Number-theoretic methods for unitary approximation problems

Peter Selinger

Dalhousie University Halifax, Canada

MAP 2016 Workshop on Effective Analysis CIRM, January 11-15, 2016

Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995): Geometry.

$$ABA^{-1}B^{-1}.$$

• New efficient synthesis algorithms (ca. 2012): Algebraic number theory.

 $a + b\sqrt{2}$.

Part I: Some number theory

Some number theory: Fermat's theorem on sums of two squares

Which integers can be written as a sum of two squares?

Some number theory: Fermat's theorem on sums of two squares

Which integers can be written as a sum of two squares?

Theorem. If n and m can each be written as a sum of two squares, then nm can be written as a sum of two squares.

Some number theory: Fermat's theorem on sums of two squares

Which integers can be written as a sum of two squares?

Theorem. If n and m can each be written as a sum of two squares, then nm can be written as a sum of two squares.

Proof. This is easiest seen using complex numbers. Note that $a^2 + b^2 = (a + bi)(a - bi)$.

Therefore, n is a sum of two squares if and only if it can be written in the form $t^{\dagger}t$, for some Gaussian integer $t = a + bi \in \mathbb{Z}[i]$.

The claim follows because $nm = (t^{\dagger}t)(u^{\dagger}u) = (tu)^{\dagger}(tu)$.

4-b

First lesson of number theory

We can learn more about the integers by moving to a larger ring, such as $\mathbb{Z}[i]$.

What about the converse?

Theorem. If nm can be written as a sum of two squares, and if n, m are relatively prime, and $n, m \ge 0$, then n and m can each be written as a sum of two squares.

What about the converse?

Theorem. If nm can be written as a sum of two squares, and if n, m are relatively prime, and $n, m \ge 0$, then n and m can each be written as a sum of two squares.

Proof. Suppose $nm = a^2 + b^2 = (a + bi)(a - bi)$.

 $\mathbb{Z}[\mathbf{i}]$ is a Euclidean domain, so has greatest common divisors. Let $\mathbf{t} = \gcd(\mathbf{n}, \mathbf{a} + \mathbf{b}\mathbf{i})$ and $\mathbf{s} = \gcd(\mathbf{m}, \mathbf{a} + \mathbf{b}\mathbf{i})$ in $\mathbb{Z}[\mathbf{i}]$.

An easy argument (using uniqueness of prime factorizations in $\mathbb{Z}[i]$) shows that $n = t^{\dagger}t$ and $m = s^{\dagger}s$. Hence both n and m can be written as a sum of two squares.

Second lesson of number theory

The fact that $\mathbb{Z}[i]$ is a Euclidean domain, and in particular, the ability to take greatest common divisors and prime factorizations in $\mathbb{Z}[i]$, is very helpful.

Definition. A ring is called a *Euclidean domain* if it is equipped with a notion of *division with remainder*. Specifically, such a ring must have:

- 1. A *Euclidean function*, i.e., a function f assigning a natural number to each ring element;
- 2. Division with remainder: For all a, b with $b \neq 0$, there exist q, r such that

$$a = bq + r$$

and f(r) < f(b).

Main properties. In a Euclidean domain, the concepts of *divisor, greatest common divisor,* and *prime* make sense. The Euclidean algorithm can be used to compute greatest common divisors d = gcd(a, b), as well as x, y such that d = xa + yb. Euclidean domains satisfy unique prime factorization.

By the previous theorems, it suffices to consider primes. Which primes can be written as a sum of two squares?

Obvious necessary condition: p > 0.

р	$a^2 + b^2$	р		$a^2 + b^2$
2 =	1 + 1	31	=	
3 =		37	=	1 + 36
5 =	1 + 4	41	=	16 + 25
7 =		43	=	
11 =		47	=	
13 =	4 + 9	53	=	4 + 49
17 =	1 + 16	59	=	
19 =		61	=	25 + 36
23 =		67	=	
29 =	4 + 25	71	=	

By the previous theorems, it suffices to consider primes. Which primes can be written as a sum of two squares?

Obvious necessary condition: p > 0.

р	$a^2 + b^2$	p (mod 4)	р	$a^2 + b^2$	p(mod 4)
2 =	1+1	2	31 =		3
3 =		3	37 =	1 + 36	1
5 =	1+4	1	41 =	16 + 25	1
7 =		3	43 =		3
11 =		3	47 =		3
13 =	4 + 9	1	53 =	4 + 49	1
17 =	1 + 16	1	59 =	<u> </u>	3
19 =		3	61 =	25 + 36	1
23 =		3	67 =		3
29 =	4 + 25	1	71 =		3

Theorem. A positive odd prime p can be written as a sum of two squares if and only if $p \equiv 1 \pmod{4}$.

Proof. " \Rightarrow ": $a^2 \equiv 0, 1 \pmod{4}$, hence $a^2 + b^2 \equiv 0, 1, 2 \pmod{4}$.

(1) We can find $h \in \mathbb{Z}_p$ such that $h^2 = -1$. (This follows from Fermat's Little Theorem). W.I.o.g. h < p/2.

(2) Therefore, $h^2 + 1 = kp$, for some $k \in Z$. So kp can be written as a sum of two squares. It follows from the previous theorem that p can be written as a sum of two squares.

Moreover: There is an efficient algorithm to compute a, b.

Summary: Algorithm for $n = a^2 + b^2$

We shows that there exists an efficient (probabilistic) algorithm which,

- given a number $n \in \mathbb{Z}$, and
- given a prime factorization of n,
- decides whether there exists $a, b \in \mathbb{Z}$ with $a^2 + b^2 = n$, and
- **computes** such **a**, **b** if they exist.

Part II: An algebraic characterization of Clifford+T circuits

Subgroups of SO(3)

Consider the following elements of SO(3):

- S_x : a 90° rotation about the x-axis;
- S_y : a 90° rotation about the y-axis;
- S_z : a 90° rotation about the *z*-axis.

$$S_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad S_{y} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \quad S_{z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let C_{90} be the group generated by these elements. It is a finite group, consisting of the 24 symmetries of the cube.

Algebraic characterization

Note that an element of SO(3) is in C_{90} if and only if the matrix entries are integer coefficients. In other words, $C_{90} = SO_3(\mathbb{Z})$.

Generators and relations

Two generators S_x, S_z suffice because $S_y = S_z^{-1}S_x^{-1}S_z$. The group is presented by these relations:

- $(S_{\chi}S_{z})^{3} = 1;$
- $(S_z)^4 = 1;$
- $(S_x S_z S_x)^2 = 1.$

Adding 45° rotations

Consider the following additional elements of SO(3):

- T_x : a 45° rotation about the x-axis;
- T_y : a 45° rotation about the y-axis;
- T_z : a 45° rotation about the z-axis.

$$T_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{y} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{z} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let C_{45} be the generated group. It is infinite; in fact, it is a dense subgroup of in SO(3).

Algebraic characterization

Consider the ring $\mathbb{Z}[\frac{1}{\sqrt{2}}]$. Its elements are numbers of the form

$$\frac{a+b\sqrt{2}}{\sqrt{2}^{k}}$$

where $a, b \in \mathbb{Z}$ and $k \in \mathbb{N}$.

