 Q \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$
- Assume by contradiction: Q is stable $\Rightarrow u(t) \in U_{\alpha_0}$ for some small α_0

- Set $u_0=Q+\epsilon_0$: $\|\epsilon_0\|_{H^1}\leq 1$ and $\|\epsilon_0\|_{H^1}^2\leq b_0\int\epsilon_0\,Q$ (b_0 tbd)
- For small enough b_0 we may assume $\epsilon_0 = u_0 Q \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$
- Assume by contradiction: Q is stable $\Rightarrow u(t) \in U_{\alpha_0}$ for some small α_0
- $\Rightarrow \exists \ \lambda(t), \vec{x}(t) = (x(t), 0) \text{ such that}$ $\epsilon(t) = \lambda(t) \ u(t, \lambda(t)\vec{y} + \vec{x}(t)) Q(\vec{y})$ (with $\vec{x}(0) = 0, \lambda(0) = 1$)
 and also satisfy $\epsilon(t) \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$

- Set $u_0=Q+\epsilon_0$: $\|\epsilon_0\|_{H^1}\leq 1$ and $\|\epsilon_0\|_{H^1}^2\leq b_0\int\epsilon_0\,Q$ (b_0 tbd)
- ► For small enough b_0 we may assume $\epsilon_0 = u_0 Q \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$
- Assume by contradiction: Q is stable $\Rightarrow u(t) \in U_{\alpha_0}$ for some small α_0
- $\Rightarrow \exists \ \lambda(t), \vec{x}(t) = (x(t), 0) \text{ such that}$ $\epsilon(t) = \lambda(t) \ u(t, \lambda(t)\vec{y} + \vec{x}(t)) Q(\vec{y})$ $\text{(with } \vec{x}(0) = 0, \lambda(0) = 1)$ and also satisfy $\epsilon(t) \perp \{Q_{x_1}, Q_{x_2}, \chi_0\}$
 - ▶ rescale time $t \mapsto s$: $\frac{ds}{dt} = \frac{1}{\lambda^3}$ + modulation of parameters (and $u \in U_{\alpha_0}$): $\|\epsilon(s)\|_{H^1} \lesssim \alpha_0$ and $|\lambda(s) - 1| \lesssim \alpha_0$

Set up
$$J(s) = \int_{\mathbb{R}^2} \epsilon(s, y_1, y_2) \left(\int_{-\infty}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

Set up
$$J(s) = \int_{\mathbb{P}^2} \epsilon(s, y_1, y_2) \left(\int_{-\infty}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

▶ actually need a localized version J_A :

$$J_A(s) = \int_{\mathbb{R}^2} \epsilon(s) \left(\int_{-\infty}^{y_1} \Lambda Q \right) \varphi_A(y_1) dy_1 dy_2$$

Set up
$$J(s) = \int_{\mathbb{D}^2} \epsilon(s, y_1, y_2) \left(\int_{0.05}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

▶ actually need a localized version J_A :

$$J_{A}(s) = \int_{\mathbb{R}^{2}} \epsilon(s) \left(\int_{-\infty}^{y_{1}} \Lambda Q \right) \varphi_{A}(y_{1}) dy_{1} dy_{2}$$

• furthermore, for more precise time control, set up $K_A(s) = \lambda(s) \left(J_A(s) - \kappa \right)$

Set up
$$J(s) = \int_{\mathbb{R}^2} \epsilon(s, y_1, y_2) \left(\int_{-\infty}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

▶ actually need a localized version J_A :

$$J_A(s) = \int_{\mathbb{R}^2} \epsilon(s) \left(\int_{-\infty}^{y_1} \Lambda Q \right) \varphi_A(y_1) dy_1 dy_2$$

- furthermore, for more precise time control, set up $K_A(s) = \lambda(s) (J_A(s) \kappa)$
- Easy to see:

$$||(1)||K_{\mathcal{A}}(s)||\lesssim (1+\mathcal{A}^{1/2})||\epsilon_0||_{L^2}$$

