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Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995):

Geometry.

ABA−1B−1.

• New efficient synthesis algorithms (ca. 2012):

Algebraic number theory.

a + b
√
2.
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Part I: Some number theory
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Some number theory: Fermat’s theorem on sums of two

squares

Which integers can be written as a sum of two squares?
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Some number theory: Fermat’s theorem on sums of two

squares

Which integers can be written as a sum of two squares?

Theorem. If n and m can each be written as a sum of two

squares, then nm can be written as a sum of two squares.

Proof. This is easiest seen using complex numbers. Note that

a2 + b2 = (a + bi)(a − bi).

Therefore, n is a sum of two squares if and only if it can be

written in the form t†t, for some Gaussian integer

t = a + bi ∈ Z[i].

The claim follows because nm = (t†t)(u†u) = (tu)†(tu). ✷

4-b



First lesson of number theory

We can learn more about the integers by moving to a larger

ring, such as Z[i].
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Fermat’s theorem on sums of two squares, continued

What about the converse?

Theorem. If nm can be written as a sum of two squares, and

if n,m are relatively prime, and n,m ≥ 0, then n and m can each

be written as a sum of two squares.
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Fermat’s theorem on sums of two squares, continued

What about the converse?

Theorem. If nm can be written as a sum of two squares, and

if n,m are relatively prime, and n,m ≥ 0, then n and m can each

be written as a sum of two squares.

Proof. Suppose nm = a2 + b2 = (a + bi)(a − bi).

Z[i] is a Euclidean domain, so has greatest common divisors.

Let t = gcd(n, a + bi) and s = gcd(m, a + bi) in Z[i].

An easy argument (using uniqueness of prime factorizations in

Z[i]) shows that n = t†t and m = s†s. Hence both n and m can

be written as a sum of two squares.
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Second lesson of number theory

The fact that Z[i] is a Euclidean domain, and in particular, the

ability to take greatest common divisors and prime

factorizations in Z[i], is very helpful.
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Definition. A ring is called a Euclidean domain if it is equipped

with a notion of division with remainder. Specifically, such a

ring must have:

1. A Euclidean function, i.e., a function f assigning a natural

number to each ring element;

2. Division with remainder: For all a, b with b 6= 0, there exist

q, r such that

a = bq + r

and f(r) < f(b).

Main properties. In a Euclidean domain, the concepts of

divisor, greatest common divisor, and prime make sense. The

Euclidean algorithm can be used to compute greatest common

divisors d = gcd(a, b), as well as x, y such that d = xa + yb.

Euclidean domains satisfy unique prime factorization.
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Fermat’s theorem on sums of two squares, continued

By the previous theorems, it suffices to consider primes. Which

primes can be written as a sum of two squares?

Obvious necessary condition: p > 0.

p a2 + b2

2 = 1 + 1

3 = —
5 = 1 + 4

7 = —
11 = —
13 = 4 + 9

17 = 1 + 16

19 = —
23 = —
29 = 4 + 25

p a2 + b2

31 = —
37 = 1 + 36

41 = 16 + 25

43 = —
47 = —
53 = 4 + 49

59 = —
61 = 25 + 36

67 = —
71 = —
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Fermat’s theorem on sums of two squares, continued

By the previous theorems, it suffices to consider primes. Which

primes can be written as a sum of two squares?

Obvious necessary condition: p > 0.

p a2 + b2 p (mod 4)

2 = 1 + 1 2

3 = — 3

5 = 1 + 4 1

7 = — 3

11 = — 3

13 = 4 + 9 1

17 = 1 + 16 1

19 = — 3

23 = — 3

29 = 4 + 25 1

p a2 + b2 p (mod 4)

31 = — 3

37 = 1 + 36 1

41 = 16 + 25 1

43 = — 3

47 = — 3

53 = 4 + 49 1

59 = — 3

61 = 25 + 36 1

67 = — 3

71 = — 3
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Fermat’s theorem on sums of two squares, continued

Theorem. A positive odd prime p can be written as a sum of

two squares if and only if p ≡ 1 (mod 4).

