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Generalized Hartree equation

Result: Dichotomy below the threshold (S. Roudenko - A., 2016)

Consider u(x , t) be a solution of

iut + ∆u +
(
|x |−(N−γ) ∗ |u|p

)
|u|p−2u = 0 x ∈ Rn, t ∈ R 0 < γ < N

with u0 ∈ H1(RN) and 0 < s < 1. Assume that M1−sE s [u0] < M1−sE s [Q].

I ||u0||1−s
L2
||∇u0||sL2 < ||Q||

1−s
L2
||∇Q||sL2

=⇒ u(t) exists globally in time, and scatters in H1 for all t ∈ R.

I ||u0||1−s
L2
||∇u0||sL2 > ||Q||

1−s
L2
||∇Q||sL2

=⇒ u(t) blows up in finite time.

Work in progress

- Scattering without using concentration - compactness as in
Dodson-Murphy.
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Blow-up criteria
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Future work

- studying blow-up in Hartree equation

Other equation - Complex general Ginzburg-Landau equation

To ∞ and beyond - STAY MAGICAL
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