
Verification of Discrete and Real-timed Railway
Control Systems

Monika Seisenberger

Joint work with Andrew Lawrence, Ulrich Berger, Phil James, Markus Roggenbach

Swansea University

CIRM, 11 January 2016

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 1 / 39

Verification of Discrete and Real-timed Railway
Control Systems

2 Aims:

1 Discrete: Verification of Solid State Interlockings -
From Ladder Logic to a SAT solving problem.
Extraction of a verified SAT Solver in the Minlog System.

2 Real-Timed: Modelling the European Rail Traffic
Management System (ERTMS)

ERTMS – what it is and how it works
Generic Modelling: ERTMS in Real-Time Maude
Verification & simulation results

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 2 / 39

The use of Ladder Logic: a simple Crossing Example

Traditionally railway engineers use
ladder logic to specify their systems.

Here a small crossing example:

1 input variable: pressed

2 internal state variables:
”crossing” and ”required”

variables for the trafflic
lights:tlag, tlar, etc

[Example created by Karim Kanso]

req crossing crossing

pressed req req

pressed crossing tlag

req

pressed crossing tlbg

req

Ladder Logic Program (4/8 rungs)

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 3 / 39

Translation (automated) to Propositional Logic

crossing ′ ↔ req ∧ ¬ crossing ,
req′ ↔ pressed ∧ ¬ req,
tlag ′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing ′

tlbg ′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing ′

tlar ′ ↔ crossing ′, tlbr ′ ↔ crossing ′,
plag ′ ↔ crossing ′, plbg ′ ↔ crossing ′,
plar ′ ↔ ¬ crossing ′, plbr ′ ↔ ¬ crossing ′

crossing’, req’,. . . are new variables

primed variables on left sides are all different.

a primed variable may depend on earlier computed primed variables,
but not on the unprimed ones.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 4 / 39

Definition Ladder Logic Formulae

I input variables, C output variables.
Example: I = {pressed} and
C = {crossing , req, tlag , tlbg , plag , plbg , . . .}.
C ′ = {c ′ | c ∈ C} to be a set of new variables (intended to denote the
output variables computed in the current cycle).
unprime : C ′ → C ,unprime(c ′) = c .

A ladder logic formula ψ is a propositional formula of the form

ψ ≡ ((c ′1 ↔ ψ1) ∧ (c ′2 ↔ ψ2) ∧ . . . ∧ (c ′n ↔ ψn)

such that the following holds for all i , j ∈ {1, . . . , n}:
c ′i ∈ C ′

i 6= j → c ′i 6= c ′j
Vars(ψi) ⊆ I ∪ {c ′1, . . . , c ′i−1} ∪ {ci , . . . , cn}

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 5 / 39

Semantics Ladder Logic Formulae

The semantics of a ladder logic formula ψ is a function that takes the
current valuations for input and output variables and returns a new
valuation for output variables (one time cycle later).

[ψ] : ValI ×ValC → ValC

[ψ](µI , µC) = µ′C

where

ValI = {µI |µI : I → {0, 1}} = {0, 1}I

ValC = {µC |µC : C → {0, 1}} = {0, 1}C

µ′C (ci) = [ψi](µI , (µC)�{ci ,...,cn}, (µ
′
C ◦ unprime)�{c ′1,...,c ′i−1})

µ′C (c) = µC (c) if c /∈ {c1, . . . , cn}

and [ψi](·, ·, ·) denotes the usual value of a propositional formula under a
valuation.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 6 / 39

Crossing transition system

Crossing =
0

Req = 0

.

.

.

Crossing =
1

Req = 0

.

.

.

Crossing =
0

Req = 1

.

.

.

Crossing =
1

Req = 1

.

.

.

0

0, 1

1

0

0, 1

1

Included one unreachable state were both Crossing and Req are true.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 7 / 39

Ladder Logic Labelled Transition System

We define the labelled transition system LTS(ψ) for a ladder logic formula
ψ to be the four tuple (ValC ,ValI ,→,Val0)
where

µC
µI−→ µ′C iff [ψ](µI , µC) = µ′C

Val0 = {µC |µC inital valuation}

A state s is called reachable if s0
t0−→ s1

t1−→ . . .
tn−1−−→ sn, for some states

s0, . . . , sn, and labels t0, . . . , tn−1 such that s0 ∈ Val0 and sn = s.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 8 / 39

Definition (Safety Conditions)

Given a ladder logic formula ψ over the variables in I ∪ C a verification
condition is a propositional formula formed from the variables in
I ∪ C ∪ C ′.

Examples of Safety conditions: In crossing not all light not green at the
same time, no two trains on the same track segment on the same time,..

Definition (The Verification Problem)

We define the verification problem for a ladder logic formula ψ for a
verification condition φ

LTS(ψ) |= φ

iff for all triples µC , µI , µ
′
C such that µC

µI−→ µ′C and µC is reachable in
LTS(ψ), we have [φ](µC , µI , µ

′
C) = 1.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 9 / 39

Real World Case Studies and Technologies applied

Invensys Rail UK (now Siemens UK) provided Ladder Logic Programs for
several stations. Size: 600 variables, 350 rungs, for a small London
Underground Station. largest: 8166 variables, 14726 clauses.