It is obvious that the matrix entries of T_x, T_y, T_z are in $\mathbb{Z}[\frac{1}{\sqrt{2}}]$, and therefore the same is true for every member of C_{45} .

Remarkably, the converse is true as well:

Theorem. An element of SO(3) is in C_{45} if and only if its matrix entries are in the ring $\mathbb{Z}[\frac{1}{\sqrt{2}}]$.

In other words, $C_{45} = SO_3(\mathbb{Z}[\frac{1}{\sqrt{2}}])$.

Proof idea.

Let $U \in SO_3(\mathbb{Z}[\frac{1}{\sqrt{2}}])$. By definition, U is of the form

$$U = \frac{1}{\sqrt{2^{k}}} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

where each $a_{ij} \in \mathbb{Z}[\sqrt{2}]$. Let k be smallest. The proof is by induction on k.

First note that $\sqrt{2}$ is a prime in the ring $\mathbb{Z}[\sqrt{2}]$, and $\mathbb{Z}[\sqrt{2}]/(\sqrt{2}) = \{0, 1\}.$

• If k = 0, then a simple argument shows that $U \in SO_3(\mathbb{Z}) = \mathbb{C}_{90}$ and we are done.

Proof idea, continued.

• If k > 0, then consider the matrix

$$\bar{\mathbf{U}} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{12} & \bar{a}_{13} \\ \bar{a}_{21} & \bar{a}_{22} & \bar{a}_{23} \\ \bar{a}_{31} & \bar{a}_{32} & \bar{a}_{33} \end{pmatrix},$$

where each $\bar{a}_{ij} \in \{0, 1\}$ is the residue class of a_{ij} modulo $\sqrt{2}$.

Since **U** is orthogonal, each row and column of $\overline{\mathbf{U}}$ contains an even number of 1's, and any two columns overlap in an even number of 1's. It follows that there are only 3 possible patterns (up to a permutation of columns):

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Proof idea, continued.

$$\left(\begin{array}{rrrr}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \quad
\left(\begin{array}{rrrr}
1 & 1 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) \quad
\left(\begin{array}{rrrr}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)$$

- If \overline{U} is of the first form, apply T_x .
- If $\overline{\mathbf{U}}$ is of the second form, apply $\mathbf{T}_{\mathbf{y}}$.
- If $\overline{\mathbf{U}}$ is of the third form, apply T_z .

Each of these transformations reduces k by exactly 1!

Therefore, $SO_3(\mathbb{Z}[\frac{1}{\sqrt{2}}]) = C_{45}$.

Normal form

In fact, we have shown a stronger result! We have shown that every operator $U \in SO_3(\mathbb{Z}[\frac{1}{\sqrt{2}}])$,

$$U = \frac{1}{\sqrt{2^{k}}} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

can be written in the form

 $T_1 T_2 ... T_k C$,

where each $T_i \in \{T_x, T_y, T_z\}$ and $C \in \mathbb{C}_{90}$.

Moreover, the number of T's is exactly equal to k, and therefore *minimal*. It follows that no two consecutive T_i 's are equal.

Uniqueness

Moreover, essentially the same argument shows that the normal form $U = T_1 T_2 \dots T_k C$ is *unique*. Namely:

- if $T_1 = T_x$, the residue class of U is $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.
- similarly if $T_1 = T_y$ or $T_1 = T_z$.

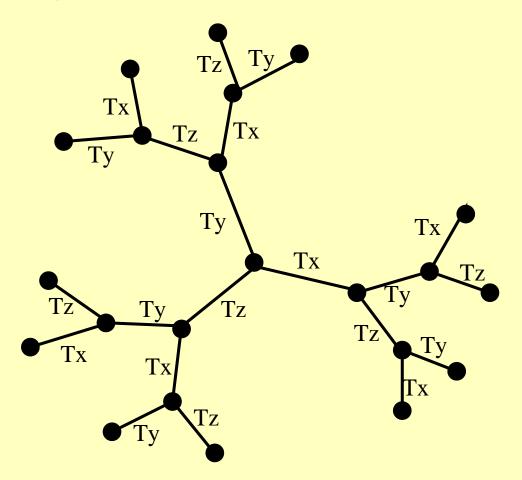
In summary, we have the following theorem:

Theorem. Every element $U \in SO_3(\mathbb{Z}[\frac{1}{\sqrt{2}}])$ can be *uniquely* written in the form

$$\mathsf{T}_1\,\mathsf{T}_2\,\ldots\,\mathsf{T}_k\,\mathsf{C},$$

where each $T_i \in \{T_x, T_y, T_z\}$, $C \in \mathbb{C}_{90}$, and no two consecutive T_i 's are equal.

Another way to say this is that the set $\mathbb{C}_{45}/\mathbb{C}_{90}$ has the structure of a *regular tree*.



Approximating unitary operations by quantum circuits

Definition. The *Clifford group* is the subgroup of U(2) generated by the following operators:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$$

The Clifford+T group is obtained by further adding the operator

$$\mathsf{T} = \left(\begin{array}{cc} 1 & 0 \\ 0 & \omega \end{array} \right).$$

In quantum computing, the generators are called *gates*, and words in the generators are called *quantum circuits*.

The Clifford group is finite. The Clifford+T group is dense in PSU(2).

The approximate synthesis problem

- The exact synthesis problem is: given a unitary operator U in the Clifford+T group, find an actual quantum circuit implementing it.
- The approximate synthesis problem is: given a unitary operator U in SU(2) and an $\epsilon > 0$, find a quantum circuit that approximates U to within ϵ .

Moreover, the circuit should be short, and the solution should be computed by an efficient algorithm. Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995): Geometry.

$$ABA^{-1}B^{-1}.$$

• New efficient synthesis algorithms (ca. 2012): Algebraic number theory.

 $a + b\sqrt{2}$.

Gate complexity, in numbers.

Precision	Solovay-Kitaev	Lower bound	
	$O(\log^3.97(1/\epsilon))$	$3\log_2(1/\varepsilon) + K$	
$\epsilon = 10^{-10}$	$\approx 4,000$	≈ 102	
$\epsilon = 10^{-20}$	$\approx 60,000$	≈ 198	
$\epsilon = 10^{-100}$	$\approx 37,000,000$	≈ 998	
$\epsilon = 10^{-1000}$	$\approx 350,000,000,000$	≈ 9966	

Part III: Grid problems

Neil J. Ross* and Peter Selinger**

* University of Maryland** Dalhousie University

The ring $\mathbb{Z}[\sqrt{2}]$

Consider $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

This is a ring (addition, subtraction, multiplication).

It has a form of *conjugation*: $(a + b\sqrt{2})^{\bullet} = a - b\sqrt{2}$.