Set up
$$J(s) = \int_{\mathbb{R}^2} \epsilon(s, y_1, y_2) \left(\int_{-\infty}^{y_1} \Lambda Q(z, y_2) \, dz \right) dy_1 dy_2$$

▶ actually need a localized version J_A :

$$J_A(s) = \int_{\mathbb{R}^2} \epsilon(s) \left(\int_{-\infty}^{y_1} \Lambda Q \right) \, arphi_A(y_1) \, dy_1 dy_2$$

- furthermore, for more precise time control, set up $K_A(s) = \lambda(s) (J_A(s) \kappa)$
- ► Easy to see: $(1) |K_1(s)| \le (1 + \Delta^{1/2})|_{60}$
 - $(1) |K_{A}(s)| \lesssim (1 + A^{1/2}) \|\epsilon_{0}\|_{L^{2}}$
- Want: (2) $\frac{d}{ds}K_A(s) \ge \frac{1}{2}\int \epsilon_0 Q \text{ for } s > 0$

Set up
$$J(s) = \int_{\mathbb{D}^2} \epsilon(s, y_1, y_2) \left(\int_{0.05}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

▶ actually need a localized version J_A :

$$J_A(s) = \int_{\mathbb{R}^2} \epsilon(s) \left(\int_{-\infty}^{y_1} \Lambda Q \right) \, \varphi_A(y_1) \, dy_1 dy_2$$

- furthermore, for more precise time control, set up $K_A(s) = \lambda(s) (J_A(s) \kappa)$
- ► Easy to see:

$$(1) |K_A(s)| \lesssim (1+A^{1/2}) \|\epsilon_0\|_{L^2}$$

Want: (2) $\frac{d}{ds}K_A(s) \ge \frac{1}{2}\int \epsilon_0 Q \text{ for } s > 0$

 \Rightarrow for large enough s we get a contradiction.

Set up
$$J(s) = \int_{\mathbb{R}^2} \epsilon(s, y_1, y_2) \left(\int_{-\infty}^{y_1} \Lambda Q(z, y_2) dz \right) dy_1 dy_2$$

• actually need a localized version J_A :

$$J_A(s) = \int_{\mathbb{R}^2} \epsilon(s) \left(\int_{-\infty}^{y_1} \Lambda Q \right) \varphi_A(y_1) \, dy_1 dy_2$$

- furthermore, for more precise time control, set up $K_A(s) = \lambda(s) (J_A(s) \kappa)$
- Easy to see: $(1) | K(s) | < (1 + A^{1/2}) | | < (1 + A^{1/$
 - $(1) |K_A(s)| \lesssim (1 + A^{1/2}) \|\epsilon_0\|_{L^2}$
- Want: (2) $\frac{d}{ds}K_A(s) \ge \frac{1}{2}\int \epsilon_0 Q \text{ for } s > 0$
- \Rightarrow for large enough s we get a contradiction.
 - Issues: how to get (2)?
 control/independence of parameters α₀, b₀, A?

• Mass:
$$M_0 \equiv M[u_0 + \epsilon_0] = 2 \int \epsilon_0 Q + \int \epsilon_0^2 \ge 2 \int \epsilon_0 Q$$
.
So $2\lambda(1 - \frac{1}{2}(\frac{\chi_s}{\lambda} - 1))M_0 \ge \int \epsilon_0 Q$.

- Mass: $M_0 \equiv M[u_0 + \epsilon_0] = 2 \int \epsilon_0 Q + \int \epsilon_0^2 \ge 2 \int \epsilon_0 Q$. So $2\lambda (1 - \frac{1}{2}(\frac{x_s}{\lambda} - 1))M_0 \ge \int \epsilon_0 Q$.
- Need to control the remainder R:

- Mass: $M_0 \equiv M[u_0 + \epsilon_0] = 2 \int \epsilon_0 Q + \int \epsilon_0^2 \ge 2 \int \epsilon_0 Q$. So $2\lambda(1 - \frac{1}{2}(\frac{\chi_s}{\lambda} - 1))M_0 \ge \int \epsilon_0 Q$.
- ▶ Need to control the remainder *R*:

$$R(\epsilon, A) \lesssim \|\epsilon(s)\|_{L^2} \left(\|\epsilon(s)\|_{L^2} + A^{-1/2} + A^{1/2}\|\epsilon(s)\|_{L^2(x \geq A)} + \left|\int_{\mathbb{R}^2} y \left(\int_{-\infty}^x \Lambda Q\right)_y \epsilon \varphi_A\right|\right)$$

- Mass: $M_0 \equiv M[u_0 + \epsilon_0] = 2 \int \epsilon_0 Q + \int \epsilon_0^2 \ge 2 \int \epsilon_0 Q$. So $2\lambda (1 - \frac{1}{2}(\frac{x_s}{\lambda} - 1))M_0 \ge \int \epsilon_0 Q$.
- ▶ Need to control the remainder *R*:

$$R(\epsilon, A) \lesssim \|\epsilon(s)\|_{L^2} \left(\|\epsilon(s)\|_{L^2} + A^{-1/2} + A^{1/2} \|\epsilon(s)\|_{L^2(x \geq A)} + \left| \int_{\mathbb{R}^2} y \left(\int_{-\infty}^x \Lambda Q \right)_y \epsilon \varphi_A \right| \right)$$

Problem to control the last two terms

▶ Define (as in Martel-Merle) $I_{x_0,t_0}(t) = \int u^2(t,x,y) \psi(x-x(t_0)+\tfrac{1}{2}(t_0-t)-x_0) dx dy$ where $\psi(x) \approx \arctan\left(e^{-\frac{x}{M}}\right)$ and $\|u(\cdot+\vec{x}(t))-Q\|_{H^1} < \alpha$

▶ Define (as in Martel-Merle) $I_{x_0,t_0}(t) = \int u^2(t,x,y) \psi(x-x(t_0)+\tfrac{1}{2}(t_0-t)-x_0) dx dy$ where $\psi(x) \approx \arctan\left(e^{-\frac{x}{M}}\right)$ and $\|u(\cdot+\vec{x}(t))-Q\|_{H^1} \leq \alpha$

Prop: $I_{x_0,t_0}(t_0) - I_{x_0,t_0}(t) \le Ce^{-\frac{x_0}{M}}$, provided $x(t_0) - x(t) \ge \frac{3}{4}(t_0 - t)$ for every $t \in [0, t_0]$.

▶ Define (as in Martel-Merle) $I_{x_0,t_0}(t) = \int u^2(t,x,y) \psi(x-x(t_0)+\tfrac{1}{2}(t_0-t)-x_0) dx dy$ where $\psi(x) \approx \arctan\left(e^{-\frac{x}{M}}\right)$ and $\|u(\cdot+\vec{x}(t))-Q\|_{H^1} \leq \alpha$

Prop: $I_{x_0,t_0}(t_0) - I_{x_0,t_0}(t) \le Ce^{-\frac{x_0}{M}}$, provided $x(t_0) - x(t) \ge \frac{3}{4}(t_0 - t)$ for every $t \in [0, t_0]$.

Prop: Suppose $|u_0(x,y)| \lesssim e^{-\delta|(x,y)|}$ Then for all t > 0 and $x_0 > 0$

$$\int_{\mathbb{R}} \int_{x>x_0} u^2(t,x+x(t),y) dx dy \leq C e^{-\frac{x_0}{M}}.$$

In particular, $\int_{\mathbb{R}} \int_{x>x_0} \epsilon^2(t,x,y) dx dy \leq C e^{-\frac{x_0}{2M}}$, if ϵ_0 has also exponential decay.