1 SAT solving using an industrial Tool: SCADE (Prover).
Our tool automatic translates to SCADE language.
Several optimization methods, no control on methods.
All 109 safety conditions together take less than 1s.
55 produced counter examples, which need to be eliminated by adding
invariants → 100 invariants added.

2 Extracting a SAT solver in the Minlog system.
Extracted SAT solver can easily be integrated in the Minlog system, i.e.
will allow for a combination of SAT solving and interactive theorem
proving.
Provides in each case either a model or a derivation why not satifable.
Can deal with all the above safety conditions (8s/12s)
Variant: Extension to backtracking and clause learning.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 10 / 39

Part 1.2: Extraction of a SAT solving algorithm

Extraction of a SAT solving algorithm

Basic definitions:

A literal l is either a positive variable +v or a negative variable −v .
The opposite value of a literal is defined as: +̄v = −v , −̄v = +v .

A clause C is defined as a set of literals {l1, . . . , lk} (representing
their disjunction).

A formula ∆ is a set of clauses (representing their conjunction).

An example of a formula:

∆ = {{l11}, {l21}, { ¯l11, ¯l21}}
to be read as

l11 ∧ l21 ∧ (¬l11 ∨ ¬l21)

SAT problem: is there a valuation for these variables satisfying the
formula?

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 11 / 39

Part 1.2: Extraction of a SAT solving algorithm

DPLL Proof System Γ ` ∆

Most modern SAT solvers are based on DPLL algorithm (Davies, Putnam,
Logemann, Loveland 1960/1962).
We use the DPLL proof system, consisting of 5 rules:

Γ, l ` ∆
(Unit)

Γ ` ∆, {l}
Γ, l ` ∆,C

(Red)
Γ, l ` ∆, (l̄ ,C)

Γ, l ` ∆
(Elim)

Γ, l ` ∆, (l ,C)

(Conflict)
Γ ` ∆, ∅

Γ, l ` ∆ Γ, l̄ ` ∆
(Split)

Γ ` ∆

(Γ is a valuation (set of literals) and ∆ is a formula (clause set). Γ ` ∆
essentially means that ∆ is not satisfiable, using the literals from Γ)

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 12 / 39

Part 1.2: Extraction of a SAT solving algorithm

Valuations and Models

A valuation Γ, i.e. set of literals{l1, . . . , lk}, is consistent iff
l ∈ Γ→ l̄ /∈ Γ. Let Cons be the set of all consistent Valuations.

A model is a total function M which maps literals to booleans and
satisfies the following property ∀l M. l ↔ ¬(M l̄)

Two abbreviations:

For a given valuation Γ, ∀l ∈ Γ M l is abbreviated as M |= Γ.

For a given formula ∆, ∀C ∈ ∆ ∃l ∈ C M l is abbreviated as M |= ∆.

We call a valuation Γ and a formula ∆ compatible if there exists a model
satisfying both, i.e.

∃M.M |= Γ ∧M |= ∆

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 13 / 39

Part 1.2: Extraction of a SAT solving algorithm

Formalising and Proving Completeness

The expected statement of completeness is: ∀Γ ∈ Cons,∀∆.

incompatible(Γ; ∆)→ Γ ` ∆

We proved the following classically equivalent but constructively stronger
statement: ∀Γ ∈ Cons,∀∆.

compatible(Γ; ∆) ∨ Γ ` ∆

Program extraction yields a program that either yields a model if Γ and ∆
are compatible (∃M.M |= Γ ∧M |= ∆) or a deriviation if uncompatible.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 14 / 39

Part 1.2: Extraction of a SAT solving algorithm

Proof of Completeness Theorem

Theorem: ∀Γ ∈ Cons, ∀∆,Θ. ∅ /∈ Θ ∧ Var(Γ) ∩ Var(Theta) = ∅ →

(Γ ` ∆ ∪Θ) ∨ ∃M.M |= Γ ∧M |= ∆ ∪Θ,

We aim to perform the proof in such a way that an efficient program is
extracted:

1. Since performing a split is the only computational expensive
operation, we only apply it when it is absolutely necessary.

2. We perform an optimisation on the proof level by partitioning the
clauses into ’clean’ and ’unclean’ clauses, where a clause is called
clean if we cannot apply Elim, Reduce or Unit to that clause.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 15 / 39

Part 1.2: Extraction of a SAT solving algorithm

Program Extraction - Extracted Solver

The proof has been formalised in the Interactive Proof System Minlog, and
- via modified realisability - a program has been extracted.

Example run: We run the extracted solver using pigeon hole formulae

PHP(n,m) := {{li ,1, . . . , li ,m}|1 ≤ i ≤ n}

∪{{ ¯li ,k , ¯lj ,k}|1 ≤ i < j ≤ n, 1 ≤ k ≤ m}

Intuitively, e.g. PHP(n, n − 1) states ”it is not possible to put n pigeons
into n − 1 holes and only have one pigeon in each hole”

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 16 / 39

Part 1.2: Extraction of a SAT solving algorithm

Extracted Program (cont.)