The map "•" is an automorphism:

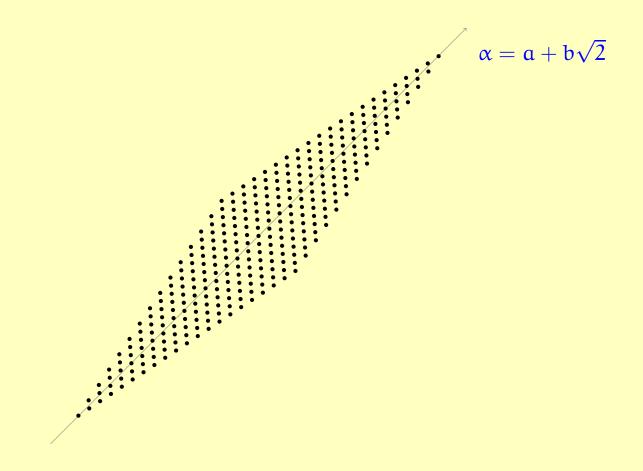
$$\begin{aligned} (\alpha + \beta)^{\bullet} &= \alpha^{\bullet} + \beta^{\bullet} \\ (\alpha - \beta)^{\bullet} &= \alpha^{\bullet} - \beta^{\bullet} \\ (\alpha \beta)^{\bullet} &= \alpha^{\bullet} \beta^{\bullet} \end{aligned}$$

Finally, $\alpha^{\bullet} \alpha = \alpha^2 - 2b^2$ is an integer, called the *norm* of α .

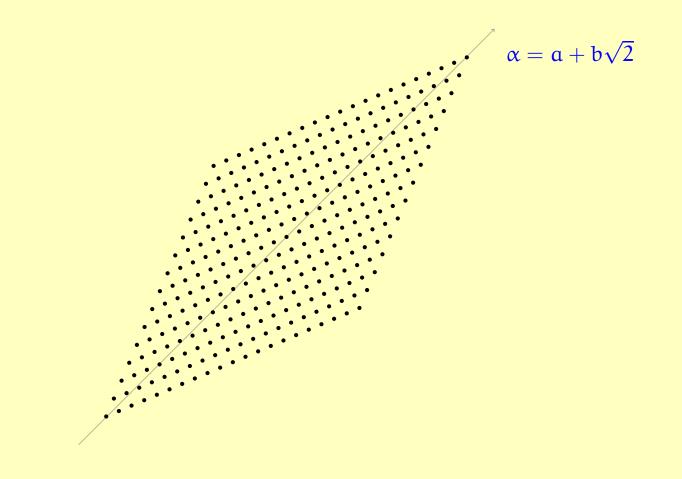
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

 $\alpha = a + b\sqrt{2}$

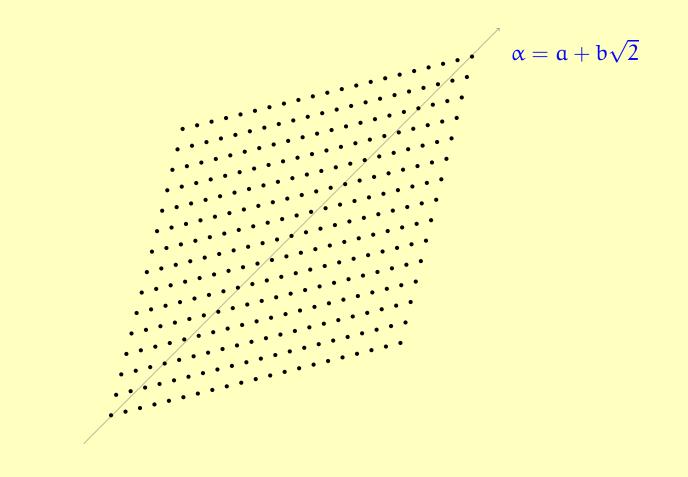
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



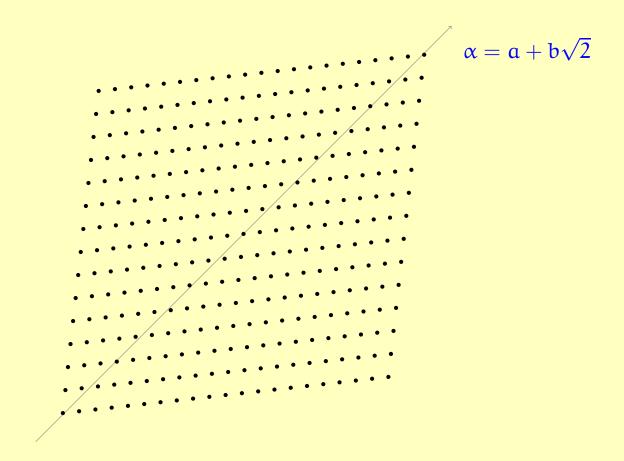
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



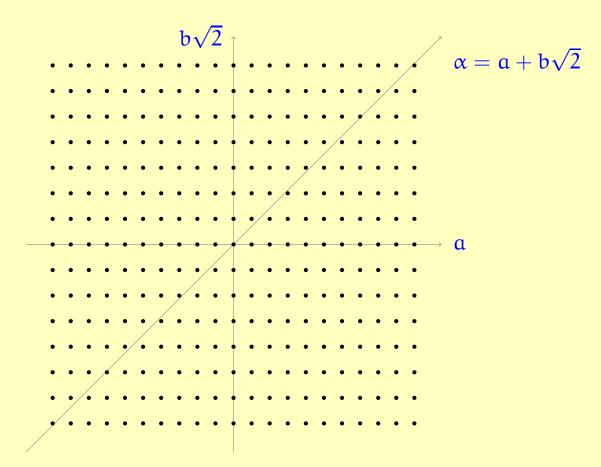
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



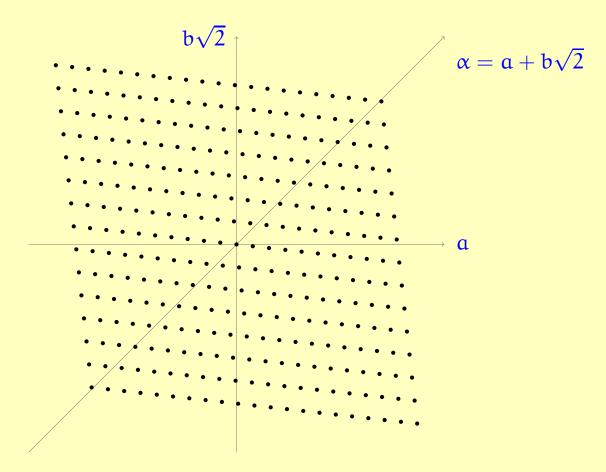
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



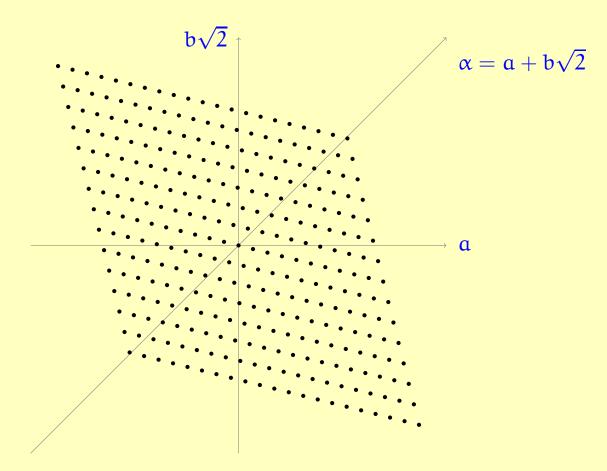
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



