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Equation

(NLW)

{
∂2

t u −∆u = |u|
4

N−2 u

~u�t=0 = (u0,u1) ∈ H = Ḣ1(RN)× L2(RN)

where u : [0,T [×RN → R, N ≥ 3.

Well-posedness in H = Ḣ1 × L2

[Ginibre-Velo].
Conserved energy

E(~u) =
1
2

∫
RN
|∇xu(t)|2 +

1
2

∫
RN
|∂tu(t)|2 − N − 2

2N

∫
RN
|u(t)|

2N
N−2 .

Scaling: uλ(t , x) = 1
λN/2−1 u

( t
λ ,

x
λ

)
.

The energy and the H-norm are scale invariant.
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where u : [0,T [×RN → R, N ≥ 3. Well-posedness in H = Ḣ1 × L2
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where u : [0,T [×RN → R, N ≥ 3. Well-posedness in H = Ḣ1 × L2
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Ground state

Stationary solutions of (NLW):

(E) −∆Q = |Q|
4

N−2 Q, Q : RN → R, Q ∈ Ḣ1(RN).

“Unique” Minimal energy solution of (E) (ground state):

W (x) =

(
1 +

|x |2

N(N − 2)

)1−N
2

Threshold for the dynamics: [Kenig-Merle 2008].

T+(u) <∞ =⇒ lim sup
t→T+

‖∇u‖2L2 +
N − 2

2
‖∂tu‖2L2 ≥ ‖∇W‖2L2

Existence of solutions of (E) with arbitrary large energy: [W.Y. Ding
1986], [Del Pino, Musso, Pacard, Pistoia 2013].
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Other examples of solutions

Solitary waves (solitons): if p ∈ R3 et p = |p| < 1 and Q is a solution of
(E):

Qp(t , x) = Q

((
− t√

1− p2
+

1
p2

(
1√

1− p2
− 1

)
p · x

)
p + x

)
Qp(t , x) = Qp(0, x − tp).

Type II Blow-up solutions:

~u(t) =

(
1

λ(t)
N−2

2

W
(
·

λ(t)

)
,0

)
+ (v0, v1) + o(1), t → T+,

where (v0, v1) ∈ H and λ(t)� T+ − t , see [Krieger Schlag & Tataru
09]. See also [Hillairet & Raphaël 2012, Krieger & Schlag 2014,
Jendrej 2015].
Open questions: solutions with more than one bubbles, or other
bubbles than the ground state? See [Jendrej], [Martel & Merle] and
also [Côte & Zaag 2012], [Côte & Martel].
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Generalities on type II blow-up

Let u be a solution of (NLW) such that

T+ = T+(u) <∞ and lim sup
t→T+

‖∇u‖2L2 + ‖∂tu‖2L2 <∞.

Then there exist k ≥ 1, k blow-up points (x1, . . . , xk ) ∈
(
RN)k and

(v0, v1) ∈ H such that
~u(t) −−−⇀

t→T+

(v0, v1)

and, letting Rt =
{

x ∈ RN : ∀j ∈ {1, . . . , k}, |x − xj | > T+ − t
}
,

lim
t→T+

∫
Rt

|∇u(t , x)−∇v0(x)|2 dx +

∫
Rt

|∂tu(t , x)− v1(x)|2 dx = 0.
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Linear wave equation

The asymptotic behavior for solutions of the linear wave equation:

(LW)

{
∂2

t uL −∆uL = 0, x ∈ RN

~uL�t=0 = (u0,u1) ∈ H = Ḣ1(RN)× L2(RN).

is well-known.

Let /∂ be the tangential derivative. Then:

lim
t→+∞

∫
1
|x |2
|uL(t , x)|2 + |/∂uL(t , x)|2 + |uL(t , x)|

2N
N−2 dx = 0

and (see [Friedlander 70s]) there exists G± ∈ L2(R× SN−1) such that

lim
t→+∞

∫ +∞

0

∫
SN−1

∣∣∣r N−1
2 ∂r uL(t , rω)∓G±(r − t , ω)

∣∣∣2
+
∣∣∣r N−1

2 ∂tuL(t , rω) + G±(r − t , ω)
∣∣∣2 drdω = 0.
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Equirepartition for the linear equation

Theorem [TD, Kenig, Merle 2012]. Assume that N is odd. Let uL be a
solution of the linear wave equation. Then the following holds for all
t ≥ 0 or for all t ≤ 0:∫

|x |≥|t |
|∇t ,xuL(t , x)|2 dx ≥ 1

2

∫
RN
|∇t ,xuL(0, x)|2 dx .

