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Equation

2 _4
Ofu — Au = |u|"-2u

(NLW) { .
Upt—o = (Up, ty) € H = H'(RN) x L2(RN)

where u: [0, T[xRN - R, N> 3.
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where u: [0, T[xRN - R, N > 3. Well-posedness in % = H' x L2
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Conserved energy

o1 1 N-2 2N
E@) =5 [ IVxutf+5 [ 1awi? - 557 [ o,

3
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Equation

(NLW) {8?U—Au: =D

I:l‘“:o = (Uo, U1) ceH= H1 (RN) X LZ(RN)
where u: [0, T[xRN - R, N > 3. Well-posedness in % = H' x L2

[Ginibre-Velo].
Conserved energy

E@) =5 [ [Wxu0f + 5 [ owoR - 5" [ luo.

Scaling:  u\(t,x) = WZ U (£,%).
The energy and the H-norm are scale invariant.

3

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017

4/22



Ground state

Stationary solutions of (NLW):

4 .
(E) - AQ=|Q"2Q, Q:RN-R, Qe H'(RM).
“Unique” Minimal energy solution of (E) (ground state):

X2 \'%

W(x) = (1 +N(N—2)) 2

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017 5/22



Ground state

Stationary solutions of (NLW):
(E) ~AQ=10/"2Q, Q:RN R, QeH'(®RV).

“Unique” Minimal energy solution of (E) (ground state):

W(x) = (1 +,\,(|,\),(|i2))1_g

Threshold for the dynamics: [Kenig-Merle 2008].

. N-2
T:(u) < oo = limsup |Vu|? + —— 0w > VW2
t—>T+ 2

Existence of solutions of (E) with arbitrary large energy: [W.Y. Ding
1986], [Del Pino, Musso, Pacard, Pistoia 2013].
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Other examples of solutions

Solitary waves (solitons): if p € R® et p = |p| < 1 and Q is a solution of

(E):

Qp(t, X) — Qp(O,X - tp)
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Other examples of solutions

Solitary waves (solitons): if p € R® et p = |p| < 1 and Q is a solution of

(E):

Qp(t,x) =Q ((—t +l <1 - 1) p-x) p+x>
Vi—e R \Vi-p
Qp(t, x) = Qp(0, x — tp).
Type Il Blow-up solutions:

. 1 :
u(t) = (/\(t),vzg w <)\(t)> ,0> +(vo,v1)+0(1), t— Ty,

where (v, v1) € H and \(t) < T4 —t, see [Krieger Schlag & Tataru
09]. See also [Hillairet & Raphaél 2012, Krieger & Schlag 2014,
Jendrej 2015].
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Other examples of solutions

Solitary waves (solitons): if p € R® et p = |p| < 1 and Q is a solution of

(E):

Qp(t,x) =Q ((—t +l <1 - 1) p-x) p+x>
Vi—e R \Vi-p
Qp(t, x) = Qp(0, x — tp).
Type Il Blow-up solutions:

. 1 :
u(t) = (/\(t),vzg w <)\(t)> ,0> +(vo,v1)+0(1), t— Ty,

where (vp, v1) € H and A\(f) < T4 —t, see [Krieger Schlag & Tataru
09]. See also [Hillairet & Raphaél 2012, Krieger & Schlag 2014,
Jendrej 2015].

Open questions: solutions with more than one bubbles, or other
bubbles than the ground state? See [Jendrej], [Martel & Merle] and
also [Céte & Zaag 2012], [Céte & Martel].
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Generalities on type Il blow-up

Let u be a solution of (NLW) such that

T. = T (u) < oo and limsup || Vul[%, + [|0rul|Z, < cc.
t— +

Then there exist k > 1, k blow-up points (X, ..., Xxx) € (RN)k and
(vo, v4) € H such that

u(t) P (vo, v1)

and, IettingRt:{xeRN Ve {1, Kk}, x—x| > T+—t},

Iim/ yvU(t,x)vVo(x)|2dx+/ |0¢u(t, x) — vi(x)[2 dx = 0.
t—Ty Ry Ry
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Linear wave equation