Proof. “⇒”: a2 ≡ 0, 1 (mod 4), hence a2 + b2 ≡ 0, 1, 2 (mod 4).

“⇐” Suppose p is a positive prime with p ≡ 1 (mod 4).

(1) We can find h ∈ Zp such that h2 = −1. (This follows from

Fermat’s Little Theorem). W.l.o.g. h < p/2.

(2) Therefore, h2 + 1 = kp, for some k ∈ Z. So kp can be written

as a sum of two squares. It follows from the previous theorem

that p can be written as a sum of two squares. ✷

Moreover: There is an efficient algorithm to compute a, b.
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Summary: Algorithm for n = a2 + b2

We shows that there exists an efficient (probabilistic) algorithm

which,

• given a number n ∈ Z, and

• given a prime factorization of n,

• decides whether there exists a, b ∈ Z with a2 + b2 = n, and

• computes such a, b if they exist.
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Part II: An algebraic characterization of Clifford+T

circuits
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Subgroups of SO(3)

Consider the following elements of SO(3):

• Sx: a 90◦rotation about the x-axis;

• Sy: a 90◦rotation about the y-axis;

• Sz: a 90◦rotation about the z-axis.

Sx =





1 0 0
0 0 −1
0 1 0



 Sy =





0 0 1
0 1 0
−1 0 0



 Sz =





0 −1 0
1 0 0
0 0 1



.

Let C90 be the group generated by these elements. It is a finite

group, consisting of the 24 symmetries of the cube.
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Algebraic characterization

Note that an element of SO(3) is in C90 if and only if the matrix

entries are integer coefficients. In other words, C90 = SO3(Z).

Generators and relations

Two generators Sx, Sz suffice because Sy = S−1
z S−1

x Sz. The group

is presented by these relations:

• (SxSz)3 = 1;

• (Sz)4 = 1;

• (SxSzSx)2 = 1.
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Adding 45◦rotations

Consider the following additional elements of SO(3):

• Tx: a 45◦rotation about the x-axis;

• Ty: a 45◦rotation about the y-axis;

• Tz: a 45◦rotation about the z-axis.

Tx =









1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2









Ty =









1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2









Tz =









1√
2

− 1√
2

0

1√
2

1√
2

0

0 0 1









.

Let C45 be the generated group. It is infinite; in fact, it is a

dense subgroup of in SO(3).
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Algebraic characterization

Consider the ring Z[ 1√
2
]. Its elements are numbers of the form

a + b
√
2√

2k
,

where a, b ∈ Z and k ∈ N.

It is obvious that the matrix entries of Tx, Ty, Tz are in Z[ 1√
2
], and

therefore the same is true for every member of C45.

Remarkably, the converse is true as well:

Theorem. An element of SO(3) is in C45 if and only if its

matrix entries are in the ring Z[ 1√
2
].

In other words, C45 = SO3(Z[
1√
2
]).
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Proof idea.

Let U ∈ SO3(Z[
1√
2
]). By definition, U is of the form

U =
1√
2k





a11 a12 a13
a21 a22 a23
a31 a32 a33



,

where each aij ∈ Z[
√
2]. Let k be smallest. The proof is by

induction on k.

First note that
√
2 is a prime in the ring Z[

√
2], and

Z[
√
2]/(

√
2) = {0, 1}.

• If k = 0, then a simple argument shows that

U ∈ SO3(Z) = C90 and we are done.
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Proof idea, continued.

• If k > 0, then consider the matrix

Ū =





ā11 ā12 ā13
ā21 ā22 ā23
ā31 ā32 ā33



,

where each āij ∈ {0, 1} is the residue class of aij modulo
√
2.