Proof by a symmetry argument, using the explicit solution.
Does not hold in even dimension [Côte, Kenig, Schlag 2014].

Question: for which solutions of (NLW) does there exists η > 0 such
that

∀t ≥ 0 ou ∀t ≤ 0,
∫
|x |≥|t |

|∇t ,xu(t , x)|2 dx ≥ η?
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Equirepartition for critical focusing wave

Théorème [TD, Kenig, Merle 2012]. Assume N is odd. There exists
ε0 > 0 such that if u is a solution of (NLW) with:

‖(u0,u1)‖H < ε0,

then the following holds for all t ≥ 0 or for all t ≤ 0:∫
|x |≥|t |

|∇t ,xu(t , x)|2 dx ≥ 1
4

∫
RN
|∇t ,xu(0, x)|2 dx .
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Application

Theorem. There exists ε0 > 0 such that, for any solution u of (NLW)
such that T+(u) <∞ and

lim sup
t→T+

‖∇u‖2L2 +
N − 2

2
‖∂tu‖2L2 ≤ ‖∇W‖2 + ε0,

there exists x0 ∈ RN , (v0, v1) ∈ H, p ∈ RN , λ(t) and x(t) such that

(u(t), ∂tu(t))− (v0, v1)

−

(
ι0

λ(t)
N
2−1

Wp

(
0,
· − x(t)
λ(t)

)
,

ι0

λ(t)
N
2

(∂tWp)

(
0,
· − x(t)
λ(t)

))
−−−→
t→T+

0

in H and

lim
t→T+

λ(t)
T+ − t

= 0, lim
t→T+

x(t)− x0

T+ − t
= p, |p| ≤ Cε1/4

0 .

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017 12 / 22



Outline

1 Focusing critical wave equation

2 Energy equirepartition

3 Improved energy equirepartition

4 Well-prepared initial data

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017 13 / 22



Exterior energy for radial data in 3D

Proposition. Let uL be a radial solution of the linear wave equation in
space dimension 3. Let A > 0. Assume u0⊥1

r in Ḣ1({r > A}), i.e
u0(A) = 0. Then:

∀t ≥ 0 or ∀t ≤ 0,
∫ +∞

A+|t |
(∂t ,r uL(t , r))2r2 dr

≥ 1
2

∫ +∞

A
(∂t ,r uL(0, r))2r2 dr .

Generalization to other odd dimensions: [Kenig, Lawrie, Baoping Liu,

Schlag 2015]
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Rigidity theorem

Theorem Assume N = 3. Let u be a global and radial solution of
(NLW). Assume

∀A > 0, lim inf
t→±∞

∫
|x |≥A+|t |

|∇t ,xu|2 dx = 0.

Then u = 0 or there exist λ > 0, ι ∈ {±1} such that
u(t , x) = ι

λ1/2 W
( x
λ

)
.

Recall that W (x) = 1(
1+ |x|

2
3

) 1
2

, so that

ι

λ1/2 W
(x
λ

)
≈
√

3λ1/2

|x |
, |x | → ∞.

First step of the proof: ∃` ∈ R such that

lim
r→∞

ru0(r) = `.
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Classification of type II blow-up solution

Theorem. Assume N = 3. Let u be a radial solution of (NLW) such
that T+(u) < +∞. Then

lim
t→T+(u)

‖~u(t)‖H = +∞

or there exist J ≥ 1,
(v0, v1) ∈ H,
signs ιj ∈ {±1}, j = 1 . . . J,
parameters λj(t), 0 < λ1(t)� λ2(t)� . . .� λJ(t)� T+ − t ,

such that

~u(t) = (v0, v1) +
J∑

j=1

 ιj

λ
1
2
j (t)

W
(

x
λj(t)

)
,0

+ ~ε(t),

where lim
t→T+

‖~ε(t)‖H = 0.
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Lower bound for the exterior energy

Lemma. Let γ ∈ (0,1). There exists ε = ε(γ) > 0 with the following
property. Let uL be a solution of (LW) with initial data (u0,u1) such that{

(u0,u1) ∈ Ḣ1 × L2 if N ≥ 3
|∇u0| ∈ L2,u1 ∈ L2 and u0 ≡ u∞ si N = 2

(where u∞ ∈ R) and

‖(∇u0,u1)‖L2(Bc
1+ε∪B1−ε)

+ ‖/∂u0‖L2 + ‖∂r u0 + u1‖L2 ≤ ε‖(∇u0,u1)‖L2 .