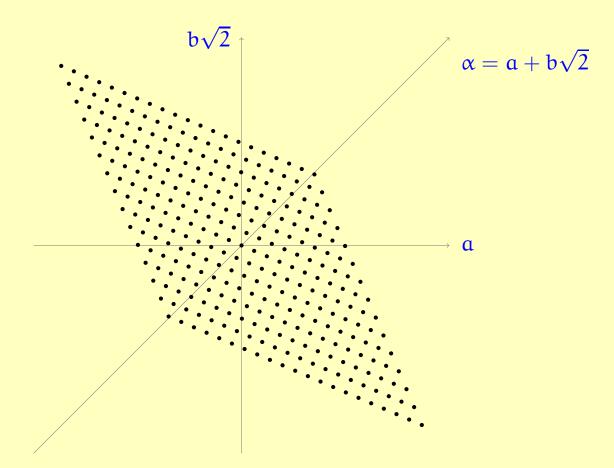
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



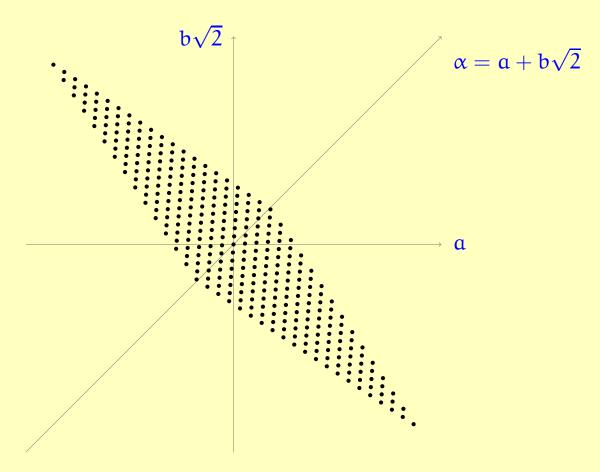
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



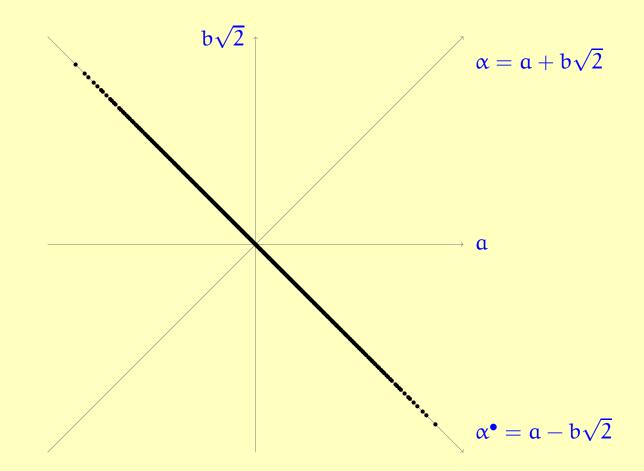
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



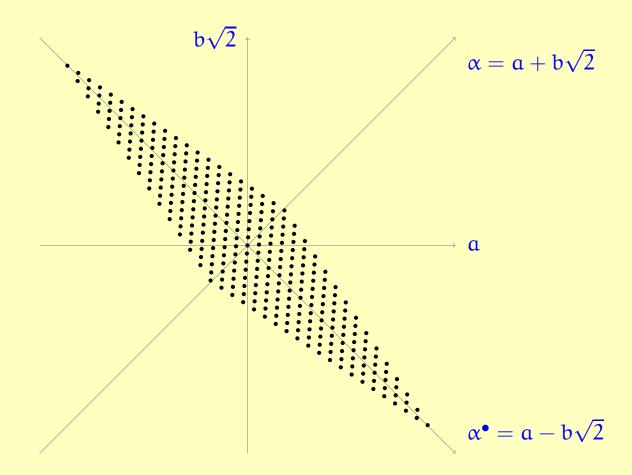
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



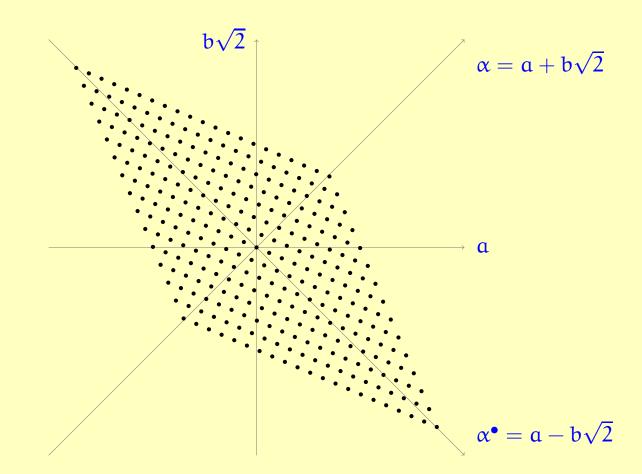
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



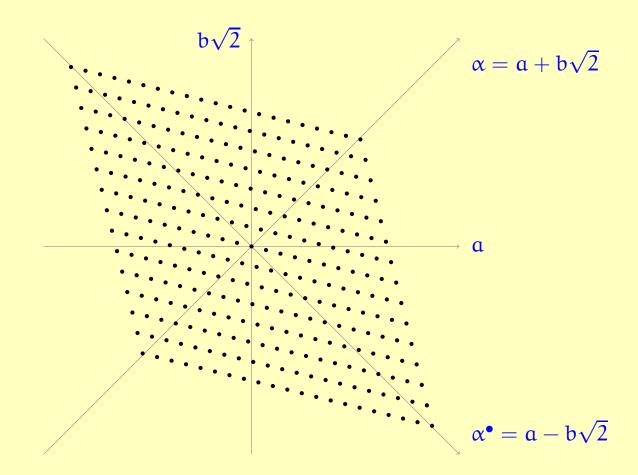
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



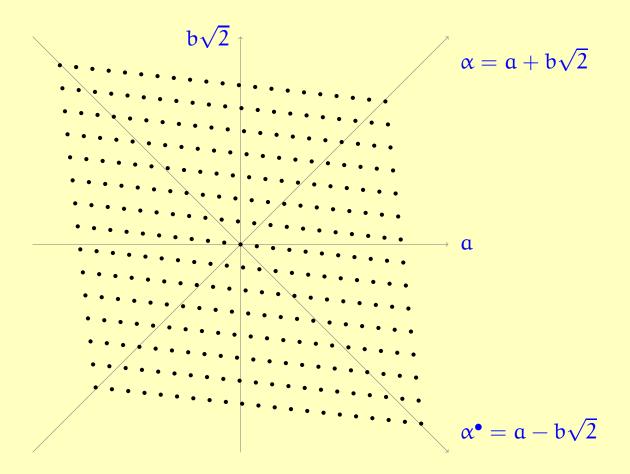
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