The asymptotic behavior for solutions of the linear wave equation:

ou, —Au, =0, xeRN
w) ! o e
UL“:():(U(),U1)€H:H(R )XL(R )

is well-known.
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Linear wave equation

The asymptotic behavior for solutions of the linear wave equation:

ou, —Au, =0, xeRN
w) ! o e
UL“:():(U(),U1)€H:H(R )XL(R )

is well-known. Let @ be the tangential derivative. Then:

[ St 0 + u(tx)? + (e 0 o~ 0
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Linear wave equation

The asymptotic behavior for solutions of the linear wave equation:

ou, —Au, =0, xeRN
w) ! o e
UL“:():(U(),U1)€H:H(R )XL(R )

is well-known. Let @ be the tangential derivative. Then:

t~>+ / ‘Z‘UL(t X)|2+|¢9UL(1L X)| —|-|UL(t X)’N 2dx =0

and (see [Friedlander 70s]) there exists G+ € L2(R x SN~1) such that

“+o00
lim / /
t—+o00 Jo SN—1

_ 2
n ‘r¥atuL(t, rw) + Gi(r — t,w)| drdw = 0.

2

rT Oyt rw) F Go(r — t,w)
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Equirepartition for the linear equation

Theorem [TD, Kenig, Merle 2012]. Assume that N is odd. Let u; be a

solution of the linear wave equation. Then the following holds for all
t>0orforallt<O0:

1
/‘ wuw@nﬁmz/'vmw@n2w.
x>t 2 Jpw
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Equirepartition for the linear equation

Theorem [TD, Kenig, Merle 2012]. Assume that N is odd. Let u; be a

solution of the linear wave equation. Then the following holds for all
t>0orforallt<O0:

1
/‘ wuw@mﬁmz/'vmw@n2w.
x>t 2 Jpw

Proof by a symmetry argument, using the explicit solution.
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Theorem [TD, Kenig, Merle 2012]. Assume that N is odd. Let u; be a

solution of the linear wave equation. Then the following holds for all
t>0orforallt<O0:

1
/’ wuw@nﬁmz/'vmw@nﬁw.
x>t 2 Jpw

Proof by a symmetry argument, using the explicit solution.
Does not hold in even dimension [Céte, Kenig, Schlag 2014].
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Equirepartition for the linear equation

Theorem [TD, Kenig, Merle 2012]. Assume that N is odd. Let u; be a
solution of the linear wave equation. Then the following holds for all
t>0orforallt <O0:

1
/ Voxun(t, )P dx > / Vi (0, X)[2 .
x>t 2 Jpw

Proof by a symmetry argument, using the explicit solution.
Does not hold in even dimension [Céte, Kenig, Schlag 2014].

Question: for which solutions of (NLW) does there exists > 0 such
that

Wt >0o0u Vvt <0, / Vexu(t, )2 ox > 17

x|t
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Equirepartition for critical focusing wave

Théoréeme [TD, Kenig, Merle 2012]. Assume N is odd. There exists
eo > 0 such that if u is a solution of (NLW) with:

I (Uo, u1)|2 < eo,

then the following holds for all t > 0 or for all t < 0:

/ \Vtxu(t‘,x)\2 ax > 1/ \Vtvxu(o,x)\2 ax.
X121 4 Jew
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Application

Theorem. There exists g > 0 such that, for any solution u of (NLW)
such that T (u) < oo and

N-2
limsup | Vul[f + —5—=llowl|Z < [VW]? + <o,
t—T. +

there exists xo € RV, (vo, v1) € H, p € RN, A(t) and x(t) such that

(u(t), Oru(t)) — (vo, v1)

: (A(tgoﬁ—1 e <0"_A();§t)>’A(t)Z(atW”) (0 _X(t))> o

A(t)
in H and
. )\(t) . X(t)—Xo 1/4
= —_ = < .
t|~|>r¥+ T+ —t 07 t|~l>n7’]+ T+ —t P, ’p| CE
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Outline

e Improved energy equirepartition
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Exterior energy for radial data in 3D