Then, for all t ≥ 0,∫
|x |≥γ+t

|∇x ,tuL|2(x , t) dx ≥ γ‖(∇u0, u1)‖2L2 .

Application for critical semilinear wave equation: lower bound of the
exterior energy for well-prepared initial data, and soliton resolution
along a sequence of times.
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Lower bound for the exterior energy
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Wave maps

(WM)

 ∂2
t u −∆u =

(
|∇u|2 − |∂tu|2

)
u, x ∈ R2

~u�t=0 = (u0,u1), u0 · u1 = 0.

u : [0,T [×R2 → S2.

“Well-posedness” in H = Ḣ1(R2)× L2(R2) [Tao, Tataru].
To fix ideas, consider classical solutions: (u0,u1) C∞, u0 constant at
infinity, u1 ≡ 0 at infinity.

The energy

EM(~u) =
1
2

∫
R2
|∇xu(t)|2 +

1
2

∫
R2
|∂tu(t)|2

is conserved.
Scaling: uλ(t , x) = u

( t
λ ,

x
λ

)
.

The energy is invariant by the scaling.
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“Well-posedness” in H = Ḣ1(R2)× L2(R2) [Tao, Tataru].
To fix ideas, consider classical solutions: (u0,u1) C∞, u0 constant at
infinity, u1 ≡ 0 at infinity.
The energy

EM(~u) =
1
2

∫
R2
|∇xu(t)|2 +

1
2

∫
R2
|∂tu(t)|2

is conserved.

Scaling: uλ(t , x) = u
( t
λ ,

x
λ

)
.

The energy is invariant by the scaling.

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017 19 / 22



Wave maps

(WM)

 ∂2
t u −∆u =

(
|∇u|2 − |∂tu|2

)
u, x ∈ R2

~u�t=0 = (u0,u1), u0 · u1 = 0.

u : [0,T [×R2 → S2.
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References for Wave Maps.

Global and local Cauchy theory in the critical space: [Tao 2001],
[Tataru 2001 & 2005], [Sterbenz & Tataru 2010].

Global existence below the energy of the ground state: [Christodoulou,
Tahvildar-Zadeh 1993], [Struwe 2003] (equivariant case), [Sterbenz &
Tataru 2010]. See also [Tao], [Krieger & Schlag].

Explicit blow-up solutions: [Krieger, Schlag & Tataru 2008], [Raphaël &
Rodnianski 2012], [Jendrej 2016].

Soliton resolution for equivariant solutions below a natural threshold:
[Côte, Kenig, Lawrie & Schlag 2015].

Soliton resolution along a sequence of times for equivariant solutions:
[Côte 2015].

Solition resolution strictly inside the wave cone for equivariant
solutions: [Grinis 2016].

Thomas Duyckaerts (Paris 13) Exterior energy for waves June 12th, 2017 20 / 22



Well-prepared initial data for wave maps

Theorem. Let γ ∈ (0,1). There exists ε = ε(γ) > 0 with the following
property. Let u be a classical solution of (WM) with initial data (u0,u1)
such that

EM(u0,u1) ≤ ε

and

‖(∇u0,u1)‖L2(Bc
1+ε∪B1−ε)

+ ‖/∂u0‖L2 + ‖∂r u0 + u1‖L2 ≤ ε‖(∇u0,u1)‖L2 .

Then, for all t ≥ 0,∫
|x |≥γ+t

|∇x ,tu|2(t , x) dx ≥ γ‖(∇u0, u1)‖2L2 .
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Small blow-up solutions for wave maps

Theorem Let u be a classical of (WM) such that
EM(~u(0)) < EM(W ,0) + ε20, blowing-up in finite time T+ at x = 0. Then
∃p ∈ R2 such that |p| � 1, x(t) ∈ R2, λ(t) > 0 with

lim
t→T+

x(t)
T+ − t

= p, lim
t→T+

λ(t)
T+ − t

= 0,

and (v0, v1) ∈ H ∩ C∞(R2\{0}) with (v0 − u∞, v1) compactly
supported, such that

(i) inf
{∥∥~u(t)− (v0, v1)− (Qp, ∂tQp)

∥∥
H : Qp ∈Mp

}
−→
t→T+

0,

(ii)
∥∥∥∥(∇u(t), ∂tu(t))− (∇v0, v1)

∥∥∥∥
L2(R2\Bλ(t)(x(t)))

−→
t→T+

0,

where Bλ(t)(x(t)) =
{

x ∈ R2 : |x − x(t)| < λ(t)
}

,Mp is the set of all
geometrical transforms of Wp (space translation, scaling, and S2

isometries), and W is the ground state.
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