▶ Define (as in Martel-Merle) $I_{x_0,t_0}(t) = \int u^2(t,x,y) \psi(x-x(t_0)+\tfrac{1}{2}(t_0-t)-x_0) dx dy$ where $\psi(x) \approx \arctan\left(e^{-\frac{x}{M}}\right)$ and $\|u(\cdot+\vec{x}(t))-Q\|_{H^1} \leq \alpha$

Prop:
$$I_{x_0,t_0}(t_0) - I_{x_0,t_0}(t) \le Ce^{-\frac{x_0}{M}}$$
, provided $x(t_0) - x(t) \ge \frac{3}{4}(t_0 - t)$ for every $t \in [0, t_0]$.

Prop: Suppose $|u_0(x,y)| \lesssim e^{-\delta|(x,y)|}$ Then for all t > 0 and $x_0 > 0$

$$\int_{\mathbb{R}} \int_{x>x_0} u^2(t, x + x(t), y) dx dy \le C e^{-\frac{x_0}{M}}.$$

In particular, $\int_{\mathbb{R}} \int_{x>x_0} \epsilon^2(t,x,y) dx dy \leq C e^{-\frac{x_0}{2M}}$, if ϵ_0 has also exponential decay.

▶ The 3rd term: $A^{1/2} \| \epsilon(s) \|_{L^2(x \ge A)} < \frac{1}{8} \int \epsilon_0 Q$.

Dealing with the last term

Using monotonicity ?

Dealing with the last term

- Using monotonicity ?
- No, does not help: that gives only boundedness, not smallness

Dealing with the last term

- Using monotonicity ?
- No, does not help: that gives only boundedness, not smallness
- Go back to the "basics": fundamental solution estimate (stationary point)

Dealing with the last term

- Using monotonicity ?
- No, does not help: that gives only boundedness, not smallness
- Go back to the "basics": fundamental solution estimate (stationary point)
 - Goal: pointwise decay on $\epsilon(s)$

Dealing with the last term

- Using monotonicity ?
- No, does not help: that gives only boundedness, not smallness
- Go back to the "basics": fundamental solution estimate (stationary point)
 - Goal: pointwise decay on $\epsilon(s)$
- Allows to show smallness of the last term

Prop: Let
$$A(x, y, t) = \iint_{\mathbb{R}^2} e^{i(t\xi^3 + t\xi\eta^2 + x\xi + y\eta)} d\xi d\eta$$

Prop: Let
$$A(x, y, t) = \iint_{\mathbb{R}^2} e^{i(t\xi^3 + t\xi\eta^2 + x\xi + y\eta)} d\xi d\eta$$

Let
$$\lambda = \frac{|x|^{3/2}}{t^{1/2}}$$
 and $z = \frac{y}{|x|}$.

Prop: Let
$$A(x, y, t) = \iint_{\mathbb{R}^2} e^{i(t\xi^3 + t\xi\eta^2 + x\xi + y\eta)} d\xi d\eta$$

Let
$$\lambda = \frac{|x|^{3/2}}{t^{1/2}}$$
 and $z = \frac{y}{|x|}$.

▶ Then for x > 0

$$|A(x,y,t)| \lesssim t^{-2/3} \begin{cases} \langle \lambda \rangle^{-\alpha} & \text{if } |z| \leq 4, \forall \alpha \geq 0 \\ \langle \lambda \rangle^{-\alpha} \langle \lambda |z|^{3/2} \rangle^{-\beta} & \text{if } |z| \geq 4, \forall \alpha, \beta \geq 0 \end{cases}$$

Prop: Let
$$A(x, y, t) = \iint_{\mathbb{R}^2} e^{i(t\xi^3 + t\xi\eta^2 + x\xi + y\eta)} d\xi d\eta$$

Let $\lambda = \frac{|x|^{3/2}}{t^{1/2}}$ and $z = \frac{y}{|x|}$.

