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For the L2 critical nonlinear Schrödinger equation

(NLS)
{
i∂tu + ∆u + |u| 4N u = 0,
u(t0) = u0 ∈ H1(RN).

Let QNLS be the unique radial ground state of (NLS) solution to

∆Q − Q + |Q|
4
N Q = 0, Q > 0, Q ∈ H1(RN).

Any solution u of (NLS) which satisfies ‖u(t)‖L2 < ‖QNLS‖L2 is global.

Let SNLS be the solution of (NLS) defined for all t > 0 by

SNLS(t, x) = 1
t N

2
e−i |x|

2
4t −

i
t QNLS

(x
t

)
.

Theorem (Merle ’93)
Up to the symmetries of the equation, SNLS is the unique minimal mass
blow up solution of (NLS) in H1(RN).
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For an L2 critical inhomogeneous NLS equation

(INLS)
{
i∂tu + ∆u + |x |−b|u|

4−2b
N u = 0,

u(t0) = u0 ∈ H1(RN).
Let ψ be the unique radial ground state of (NLS) solution to

∆ϕ− ϕ+ |x |−b|ϕ|
4−2b

N ϕ = 0, ϕ > 0, ϕ ∈ H1(RN).

Any solution u of (INLS) which satisfies ‖u(t)‖L2 < ‖ψ‖L2 is global in
time [Genoud ’12].

Let SINLS be the solution of (INLS) defined for all t > 0 by

SINLS(t, x) = 1
t N

2
e−i |x|

2
4t −

i
t ψ

(x
t

)
.

Theorem (C.–Genoud ’16)
Let N > 1 and 0 < b < min{2,N}. Up to the symmetries of the equation,
SINLS is the unique minimal mass blow up solution of (INLS) in H1(RN).
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For the L2 critical generalized KdV equation

(gKdV)
{
∂tu + ∂3xu + ∂x (u5) = 0,
u(t0) = u0 ∈ H1(R).

Let Q ∈ H1(R) be the unique positive solution to Q′′ − Q + Q5 = 0.
Any solution u of (gKdV) which satisfies ‖u(t)‖L2 < ‖Q‖L2 is global.

Theorem (Martel–Merle–Raphaël ’15)
There exist a solution S ∈ C((0,+∞),H1) to (gKdV) and a universal
constant c0 ∈ R such that ‖S(t)‖L2 = ‖Q‖L2 for all t > 0 and

S(t)− 1
t 1
2
Q
(
·+ 1

t
t + c0

)
→ 0 in L2 as t ↓ 0.

Moreover, up to the symmetries of the equation, S is the unique minimal
mass blow up solution of (gKdV) in H1(R).
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For the L2 critical generalized KdV equation (continued)

Theorem (C.–Martel ’17)
There exist Schwartz functions {Qk}k>0 such that, for all m > 0,

∂m
x S(t)−

[m/2]∑
k=0

1
t 1
2+m−2k

Q(m−k)
k

(
·+ 1

t
t + c0

)
→ 0 in L2 as t ↓ 0.

Remark
For (NLS), from the explicit formula satisfied by SNLS, there exist
Schwartz functions {Q̃k}k>0 such that, for all m > 0,

∂m
x SNLS(t)− e−

i
t

m∑
k=0

1
t 1
2+m−k

Q̃(m)
k

( ·
t

)
→ 0 in L2 as t ↓ 0.
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For the L2 critical generalized KdV equation (continued)

Theorem (C.–Martel ’17)
For any m > 0, the following hold for all 0 < t � 1.

1 For all x 6 −1
t − 1,

S(t, x) ∼ −1
2‖Q‖L1 |x |−

3
2 and |∂m

x S(t, x)| . |x |−
3
2−m.

2 There exists γm > 0 such that, for all x ∈ R,

|∂m
x S(t, x)| . 1

t 1
2+m

exp
(
−γm

x + 1
t

t

)
.

3 S(t) ∈ L1(R) and ∫
R
S(t, x) dx = 0.
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Research interests

L2 critical and supercritical equations: gKdV, NLS, . . .

Solitons dynamics: stability, instability, blow up, . . .

Multi-solitons dynamics: existence and uniqueness, interactions, . . .
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