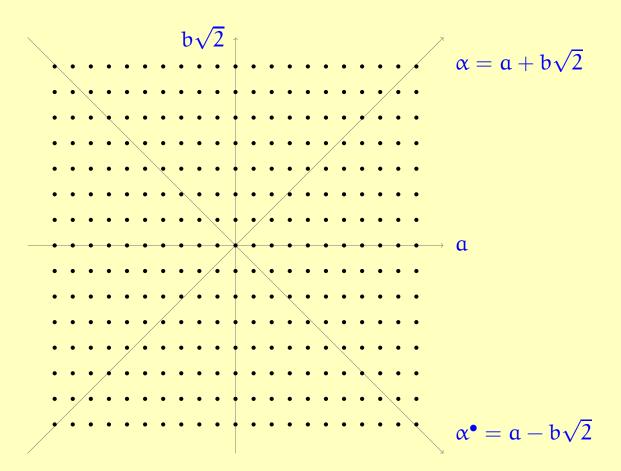
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



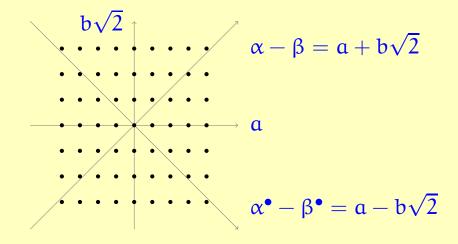
The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.



The automorphism "•"

The function $\alpha \mapsto \alpha^{\bullet}$ is *extremely non-continuous*. In fact, it can never happen that $|\alpha - \beta|$ and $|\alpha^{\bullet} - \beta^{\bullet}|$ are small at the same time (unless $\alpha = \beta$).

Proof: let $\alpha - \beta = a + b\sqrt{2}$. Then $|\alpha - \beta| \cdot |\alpha^{\bullet} - \beta^{\bullet}| = (a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2$, which is an integer.



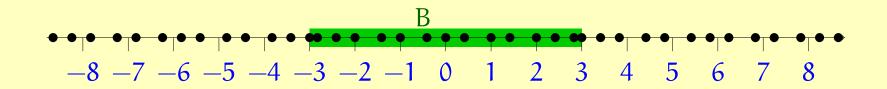
Definition. Let B be a set of real numbers. The *grid* for B is the set

grid(B) = {
$$\alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B$$
}.



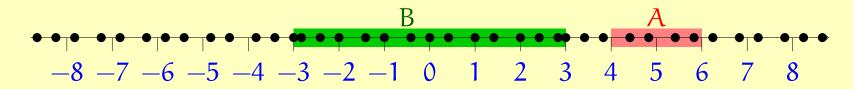
Definition. Let B be a set of real numbers. The *grid* for B is the set

grid(B) = {
$$\alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B$$
}.



Definition. Let B be a set of real numbers. The *grid* for B is the set

$$\operatorname{grid}(B) = \{ \alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B \}.$$



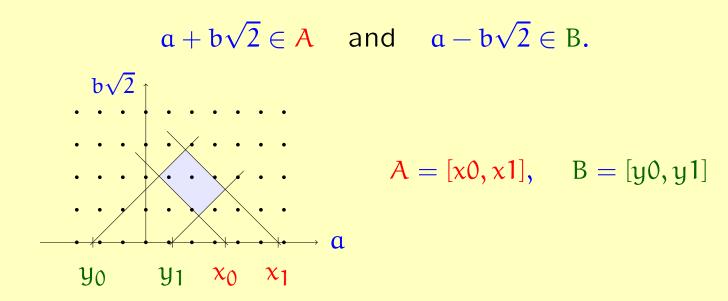
Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find $\alpha \in \mathbb{Z}[\sqrt{2}]$ such that

 $\alpha \in A$ and $\alpha^{\bullet} \in B$.

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find $\alpha \in \mathbb{Z}[\sqrt{2}]$ such that

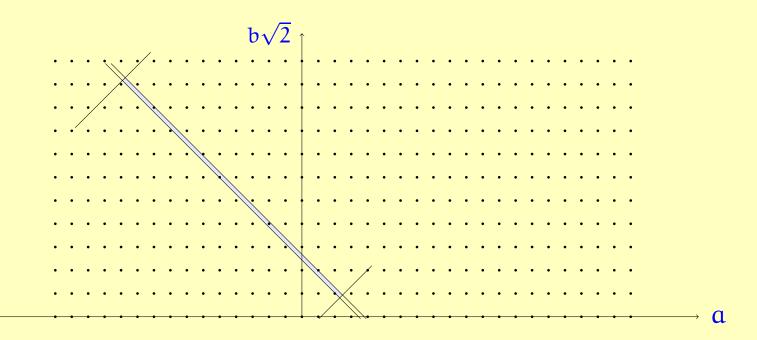
 $\alpha \in A$ and $\alpha^{\bullet} \in B$.

Equivalently, find $a, b \in \mathbb{Z}$ such that:

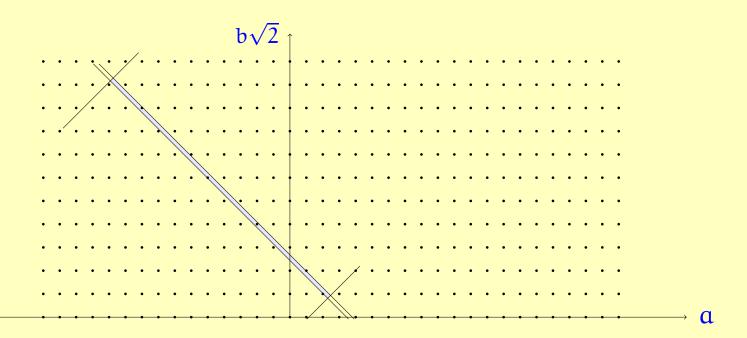


It is clear that there will be solutions when |A| and |B| are large. The number of solutions is $O(|A| \cdot |B|)$ in that case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

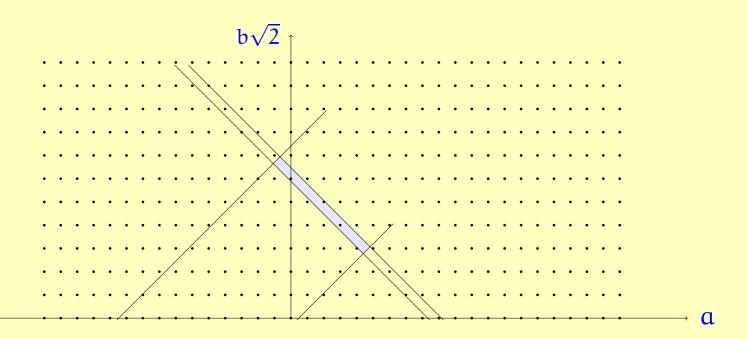


Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:



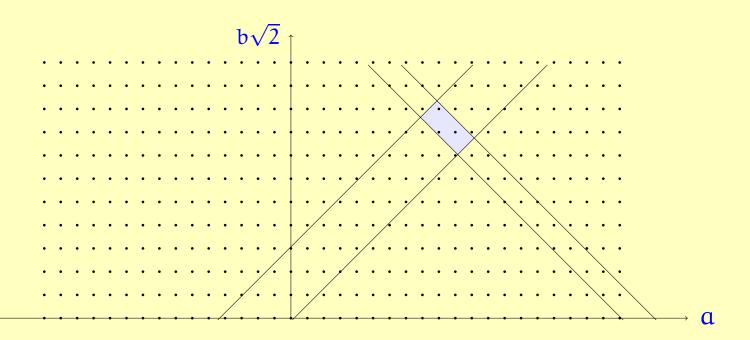
Solution: scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps the grid to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:



Solution: scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps the grid to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:



Solution: scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps the grid to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Solution of 1-dimensional grid problems

Theorem. Let A and B be finite real intervals. There exists an efficient algorithm that enumerates all solutions of the grid problem for A and B.

Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

 $\begin{array}{c} 4 \\ 3 \\ 2 \\ 2 \\ -4 \\ -3 \\ -2 \\ -3 \\ -4 \end{array}$

grid(B) = { $\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B$ }.

Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

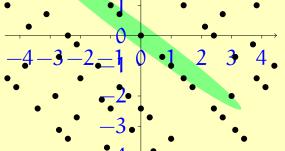
 $\begin{array}{c} 4 \\ 5 \\ 2 \\ 2 \\ -4 \\ -3 \\ -2 \\ -3 \\ -4 \end{array}$

grid(B) = { $\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B$ }.

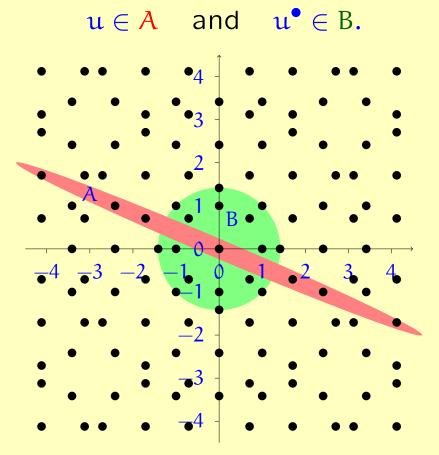
Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

grid(B) = { $\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B$ }.



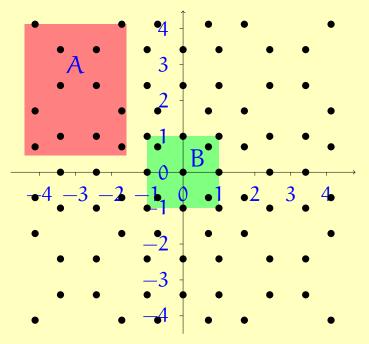
Given bounded convex subsets A and B of the plane, the 2-dimensional grid problem is to find $u \in \mathbb{Z}[\omega]$ such that



The easiest case: upright rectangles

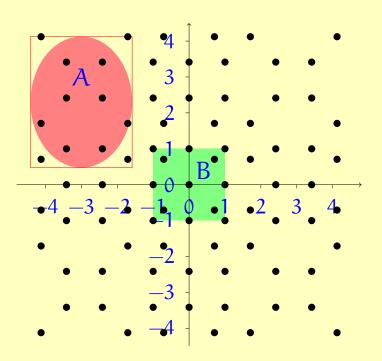
If $A = [x_0, x_1] \times [y_0, y_1]$ and $B = [x'_0, x'_1] \times [y'_0, y'_1]$, the problem reduces to two 1-dimensional problems:

 $\alpha \in [x_0, x_1], \quad \alpha^{\bullet} \in [x'_0, x'1] \quad \text{and} \quad \beta \in [y_0, y_1], \quad \beta^{\bullet} \in [y'_0, y'_1],$ where $u = \alpha + i\beta \in \mathbb{Z}[\omega]$. (This means $\alpha, \beta \in \mathbb{Z}[\sqrt{2}]$ or $\alpha, \beta \in \mathbb{Z}[\sqrt{2}] + 1/\sqrt{2}$).



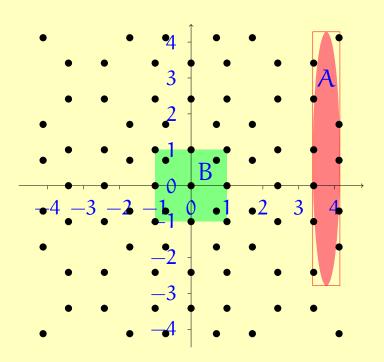
Also easy: upright sets

The *uprightness* of a set A is the ratio of its area to the area of its bounding box. If A and B are upright, the grid problem reduces to that of rectangles.



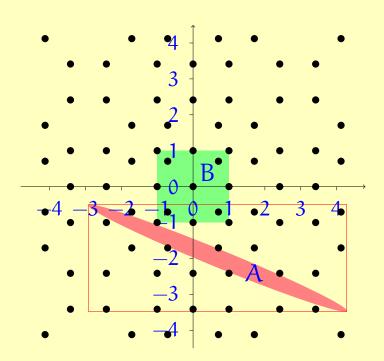
Also easy: upright sets

The *uprightness* of a set A is the ratio of its area to the area of its bounding box. If A and B are upright, the grid problem reduces to that of rectangles.



The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this case, finding grid points is a priori a hard problem.



Our solution: grid operators

A linear operator $G : \mathbb{R}^2 \to \mathbb{R}^2$ is called a *grid operator* if $G(Z[\omega]) = Z[\omega]$.

Some useful grid operators:

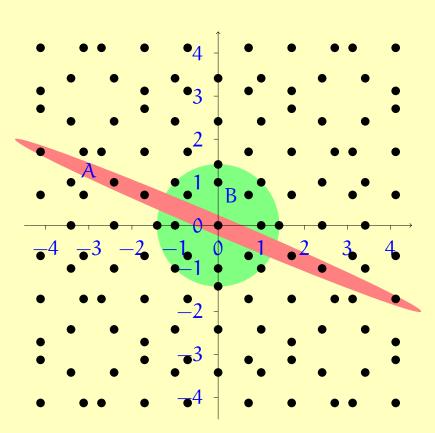
$$\mathbf{R} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{K} = \frac{1}{\sqrt{2}} \begin{bmatrix} -\lambda^{-1} & -1 \\ \lambda & 1 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Proposition. Let G be a grid operator. Then the grid problem for A and B is equivalent to the grid problem for G(A) and $G^{\bullet}(B)$.

Proof: obvious, because $\alpha \in A$ iff $G(\alpha) \in G(A)$, and $\alpha^{\bullet} \in B$ iff $G(\alpha)^{\bullet} \in G^{\bullet}(B)$.