▶ Then for x > 0

$$|A(x,y,t)| \lesssim t^{-2/3} \begin{cases} \langle \lambda \rangle^{-\alpha} & \text{if } |z| \leq 4, \forall \alpha \geq 0 \\ \langle \lambda \rangle^{-\alpha} \langle \lambda |z|^{3/2} \rangle^{-\beta} & \text{if } |z| \geq 4, \forall \alpha, \beta \geq 0 \end{cases}$$

If *x* < 0, then</p>

$$|A(x,y,t)| \lesssim t^{-2/3} \begin{cases} \langle \lambda \rangle^{-1/6} & \text{if } |z| \leq 4 \\ \langle \lambda \rangle^{-\alpha} \langle \lambda |z|^{3/2} \rangle^{-\beta} & \text{if } |z| \geq 4, \forall \alpha, \beta \geq 0 \end{cases}$$

Prop: Let
$$A(x, y, t) = \iint_{\mathbb{R}^2} e^{i(t\xi^3 + t\xi\eta^2 + x\xi + y\eta)} d\xi d\eta$$

Let $\lambda = \frac{|x|^{3/2}}{t^{1/2}}$ and $z = \frac{y}{|x|}$.

▶ Then for x > 0

$$|A(x,y,t)| \lesssim t^{-2/3} \begin{cases} \langle \lambda \rangle^{-\alpha} & \text{if } |z| \leq 4, \forall \alpha \geq 0 \\ \langle \lambda \rangle^{-\alpha} \langle \lambda |z|^{3/2} \rangle^{-\beta} & \text{if } |z| \geq 4, \forall \alpha, \beta \geq 0 \end{cases}$$

▶ If *x* < 0, then

$$|A(x,y,t)| \lesssim t^{-2/3} \begin{cases} \langle \lambda \rangle^{-1/6} & \text{if } |z| \leq 4 \\ \langle \lambda \rangle^{-\alpha} \langle \lambda |z|^{3/2} \rangle^{-\beta} & \text{if } |z| \geq 4, \forall \alpha, \beta \geq 0 \end{cases}$$

Next, estimate on the linear solution

$$S(t)u_0(x,y) = \int A(x',y',t)u_0(x+t-x',y-y') dx'dy'$$

$$S(t)u_0(x,y) = \int A(x',y',t)u_0(x+t-x',y-y') dx'dy'$$

Prop If $u_0 \in L^2_{xy}$ and $|u_0(x,y)| \lesssim \langle x \rangle^{-\sigma}$ for x > 0, for some $\sigma > 1$.

$$S(t)u_0(x,y) = \int A(x',y',t)u_0(x+t-x',y-y') dx'dy'$$

Prop If $u_0 \in L^2_{xy}$ and $|u_0(x,y)| \lesssim \langle x \rangle^{-\sigma}$ for x > 0, for some $\sigma > 1$.

► Then for t > 0, x > 0 $|S(t)u_0(x,y)| \lesssim (C + ||u_0||_{L^2}) t^{-7/12} \langle x \rangle^{-\tilde{\sigma}}$.

$$S(t)u_0(x,y) = \int A(x',y',t)u_0(x+t-x',y-y') dx'dy'$$

Prop If $u_0 \in L^2_{xy}$ and $|u_0(x,y)| \lesssim \langle x \rangle^{-\sigma}$ for x > 0, for some $\sigma > 1$.

- ► Then for t > 0, x > 0 $|S(t)u_0(x,y)| \lesssim (C + ||u_0||_{L^2}) t^{-7/12} \langle x \rangle^{-\tilde{\sigma}}$.
- Propagate this to the nonlinear equation.

$$S(t)u_0(x,y) = \int A(x',y',t)u_0(x+t-x',y-y') dx'dy'$$

Prop If $u_0 \in L^2_{xy}$ and $|u_0(x,y)| \lesssim \langle x \rangle^{-\sigma}$ for x > 0, for some $\sigma > 1$.