Proposition. Let u, be a radial solution of the linear wave equation in
space dimension 3. Let A > 0. Assume up L in H'({r > A}), i.e
up(A) = 0. Then:

+oo

vt >0 orvt <0, / (De.rup(t, r))?r? dr
A+t

+o00
>5 | @eunpra
A

N =
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Exterior energy for radial data in 3D

Proposition. Let u, be a radial solution of the linear wave equation in
space dimension 3. Let A > 0. Assume uoﬂ7 inH'({r > A}), i.e
up(A) = 0. Then:

+oo

vt >0 orvt <0, / (De.rup(t, r))?r? dr
A+t

+o00
>5 | @eunpra
2 Ja

Generalization to other odd dimensions: [Kenig, Lawrie, Baoping Liu,
Schlag 2015]
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Rigidity theorem

Theorem Assume N = 3. Let u be a global and radial solution of
(NLW). Assume

YA >0, liminf |V xu|? dx = 0.
t=£00 Jix|> A4t

Then u = 0 or there exist A > 0, . € {£1} such that
(t X) )\1L/2 W( )
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Rigidity theorem

Theorem Assume N = 3. Let u be a global and radial solution of
(NLW). Assume

YA >0, liminf |V xu|? dx = 0.
t=£00 Jix|> A4t

Then u = 0 or there exist A > 0, . € {£1} such that
(t X) )\1L/2 W( )

Recall that W(x) = ——, so that

2
()

f 1/2
v ()~

First step of the proof: 3¢ € R such that

, x| — 0.

rI|_>n;|O rup(r) = ¢.
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Classification of type Il blow-up solution

Theorem. Assume N = 3. Let u be a radial solution of (NLW) such
that T, (u) < +oc0. Then

lim |la(t =
(16Dl = +oo
or there exist J > 1,
@ signsy e {£1},j=1...J,

@ parameters \j(1), 0 < A\q(f) < Ao(f) < ... < M (t) < T — t,
such that
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Classification of type Il blow-up solution

Theorem. Assume N = 3. Let u be a radial solution of (NLW) such
that T, (u) < +oc0. Then

lim |la(t =
(16Dl = +oo
or there exist J > 1,
@ signsy e {£1},j=1...J,

such that

- J L X
U(t) = (V07 V1) + p (}\;(t) w <>\j(t)> ,O) + §(t),

J
where lim ||&(t 2y =0.

Thomas Duyckaerts (Paris 13)

@ parameters \j(1), 0 < A\q(f) < Ao(f) < ... < M (t) < T — t,
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Lower bound for the exterior energy

Lemma. Let~y € (0,1). There exists ¢ = () > 0 with the following
property. Let u; be a solution of (LW) with initial data (ug, uy) such that

(Up, uy) € H' x L2 if N >3
V| € L2,uy € LPanduy = Uy, SIN=2

(where u,, € R) and

1(Vuo, ur)llizss, us,_.) + [P0l 2 + 1|0rto + usll 2 < ell(Vuo, th)]l 2.
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Lower bound for the exterior energy

Lemma. Let~y € (0,1). There exists ¢ = () > 0 with the following
property. Let u; be a solution of (LW) with initial data (ug, uy) such that

(Up, uy) € H' x L2 if N >3
V| € L2,uy € LPanduy = Uy, SIN=2

(where u,, € R) and

1(Vuo, ur)llizss, us,_.) + [P0l 2 + 1|0rto + usll 2 < ell(Vuo, th)]l 2.

Then, forall t > 0,

/| Tt PO ) 0 2 50T, ) e
x>y
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Lower bound for the exterior energy

Lemma. Let~y € (0,1). There exists ¢ = () > 0 with the following
property. Let u; be a solution of (LW) with initial data (ug, uy) such that

(Up, uy) € H' x L2 if N >3
V| € L2,uy € LPanduy = Uy, SIN=2

(where u,, € R) and

1(Vuo, ur)llizss, us,_.) + [P0l 2 + 1|0rto + usll 2 < ell(Vuo, th)]l 2.