Effect of a grid operator

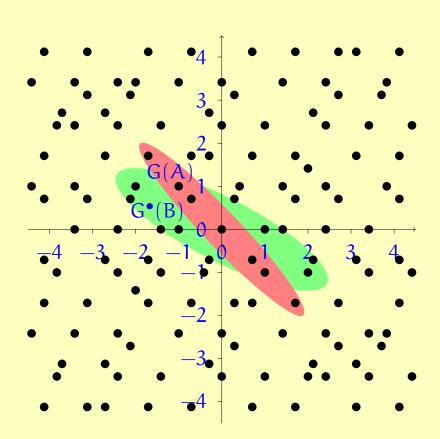
$$\mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}^{\bullet} = \begin{bmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{bmatrix}$$



42

Effect of a grid operator

$$\mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}^{\bullet} = \begin{bmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{bmatrix}$$



42-a

Demo

Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with non-empty interior. Then there exists a grid operator G such that G(A) and $G^{\bullet}(B)$ are 1/15-upright.

Moreover, if A and B are M-upright, then G can be efficiently computed in $O(\log(1/M))$ steps.

Corollary (Solution of 2-dimensional grid problems). Let A and B be bounded convex sets with non-empty interior. There exists an efficient algorithm that enumerates all solutions of the grid problem for A and B.

Part IV: An algorithm for optimal Clifford+T approximations

The single-qubit Clifford+T group

The Clifford+T group on one qubit is generated by the Hadamard gate H, the phase gate S, the scalar $\omega = e^{i\pi/4}$, and the T- or $\pi/8$ -gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix},$$
$$\omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}.$$

Recall: normal form

Theorem. Every Clifford+T operator can be uniquely written of the form

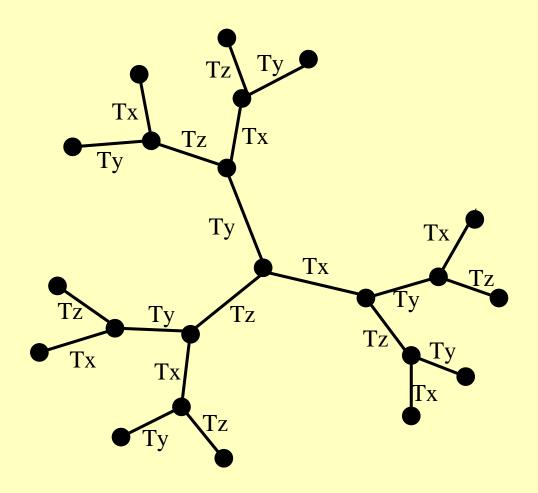
 $T_1 T_2 ... T_k C$,

where each $T_i \in \{T_x, T_y, T_z\}$, $C \in \mathbb{C}_{90}$, and no two consecutive T_i 's are equal.

Example.

$$\mathbf{U} = \mathsf{T}_{\mathbf{x}} \, \mathsf{T}_{\mathbf{z}} \, \mathsf{T}_{\mathbf{y}} \, \mathsf{T}_{\mathbf{z}} \, \mathsf{T}_{\mathbf{x}} \, \mathsf{T}_{\mathbf{z}} \, \mathsf{T}_{\mathbf{x}} \, \mathsf{T}_{\mathbf{z}} \, \mathsf{SSS}\omega^7$$

We can measure the "length" of an operator U in terms of its T-count; for example, the above U has T-count 7.



Information-theoretic lower bound on the T-count

Corollary (Matsumoto and Amano 2008). There are exactly $192 \cdot (3 \cdot 2^n - 2)$ distinct single-qubit Clifford+T operators of T-count at most n.

Corollary. To approximate an arbitrary operator up to ϵ requires T-count at least $K + 3 \log_2(1/\epsilon)$ in the typical case.

Proof. Since SU(2) is a 3-dimensional real manifold, it requires $\Omega(1/\epsilon^3)$ epsilon-balls to cover. Let n be the T-count. Using Matsumoto and Amano's result, we have

$$192 \cdot (3 \cdot 2^n - 2) \ge \frac{c}{\epsilon^3}$$

hence

 $n \ge K + 3 \log_2(1/\epsilon).$

Exact synthesis of Clifford+T operators

Theorem (Kliuchnikov, Maslov, Mosca). Let $U = \begin{pmatrix} u & v \\ t & s \end{pmatrix}$ be a unitary operator. Then U is a Clifford+T operator if and only if $u, v, t, s \in \frac{1}{\sqrt{2^k}}\mathbb{Z}[\omega]$.

Example.

$$\frac{1}{\sqrt{2^5}} \begin{pmatrix} -\omega^3 - \omega^2 + 4\omega & -2\omega^3 - 3\omega^2 + \omega \\ -\omega^3 + 3\omega^2 + 2\omega & 4\omega^3 - \omega^2 - \omega \end{pmatrix}$$

 $= \mathsf{T}_{\mathsf{x}} \mathsf{T}_{\mathsf{z}} \mathsf{T}_{\mathsf{y}} \mathsf{T}_{\mathsf{z}} \mathsf{T}_{\mathsf{x}} \mathsf{T}_{\mathsf{z}} \mathsf{T}_{\mathsf{x}} \mathsf{T}_{\mathsf{z}} \mathsf{SSS}\omega^{7}$

Moreover, if det U = 1, then the T-count of the resulting operator is equal to 2k - 2.

The approximate synthesis problem

Problem. Given an operator $U \in SU(2)$ and $\epsilon > 0$, find a Clifford+T operator U' of small T-count, such that $||U' - U|| \le \epsilon$.

Basic construction

We will approximate a z-rotation

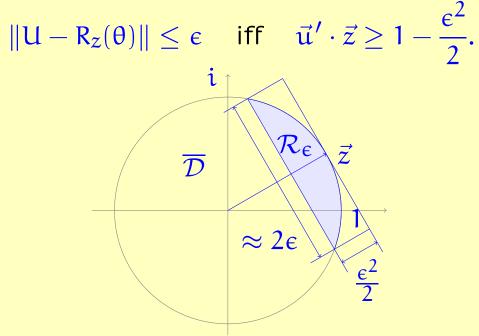
$$R_{z}(\theta) = \left(\begin{array}{cc} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{array}\right)$$

by a matrix of the form

$$U = \frac{1}{\sqrt{2}^{k}} \begin{pmatrix} u & -t^{\dagger} \\ t & u^{\dagger} \end{pmatrix},$$

where $u, t \in \mathbb{Z}[\omega]$.

Observation. The error is a function of u (and not of t). Indeed, setting $z = e^{-i\theta/2}$ and $u' = \frac{u}{\sqrt{2}^k}$, we have



The problem then reduces to:

(1) Finding $u \in \mathbb{Z}[\omega]$ such that $\frac{u}{\sqrt{2}^k} \in \mathcal{R}_{\epsilon}$, with small k;

(2) Solving the Diophantine equation $t^{\dagger}t + u^{\dagger}u = 2^k$.

Diophantine equations are computationally easy (if we can factor)

Consider a Diophantine equation of the form

$$t^{\dagger}t = \xi \tag{1}$$

where $\xi \in \mathbb{Z}[\sqrt{2}]$ is given and $t \in \mathbb{Z}[\omega]$ is unknown.

Necessary condition. The equation (1) has a solution only if $\xi \ge 0$ and $\xi^{\bullet} \ge 0$.

Theorem. There exists a probabilistic polynomial time algorithm which decides whether the equation (1) has a solution or not, and produces the solution if there is one, *provided that* the algorithm is given the prime factorization of $n = \xi^{\bullet}\xi$.

