Minimal mass blow up solutions for L^2 critical nonlinear dispersive equations

Vianney Combet

Université de Lille

CIRM flash presentation

For the L^2 critical nonlinear Schrödinger equation

(NLS)
$$\begin{cases} i\partial_t u + \Delta u + |u|^{\frac{4}{N}} u = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}^N). \end{cases}$$

Let $Q_{\rm NLS}$ be the unique radial ground state of (NLS) solution to

$$\Delta Q-Q+|Q|^{rac{4}{N}}Q=0, \quad Q>0, \quad Q\in H^1(\mathbb{R}^N).$$

Any solution u of (NLS) which satisfies $||u(t)||_{L^2} < ||Q_{\text{NLS}}||_{L^2}$ is global.

For the L^2 critical nonlinear Schrödinger equation

(NLS)
$$\begin{cases} i\partial_t u + \Delta u + |u|^{\frac{4}{N}} u = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}^N). \end{cases}$$

Let $Q_{\rm NLS}$ be the unique radial ground state of (NLS) solution to

$$\Delta Q-Q+|Q|^{rac{4}{N}}Q=0, \quad Q>0, \quad Q\in H^1(\mathbb{R}^N).$$

Any solution u of (NLS) which satisfies $||u(t)||_{L^2} < ||Q_{\text{NLS}}||_{L^2}$ is global. Let S_{NLS} be the solution of (NLS) defined for all t > 0 by

$$S_{\mathrm{NLS}}(t,x) = \frac{1}{t^{\frac{N}{2}}} e^{-i\frac{|x|^2}{4t} - \frac{i}{t}} Q_{\mathrm{NLS}}\left(\frac{x}{t}\right).$$

Theorem (Merle '93)

Up to the symmetries of the equation, $S_{\rm NLS}$ is the unique minimal mass blow up solution of (NLS) in $H^1(\mathbb{R}^N)$.

Vianney Combet (Univ. Lille)

Minimal mass blow up solutions

For an L^2 critical inhomogeneous NLS equation

(INLS)
$$\begin{cases} i\partial_t u + \Delta u + |x|^{-b}|u|^{\frac{4-2b}{N}}u = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}^N). \end{cases}$$

Let ψ be the unique radial ground state of (NLS) solution to

$$\Delta \varphi - \varphi + |x|^{-b} |\varphi|^{\frac{4-2b}{N}} \varphi = 0, \quad \varphi > 0, \quad \varphi \in H^1(\mathbb{R}^N).$$

Any solution u of (INLS) which satisfies $||u(t)||_{L^2} < ||\psi||_{L^2}$ is global in time [Genoud '12].

For an L^2 critical inhomogeneous NLS equation

(INLS)
$$\begin{cases} i\partial_t u + \Delta u + |x|^{-b}|u|^{\frac{4-2b}{N}}u = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}^N). \end{cases}$$

Let ψ be the unique radial ground state of (NLS) solution to

$$\Delta \varphi - \varphi + |x|^{-b} |\varphi|^{\frac{4-2b}{N}} \varphi = 0, \quad \varphi > 0, \quad \varphi \in H^1(\mathbb{R}^N).$$

Any solution u of (INLS) which satisfies $||u(t)||_{L^2} < ||\psi||_{L^2}$ is global in time [Genoud '12].

Let $S_{\rm INLS}$ be the solution of (INLS) defined for all t > 0 by

$$S_{\rm INLS}(t,x) = \frac{1}{t^{\frac{N}{2}}} e^{-i\frac{|x|^2}{4t} - \frac{i}{t}} \psi\left(\frac{x}{t}\right).$$

Theorem (C.–Genoud '16)

Let $N \ge 1$ and $0 < b < \min\{2, N\}$. Up to the symmetries of the equation, S_{INLS} is the unique minimal mass blow up solution of (INLS) in $H^1(\mathbb{R}^N)$.

Vianney Combet (Univ. Lille)

For the L^2 critical generalized KdV equation

(gKdV)
$$\begin{cases} \partial_t u + \partial_x^3 u + \partial_x (u^5) = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}). \end{cases}$$

Let $Q \in H^1(\mathbb{R})$ be the unique positive solution to $Q'' - Q + Q^5 = 0$. Any solution u of (gKdV) which satisfies $||u(t)||_{L^2} < ||Q||_{L^2}$ is global.

For the L^2 critical generalized KdV equation

(gKdV)
$$\begin{cases} \partial_t u + \partial_x^3 u + \partial_x (u^5) = 0, \\ u(t_0) = u_0 \in H^1(\mathbb{R}). \end{cases}$$

Let $Q \in H^1(\mathbb{R})$ be the unique positive solution to $Q'' - Q + Q^5 = 0$. Any solution u of (gKdV) which satisfies $||u(t)||_{L^2} < ||Q||_{L^2}$ is global.