- ► Then for t > 0, x > 0 $|S(t)u_0(x,y)| \lesssim (C + ||u_0||_{L^2}) t^{-7/12} \langle x \rangle^{-\tilde{\sigma}}$.
- Propagate this to the nonlinear equation.
- via bootstrap

 $\underline{ \text{Prop:}} \ \ \mathsf{Suppose} \ |\epsilon_0(x,y)| \leq \frac{\delta_1}{\langle x \rangle^\sigma} \ \text{for} \ x > 0 \ \text{and any} \ y$

Prop: Suppose
$$|\epsilon_0(x,y)| \leq \frac{\delta_1}{\langle x \rangle^{\sigma}}$$
 for $x > 0$ and any y

• $\|\epsilon(s)\|_{H^1} + |\frac{\lambda_s}{\lambda}| + |\frac{x_s}{\lambda} - 1| \le \delta_2$ for all s > 0

Prop: Suppose
$$|\epsilon_0(x,y)| \leq \frac{\delta_1}{\langle x \rangle^{\sigma}}$$
 for $x > 0$ and any y

- $\|\epsilon(s)\|_{H^1}+|rac{\lambda_s}{\lambda}|+|rac{x_s}{\lambda}-1|\leq \delta_2$ for all s>0
- $\frac{1}{2} < \lambda(s) < \frac{3}{2}$ for all $s \ge 0$

Prop: Suppose $|\epsilon_0(x,y)| \leq \frac{\delta_1}{\langle x \rangle^{\sigma}}$ for x > 0 and any y

- $\|\epsilon(s)\|_{H^1} + |\frac{\lambda_s}{\lambda}| + |\frac{x_s}{\lambda} 1| \le \delta_2$ for all s > 0
- $\frac{1}{2} < \lambda(s) < \frac{3}{2}$ for all $s \ge 0$
- ► Then

$$|\epsilon(s,x,y)| \leq \eta \frac{\delta_1 + \delta_2}{\langle x \rangle^{\tilde{\sigma}}}$$

for all $s \ge 0$, $y \in \mathbb{R}$, x > 0.

<u>Prop:</u> Suppose $|\epsilon_0(x,y)| \leq \frac{\delta_1}{\langle x \rangle^{\sigma}}$ for x > 0 and any y

- $\|\epsilon(s)\|_{H^1} + |\frac{\lambda_s}{\lambda}| + |\frac{x_s}{\lambda} 1| \le \delta_2$ for all s > 0
- $\frac{1}{2} < \lambda(s) < \frac{3}{2}$ for all $s \ge 0$
- Then

$$|\epsilon(s,x,y)| \leq \eta \frac{\delta_1 + \delta_2}{\langle x \rangle^{\tilde{\sigma}}}$$

for all $s \ge 0$, $y \in \mathbb{R}$, x > 0.

Thus, the 4th term:

$$\left| \int_{\mathbb{R}^2} y \left(\int_{-\infty}^x \Lambda Q \right)_v \epsilon \varphi_A \right| \leq \frac{1}{8} \int \epsilon_0 Q.$$

▶ Choosing α_0, b_0 - appropriately small

- ▶ Choosing α_0, b_0 appropriately small
- $R(\epsilon, A) \leq \frac{1}{2} \int \epsilon_0 Q$

- Choosing α_0, b_0 appropriately small
- $P(\epsilon,A) \leq \frac{1}{2} \int \epsilon_0 Q$

- Choosing α_0, b_0 appropriately small
- $P(\epsilon,A) \leq \frac{1}{2} \int \epsilon_0 Q$
- ▶ Integrating in s:

$$K_A(s) \geq \frac{s}{2} \int \epsilon_0 \ Q + K_A(0) \text{ for all } s > 0$$
 and hence, $K_A(s) \to \infty$ as $s \to \infty$

- ▶ Choosing α_0, b_0 appropriately small
- $R(\epsilon, A) \leq \frac{1}{2} \int \epsilon_0 Q$
- Integrating in s: $K_A(s) \ge \frac{s}{2} \int \epsilon_0 Q + K_A(0) \text{ for all } s > 0$
 - and hence, $K_A(s) \to \infty$ as $s \to \infty$
- ▶ Contradiction with boundedness $|K_A(s)|$, finishes the proof!

THANK YOU for your attention!