Since U is orthogonal, each row and column of Ū contains

an even number of 1’s, and any two columns overlap in an

even number of 1’s. It follows that there are only 3 possible

patterns (up to a permutation of columns):




0 0 0
1 1 0
1 1 0









1 1 0
0 0 0
1 1 0









1 1 0
1 1 0
0 0 0




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Proof idea, continued.





0 0 0
1 1 0
1 1 0









1 1 0
0 0 0
1 1 0









1 1 0
1 1 0
0 0 0





• If Ū is of the first form, apply Tx.

• If Ū is of the second form, apply Ty.

• If Ū is of the third form, apply Tz.

Each of these transformations reduces k by exactly 1!

Therefore, SO3(Z[
1√
2
]) = C45.
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Normal form

In fact, we have shown a stronger result! We have shown that

every operator U ∈ SO3(Z[
1√
2
]),

U =
1√
2k





a11 a12 a13
a21 a22 a23
a31 a32 a33



,

can be written in the form

T1 T2 . . . TkC,

where each Ti ∈ {Tx, Ty, Tz} and C ∈ C90.

Moreover, the number of T ’s is exactly equal to k, and therefore

minimal. It follows that no two consecutive Ti’s are equal.
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Uniqueness

Moreover, essentially the same argument shows that the normal

form U = T1 T2 . . . TkC is unique. Namely:

• if T1 = Tx, the residue class of U is





0 0 0
1 1 0
1 1 0



.

• similarly if T1 = Ty or T1 = Tz.

In summary, we have the following theorem:

Theorem. Every element U ∈ SO3(Z[
1√
2
]) can be uniquely

written in the form

T1 T2 . . . TkC,

where each Ti ∈ {Tx, Ty, Tz}, C ∈ C90, and no two consecutive Ti’s

are equal.
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Another way to say this is that the set C45/C90 has the

structure of a regular tree.

Tx

Ty

Tx

Ty
TxTz

Tz

Tz

Tz

Tz

Tx

Ty

TxTx

Ty

Tz

Ty

Ty

Ty

Tx

Tz
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Approximating unitary operations by quantum circuits

Definition. The Clifford group is the subgroup of U(2)

generated by the following operators:

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

, ω = eiπ/4 =
1 + i√

2

The Clifford+T group is obtained by further adding the

operator

T =

(

1 0
0 ω

)

.

In quantum computing, the generators are called gates, and

words in the generators are called quantum circuits.

The Clifford group is finite. The Clifford+T group is dense in

PSU(2).
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The approximate synthesis problem

• The exact synthesis problem is: given a unitary operator U

in the Clifford+T group, find an actual quantum circuit

implementing it.

• The approximate synthesis problem is: given a unitary

operator U in SU(2) and an ǫ > 0, find a quantum circuit

that approximates U to within ǫ.

Moreover, the circuit should be short, and the solution

should be computed by an efficient algorithm.
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Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995):

Geometry.

ABA−1B−1.

• New efficient synthesis algorithms (ca. 2012):

Algebraic number theory.

a + b
√
2.

25



Gate complexity, in numbers.

Precision Solovay-Kitaev Lower bound

O(log3 .97(1/ǫ)) 3 log2(1/ǫ) + K

ǫ = 10−10 ≈ 4, 000 ≈ 102

ǫ = 10−20 ≈ 60, 000 ≈ 198

ǫ = 10−100 ≈ 37, 000, 000 ≈ 998

ǫ = 10−1000 ≈ 350, 000, 000, 000 ≈ 9966
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Part III: Grid problems
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The ring Z[
√
2]

Consider Z[
√
2] = {a + b

√
2 | a, b ∈ Z}.

This is a ring (addition, subtraction, multiplication).

It has a form of conjugation: (a + b
√
2)• = a − b

√
2.

The map “•” is an automorphism:

(α + β)• = α• + β•
(α − β)• = α• − β•
(αβ)• = α•β•

Finally, α•α = a2 − 2b2 is an integer, called the norm of α.
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Dense or discrete?