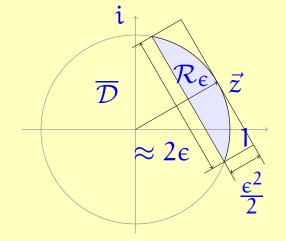
This is okay, because factoring random numbers is not as hard as worst-case numbers.

The candidate selection problem

The only remaining problem is to find suitable u. Note that $\xi^{\bullet} = (2^k - u^{\dagger}u)^{\bullet} \ge 0$ iff $u^{\bullet}/\sqrt{2^k}$ is in the unit disk.

Candidate selection problem. Find $k \in \mathbb{N}$ and $u \in \mathbb{Z}[\omega]$ such that

1. $u/\sqrt{2^k}$ is in the epsilon-region $\mathcal{R}_{\varepsilon}$; 2. $u^{\bullet}/\sqrt{2^k}$ is in the unit disk;



But this is a 2-dimensional grid problem, so can be solved efficiently.

Algorithm 1

(1) For all $k \in \mathbb{N}$, enumerate all $u \in \mathbb{Z}[\omega]$ such that $u/\sqrt{2^k} \in \mathcal{R}_{\epsilon}$ and $u^{\bullet}/\sqrt{2^k} \in \overline{\mathcal{D}}$.

(2) For each \mathbf{u} :

- (a) Compute $\xi = 2^k u^{\dagger}u$ and $n = \xi^{\bullet}\xi$.
- (b) Attempt to find a prime factorization of n.
- (c) If a prime factorization is found, attempt to solve the equation $t^{\dagger}t = \xi$.

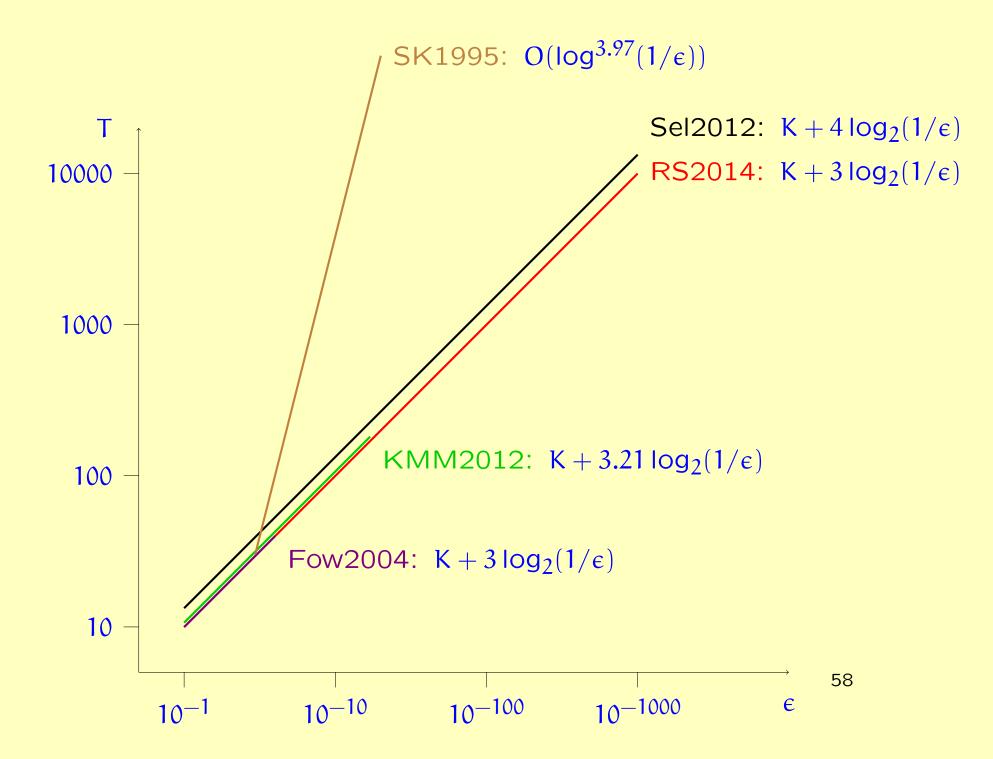
(3) When step (2) succeeds, output U.

Results

- In the presence of a factoring oracle (e.g., a quantum computer), Algorithm 1 is *optimal* in an absolute sense: it finds the solution with the smallest possible T-count whatsoever, for the given θ and ϵ .
- In the absence of a factoring oracle, Algorithm 1 is *nearly optimal*: it yields T-counts of $m + O(log(log(1/\epsilon)))$, where m is the second-to-optimal T-count.
- The algorithm yields an *upper bound* and a *lower bound* for the T-count of each problem instance.
- The runtime is polynomial in $\log(1/\epsilon)$.

Gate complexity, in numbers.

Precision	Solovay-Kitaev	Lower bound	This algorithm
$\epsilon = 10^{-10}$	$\approx 4,000$	102	102
$\epsilon = 10^{-20}$	$\approx 60,000$	198	200
$\epsilon = 10^{-100}$	$\approx 37,000,000$	998	1000
$\epsilon = 10^{-1000}$	$\approx 350,000,000,000$	9966	9974



[Matsumoto and Amano 2008] K. Matsumoto and K. Amano. Representation of quantum circuits with Clifford and $\pi/8$ gates. arXiv:0806.3834, June 2008.

[Amy et al, 2012] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. arXiv:1206.0758, June 2012.

[Kliuchnikov et al. 2012a] V. Kliuchnikov, D. Maslov, and M. Mosca. Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates. arXiv:1206.5236v2, June 2012.

[Selinger 2012a] P. Selinger. Quantum circuits of T-depth one. *Physical Review A* 87, 042302, 2013. Available from arXiv:1210.0974.

[Giles and Selinger 2012] B. Giles and P. Selinger. Exact synthesis of multiqubit Clifford+T circuits. *Physical Review A* 87, 032332, 2013. Available from arXiv:1212.0506.

[Kliuchnikov et al. 2012b] V. Kliuchnikov, D. Maslov, and M. Mosca. Asymptotically optimal approximation of single qubit unitaries by Clifford and t circuits using a constant number of ancillary qubits. arXiv:1212.0822, Dec. 2012.

[Selinger 2012b] P. Selinger. Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253.

[Bocharov et al. 2013] A. Bocharov, Y. Gurevich, K. M. Svore. Efficient Decomposition of Single-Qubit Gates into V Basis Circuits. *Physical Review A* 88, 012303, 2013. Available from arXiv:1303.1411.

[Kliuchnikov 2013] V. Kliuchnikov, Synthesis of unitaries with Clifford+T circuits. arXiv:1306.3200, June 2013.

[Kliuchnikov et al. 2013] V. Kliuchnikov, A. Bocharov, K. M. Svore. Asymptotically Optimal Topological Quantum Compiling. arXiv:1310.4150, October 2013.

[Ross and Selinger 2014] N. J. Ross and P. Selinger. Optimal ancilla-free Clifford+T approximation of *z*-rotations. arXiv:1403.2975, March 2014.