Theorem (Martel–Merle–Raphaël '15)

There exist a solution $S \in C((0, +\infty), H^1)$ to (gKdV) and a universal constant $c_0 \in \mathbb{R}$ such that $||S(t)||_{L^2} = ||Q||_{L^2}$ for all t > 0 and

$$S(t)-rac{1}{t^{rac{1}{2}}}Q\left(rac{\cdot+rac{1}{t}}{t}+c_0
ight)
ightarrow 0$$
 in L^2 as $t\downarrow 0.$

Moreover, up to the symmetries of the equation, S is the unique minimal mass blow up solution of (gKdV) in $H^1(\mathbb{R})$.

Theorem (C.–Martel '17)

There exist Schwartz functions $\{Q_k\}_{k\geq 0}$ such that, for all $m \geq 0$,

$$\partial_x^m S(t) - \sum_{k=0}^{\lfloor m/2
floor} rac{1}{t^{rac{1}{2}+m-2k}} Q_k^{(m-k)} \left(rac{\cdot+rac{1}{t}}{t}+c_0
ight) o 0 \quad ext{in} \ \ L^2 ext{ as } t \downarrow 0.$$

Theorem (C.–Martel '17)

There exist Schwartz functions $\{Q_k\}_{k\geq 0}$ such that, for all $m \geq 0$,

$$\partial_x^m S(t) - \sum_{k=0}^{\lfloor m/2
floor} rac{1}{t^{rac{1}{2}+m-2k}} Q_k^{(m-k)} \left(rac{\cdot+rac{1}{t}}{t}+c_0
ight) o 0 \quad ext{ in } L^2 ext{ as } t\downarrow 0.$$

Remark

For (NLS), from the explicit formula satisfied by $S_{\rm NLS}$, there exist Schwartz functions $\{\tilde{Q}_k\}_{k\geq 0}$ such that, for all $m \geq 0$,

$$\partial_x^m \mathcal{S}_{\mathrm{NLS}}(t) - e^{-rac{i}{t}} \sum_{k=0}^m rac{1}{t^{rac{1}{2}+m-k}} \tilde{Q}_k^{(m)}\left(rac{\cdot}{t}
ight) o 0 \quad \textit{in } L^2 \textit{ as } t \downarrow 0.$$

Theorem (C.–Martel '17)

For any $m \ge 0$, the following hold for all $0 < t \ll 1$.

• For all $x \leq -\frac{1}{t} - 1$,

$$S(t,x) \sim -rac{1}{2} \|Q\|_{L^1} |x|^{-rac{3}{2}} \quad ext{and} \quad |\partial_x^m S(t,x)| \lesssim |x|^{-rac{3}{2}-m}.$$

Theorem (C.–Martel '17)

For any $m \ge 0$, the following hold for all $0 < t \ll 1$.

• For all $x \leq -\frac{1}{t} - 1$,

$$S(t,x) \sim -rac{1}{2} \|Q\|_{L^1} |x|^{-rac{3}{2}} \quad ext{and} \quad |\partial^m_x S(t,x)| \lesssim |x|^{-rac{3}{2}-m}$$

2 There exists $\gamma_m > 0$ such that, for all $x \in \mathbb{R}$,

$$|\partial_x^m \mathcal{S}(t,x)| \lesssim rac{1}{t^{rac{1}{2}+m}} \exp\left(-\gamma_m rac{x+rac{1}{t}}{t}
ight).$$

Theorem (C.–Martel '17)

For any $m \ge 0$, the following hold for all $0 < t \ll 1$.

$$I \quad \text{For all } x \leqslant -\frac{1}{t} - 1,$$

$$S(t,x) \sim -rac{1}{2} \|Q\|_{L^1} |x|^{-rac{3}{2}}$$
 and $|\partial_x^m S(t,x)| \lesssim |x|^{-rac{3}{2}-m}$

2 There exists $\gamma_m > 0$ such that, for all $x \in \mathbb{R}$,

$$|\partial_x^m S(t,x)| \lesssim \frac{1}{t^{\frac{1}{2}+m}} \exp\left(-\gamma_m \frac{x+\frac{1}{t}}{t}\right)$$

 $S(t) \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} S(t,x)\,dx=0.$$

• L² critical and supercritical equations: gKdV, NLS, ...

• Solitons dynamics: stability, instability, blow up, ...

• Multi-solitons dynamics: existence and uniqueness, interactions,