The ring Z[
√
2] is dense in the real numbers.

α = a + b
√
2
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Dense or discrete?

The ring Z[
√
2] is dense in the real numbers.
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Dense or discrete?

The ring Z[
√
2] is dense in the real numbers.

a

b
√
2

α = a + b
√
2

α• = a − b
√
2

But it is better to think of Z[
√
2] as discrete.
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The automorphism “•”

The function α 7→ α• is extremely non-continuous. In fact, it

can never happen that |α− β| and |α• − β•| are small at the same

time (unless α = β).

Proof: let α − β = a + b
√
2. Then |α − β| · |α• − β•| =

(a + b
√
2)(a − b

√
2) = a2 − 2b2, which is an integer.

a

b
√
2

α − β = a + b
√
2

α• − β• = a − b
√
2
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is

the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B

Given finite intervals A and B of the real numbers, the

1-dimensional grid problem is to find

xyzα ∈ A and α• ∈ B.
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is

the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B A

Given finite intervals A and B of the real numbers, the

1-dimensional grid problem is to find α ∈ Z[
√
2] such that

α ∈ A and α• ∈ B.
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1-dimensional grid problems

Given finite intervals A and B of the real numbers, the

1-dimensional grid problem is to find α ∈ Z[
√
2] such that

α ∈ A and α• ∈ B.

Equivalently, find a, b ∈ Z such that:

a + b
√
2 ∈ A and a − b

√
2 ∈ B.

a

b
√
2

y0 y1 x0 x1

A = [x0, x1], B = [y0, y1]

It is clear that there will be solutions when |A| and |B| are large.

The number of solutions is O(|A| · |B|) in that case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a

long and skinny rectangle:

a

b
√
2

Solution: scaling. lambda=1+sqrt2 is a unit of the ring

Z[sqrt2], with lambda=sqrt2-1. So multiplication by lambda

maps the grid to itself. So we can equivalently consider the

problem for lambdaA and
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a

long and skinny rectangle:

a

b
√
2

Solution: scaling. λ = 1 +
√
2 is a unit of the ring Z[

√
2], with

λ−1 =
√
2 − 1. So multiplication by λ maps the grid to itself. So

we can equivalently consider the problem for λnA and λ•nB,
which takes us back to the “fat” case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a

long and skinny rectangle:

a

b
√
2

Solution: scaling. λ = 1 +
√
2 is a unit of the ring Z[

√
2], with

λ−1 =
√
2 − 1. So multiplication by λ maps the grid to itself. So

we can equivalently consider the problem for λnA and λ•nB,
which takes us back to the “fat” case.
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Solution of 1-dimensional grid problems

Theorem. Let A and B be finite real intervals. There exists an

efficient algorithm that enumerates all solutions of the grid

problem for A and B.
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2-dimensional grid problems

Consider the ring Z[ω], where ω = eiπ/4 = 1+i√
2
. Z[ω] is a subset of

the complex numbers, which we can identify with the Euclidean
plane R2.

Definition. Let B be a bounded convex subset of the plane.
Just as in the 1-dimensional case, the grid for B is the set

grid(B) = {α ∈ Z[ω] | α• ∈ B}.

−4−3−2−1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B
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Consider the ring Z[ω], where ω = eiπ/4 = 1+i√
2
. Z[ω] is a subset of
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2-dimensional grid problems

Given bounded convex subsets A and B of the plane, the

2-dimensional grid problem is to find u ∈ Z[ω] such that

u ∈ A and u• ∈ B.

A
B

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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The easiest case: upright rectangles

If A = [x0, x1]× [y0, y1] and B = [x ′0, x
′
1]× [y ′

0, y
′
1], the problem

reduces to two 1-dimensional problems:

α ∈ [x0, x1], α• ∈ [x ′0, x
′1] and β ∈ [y0, y1], β• ∈ [y ′

0, y
′
1],

where u = α + iβ ∈ Z[ω]. (This means α, β ∈ Z[
√
2] or

α, β ∈ Z[
√
2] + 1/

√
2).