Then, forall t > 0,

/| Tt PO ) 0 2 50T, ) e
X|Z>y+

Application for critical semilinear wave equation: lower bound of the

exterior energy for well-prepared initial data, and soliton resolution
along a sequence of times.
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Wave maps

02U — Au = (|Vu|2 — |6,u|2) u, xecR?
(WM) -
Upt=o = (Uo, 1), Up-ur =0.
u: [0, T[xR? — S2.

“Well-posedness” in H = H'(R2) x L2(RR?) [Tao, Tatarul].
To fix ideas, consider classical solutions: (up, u1) C*, up constant at
infinity, uy = 0 at infinity.
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The energy
—5 [ IvoF + 5 [ ot

is conserved.
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Wave maps
02U — Au = (|Vu|2 — |6;u|2) u, xecR?
(WM) B
Upt=o = (Uo, U1), Up- Uy =0.
u: [0, T[xR? — S2.

“Well-posedness” in H = H'(R2) x L2(RR?) [Tao, Tatarul].
To fix ideas, consider classical solutions: (up, u1) C*, up constant at

infinity, uy = 0 at infinity.
—5 [ IvoF + 5 [ ot
is conserved.

The energy
Scaling:  uy(t,x)=u(L,%).
The energy is invariant by the scaling.
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References for Wave Maps.

Global and local Cauchy theory in the critical space: [Tao 2001],
[Tataru 2001 & 2005], [Sterbenz & Tataru 2010].

Global existence below the energy of the ground state: [Christodoulou,
Tahvildar-Zadeh 1993], [Struwe 2003] (equivariant case), [Sterbenz &
Tataru 2010]. See also [Tao], [Krieger & Schlag].

Explicit blow-up solutions: [Krieger, Schlag & Tataru 2008], [Raphaél &
Rodnianski 2012], [Jendrej 2016].

Soliton resolution for equivariant solutions below a natural threshold:
[Cobte, Kenig, Lawrie & Schlag 2015].

Soliton resolution along a sequence of times for equivariant solutions:
[Cote 2015].

Solition resolution strictly inside the wave cone for equivariant
solutions: [Grinis 2016].
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Well-prepared initial data for wave maps

Theorem. Let~ € (0,1). There exists € = ¢(vy) > 0 with the following

property. Let u be a classical solution of (WM) with initial data (ug, u1)
such that

Em(uo, ur) <e
and

1(Vuo, ur)llizss, us,_.) + [P0l 2 + 1|0rto + Uil 2 < ell(Vuo, th)]l 2.
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Well-prepared initial data for wave maps

Theorem. Let~ € (0,1). There exists € = ¢(vy) > 0 with the following

property. Let u be a classical solution of (WM) with initial data (ug, u1)
such that

Em(uo, ur) <e
and

1(Vuo, ur)llizss, us,_.) + [P0l 2 + 1|0rto + Uil 2 < ell(Vuo, th)]l 2.

Then, forallt > 0,

/ Tt x) @6 2 31 (Ve )
X|=Zvy
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Small blow-up solutions for wave maps

Theorem Let u be a classical of (WM) such that

Em(U(0)) < Em(W,0) + €3, blowing-up in finite time T, atx = 0. Then
Jp € R? such that |p| < 1, x(t) € R?, \(t) > 0 with

lim ﬂ—p iim ()

-0
t—>T+ T+ - ’ t—>T+ T+ —t ’

and (vp, v1) € H N C>®(R?\{0}) with (v — Us, V1) compactly
supported, such that

(i) inf{ [G(t) — (vo, v1) — (Qps 31Cp)|5, = Qo eMp} — 0,

(ii) H(Vu(t),&tu(t)) —(Vvg, vy)
where B (x(

— 0,
L2(R?\ By (x(1))) 17T+

1) ={xeR2 : |x —x(t)| < A(t)}, Mp is the set of all
geometrical transforms of Wy, (space translation, scaling, and S@
isometries), and W is the ground state
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