B

A

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of

its bounding box. If A and B are upright, the grid problem

reduces to that of rectangles.

B

A

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of

its bounding box. If A and B are upright, the grid problem

reduces to that of rectangles.

B

A

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this

case, finding grid points is a priori a hard problem.

B

A

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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Our solution: grid operators

A linear operator G : R2
→ R2 is called a grid operator if

G(Z[ω]) = Z[ω].

Some useful grid operators:

R =
1√
2

[

1 −1

1 1

]

A =

[

1 −2

0 1

]

B =

[

1
√
2

0 1

]

K =
1√
2

[

−λ−1 −1

λ 1

]

X =

[

0 1

1 0

]

Z =

[

1 0

0 −1

]

Proposition. Let G be a grid operator. Then the grid problem

for A and B is equivalent to the grid problem for G(A) and G•(B).

Proof: obvious, because α ∈ A iff G(α) ∈ G(A), and α• ∈ B iff

G(α)• ∈ G•(B).
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Effect of a grid operator

B =

[

1
√
2

0 1

]

B• =

[

1 −
√
2

0 1

]

A
B

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3
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Effect of a grid operator

B =

[

1
√
2

0 1

]

B• =

[

1 −
√
2

0 1

]

G(A)

G•(B)
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Demo
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Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with

non-empty interior. Then there exists a grid operator G such

that G(A) and G•(B) are 1/15-upright.

Moreover, if A and B are M-upright, then G can be efficiently

computed in O(log(1/M)) steps.

Corollary (Solution of 2-dimensional grid problems). Let A

and B be bounded convex sets with non-empty interior. There

exists an efficient algorithm that enumerates all solutions of the

grid problem for A and B.
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Part IV: An algorithm for optimal Clifford+T

approximations
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The single-qubit Clifford+T group

The Clifford+T group on one qubit is generated by the

Hadamard gate H, the phase gate S, the scalar ω = eiπ/4, and

the T- or π/8-gate:

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

,

ω = eiπ/4 =
1 + i√

2
, T =

(

1 0
0 ω

)

.
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Recall: normal form

Theorem. Every Clifford+T operator can be uniquely written

of the form

T1 T2 . . . TkC,

where each Ti ∈ {Tx, Ty, Tz}, C ∈ C90, and no two consecutive Ti’s

are equal.

Example.

U = Tx Tz Ty Tz Tx Tz Tx Tz SSSω7

We can measure the “length” of an operator U in terms of its

T-count; for example, the above U has T-count 7.
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Tx

Ty

Tx

Ty
TxTz

Tz

Tz

Tz

Tz

Tx

Ty

TxTx

Ty

Tz

Ty

Ty

Ty

Tx

Tz
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Information-theoretic lower bound on the T-count

Corollary (Matsumoto and Amano 2008). There are exactly

192 · (3 · 2n − 2) distinct single-qubit Clifford+T operators of

T-count at most n.

Corollary.To approximate an arbitrary operator up to ǫ

requires T-count at least K + 3 log2(1/ǫ) in the typical case.

Proof. Since SU(2) is a 3-dimensional real manifold, it requires

Ω(1/ǫ3) epsilon-balls to cover. Let n be the T-count. Using

Matsumoto and Amano’s result, we have

192 · (3 · 2n − 2) ≥ c

ǫ3
,

hence

n ≥ K + 3 log2(1/ǫ).
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Exact synthesis of Clifford+T operators

Theorem (Kliuchnikov, Maslov, Mosca). Let U =

(

u v
t s

)

be a

unitary operator. Then U is a Clifford+T operator if and only if

u, v, t, s ∈ 1√
2k
Z[ω].

Example.

1√
25

(

−ω3 −ω2 + 4ω −2ω3 − 3ω2 +ω

−ω3 + 3ω2 + 2ω 4ω3 −ω2 −ω

)

= Tx Tz Ty Tz Tx Tz Tx Tz SSSω7

Moreover, if detU = 1, then the T-count of the resulting

operator is equal to 2k − 2.
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The approximate synthesis problem

Problem.Given an operator U ∈ SU(2) and ǫ > 0, find a

Clifford+T operator U ′ of small T-count, such that

‖U ′ − U‖ ≤ ǫ.

Basic construction

We will approximate a z-rotation

Rz(θ) =

(

e−iθ/2 0

0 eiθ/2

)

by a matrix of the form

U =
1

√
2
k

(

u −t†

t u†

)

,

where u, t ∈ Z[ω].

51



Observation. The error is a function of u (and not of t).

Indeed, setting z = e−iθ/2 and u ′ = u√
2
k, we have

‖U − Rz(θ)‖ ≤ ǫ iff ~u ′ · ~z ≥ 1 −
ǫ2

2
.

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

The problem then reduces to:

(1) Finding u ∈ Z[ω] such that u√
2
k ∈ Rǫ, with small k;

(2) Solving the Diophantine equation t†t + u†u = 2k.
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Diophantine equations are computationally easy

(if we can factor)

Consider a Diophantine equation of the form

t†t = ξ (1)

where ξ ∈ Z[
√
2] is given and t ∈ Z[ω] is unknown.

Necessary condition. The equation (1) has a solution only if

ξ ≥ 0 and ξ• ≥ 0.

Theorem. There exists a probabilistic polynomial time

algorithm which decides whether the equation (1) has a solution

or not, and produces the solution if there is one, provided that

the algorithm is given the prime factorization of n = ξ•ξ.

This is okay, because factoring random numbers is not as hard

as worst-case numbers.
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The candidate selection problem

The only remaining problem is to find suitable u. Note that

ξ• = (2k − u†u)• ≥ 0 iff u•/
√
2k is in the unit disk.

Candidate selection problem. Find k ∈ N and u ∈ Z[ω] such

that

1. u/
√
2k is in the epsilon-region Rǫ;

2. u•/
√
2k is in the unit disk;

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

But this is a 2-dimensional grid problem, so can be solved

efficiently.
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Algorithm 1

(1) For all k ∈ N, enumerate all u ∈ Z[ω] such that u/
√
2k ∈ Rǫ

and u•/
√
2k ∈ D.

(2) For each u:

(a) Compute ξ = 2k − u†u and n = ξ•ξ.
(b) Attempt to find a prime factorization of n.

(c) If a prime factorization is found, attempt to solve the

equation t†t = ξ.

(3) When step (2) succeeds, output U.
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Results

• In the presence of a factoring oracle (e.g., a quantum

computer), Algorithm 1 is optimal in an absolute sense: it

finds the solution with the smallest possible T-count

whatsoever, for the given θ and ǫ.

• In the absence of a factoring oracle, Algorithm 1 is nearly

optimal: it yields T-counts of m +O(log(log(1/ǫ))), where m

is the second-to-optimal T-count.

• The algorithm yields an upper bound and a lower bound for

the T-count of each problem instance.

• The runtime is polynomial in log(1/ǫ).
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Gate complexity, in numbers.

Precision Solovay-Kitaev Lower bound This algorithm

ǫ = 10−10 ≈ 4, 000 102 102

ǫ = 10−20 ≈ 60, 000 198 200

ǫ = 10−100 ≈ 37, 000, 000 998 1000

ǫ = 10−1000 ≈ 350, 000, 000, 000 9966 9974

57



10−1 10−10 10−100 10−1000 ǫ

10

100

1000

10000

T

RS2014: K + 3 log2(1/ǫ)

Sel2012: K + 4 log2(1/ǫ)

KMM2012: K + 3.21 log2(1/ǫ)

Fow2004: K + 3 log2(1/ǫ)

SK1995: O(log3.97(1/ǫ))
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