On satisfiable formulae:

PHP(2, 2) PHP(3, 3) PHP(4, 4) PHP(5, 5) PHP(6, 6)

< 1 Sec < 1 Sec 5.45 26.09 1:34.11

On unsatisfiable formulae:

PHP(2, 1) PHP(3, 2) PHP(4, 3) PHP(5, 4) PHP(6, 5)

< 1 Sec 1.17 33.62 13:54 5:35:41

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 17 / 39

Part 1.2: Extraction of a SAT solving algorithm

1. Improvement: Non-computational Quantifiers

Comparision on Unsatisfiable Formula

Solver PHP(2, 1) PHP(3, 2) PHP(4, 3)

∀ < 1 Sec 1.17 33.62

∀nc < 1 Sec < 1 Sec 11.61

PHP(5, 4) PHP(6, 5)

13:54 5:35:41

2:41 37:25

The ∀nc solver is significantly faster on unsatisfiable formulae!

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 18 / 39

Part 1.2: Extraction of a SAT solving algorithm

Realisability with Non-Computational Quantifiers

As well as the usual quantifiers, ∀ and ∃, Minlog offers non-computational
(nc) quantifiers ∀nc and ∃nc .

The definitions of the type for the ordinary quantifiers:

τ(∀xρA) = ρ→ τ(A)

τ(∃xρA) = ρ× τ(A)

The definitions of the type for the nc quantifiers:

τ(∀ncxρA) = τ(A)

τ(∃ncxρA) = τ(A)

For the nc-quantifiers the realizers do not depend on the quantified
variables:

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 19 / 39

Part 1.2: Extraction of a SAT solving algorithm

2. Further improvements: Extraction to Haskell, etc

Formula Minlog ∀ Minlog ∀nc Haskell Haskell (-fllvm)

Witness Witness Witness Yes/No Witness Yes/No

PHP(4,3) 33.62s 11.61s 0.019s 0.006s 0.015s 0.004s
PHP(4,4) 5.45s 5.25s 0.019s 0.010s 0.014s 0.007s
PHP(5,4) 13m54s 2m41s 0.055s 0.020s 0.036s 0.012s
PHP(5,5) 26.09s 25.03s 0.024s 0.015s 0.020s 0.010s
PHP(6,5) 5h35m41s 37m25s 0.367s 0.066s 0.279s 0.039s
PHP(6,6) 1m34.11s 1m24.88s 0.035s 0.025 0.025s 0.015s

PHP(8,8) - - 0.054s 0.029s 0.040s 0.025s
PHP(9,8) - - - 1m21.915s - 32.062s
PHP(9,9) - - 0.064s 0.042s 0.052s 0.030s

PHP(10,9) - - - 102m 16s - 15m 5s

[Extraction to Haskell done in collaboration with Fredrik Nordvall Forsberg]
Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 20 / 39

Part 1.2: Extraction of a SAT solving algorithm

Performance compared to Versat

Versat was formalized and verified in the dependently typed programming
language Guru and translated into C-code.

Formula ∀nc compiled (Yes/No) Versat

PHP(7,6) 0.226s 0.089s
PHP(8,7) 2.42s 0.794s
PHP(9,8) 32.062s 17.217s

PHP(10,9) 15m 5s 15m 46s

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 21 / 39

Part 2: Real-timed Railway Control Systems

Part 2: Real-Timed Railway Control Systems

To investigate how a Centralized Traffic Control System,
the European Rail Traffic Management System (ERTMS)

can be modelled and verified using the Real-Time-Maude system

Overview Part 2:

I: ERTMS – what it is and how it works

II: Modelling of ERTMS in Real-Time Maude

III: Validation and Verification results

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 22 / 39

Part 2: Real-timed Railway Control Systems I: ERTMS – what it is and how it works

European Rail Traffic Management System (ERTMS) I

What it is:

European standard of signalling, control and train protection

To replace the many incompatible safety systems (20!) currently used
by European railways

Offers possibility for traffic management

Originally designed for Europe, has rapidly become a global standard.

Some facts:

Europe: Switzerland (1200km, full coverage by 2017), Denmark
(4000km), Germany, Belgium, Spain, Austria;
UK’s first line is in Wales: Cambrian Coast Line, 215km

World wide: China: 8000km.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 23 / 39

Part 2: Real-timed Railway Control Systems I: ERTMS – what it is and how it works

European Rail Traffic Management System (ERTMS) II

Traditional railway interlockings control the rail traffic via signals.
In short: ERTMS removes the signals, and replaces them by
communication between trains and interlockings.

ERTMS shall achieve:

interoperability

ease of maintenance (less track equipment)

higher capacity

(40%)

Open research questions include:
1 How can safety be verified?
2 How can capacity be measured and improved?
3 How can reliability be measured and estimated?

Here: 1 and, partially, 2.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 24 / 39

Part 2: Real-timed Railway Control Systems I: ERTMS – what it is and how it works

European Rail Traffic Management System (ERTMS) II

Traditional railway interlockings control the rail traffic via signals.
In short: ERTMS removes the signals, and replaces them by
communication between trains and interlockings.

ERTMS shall achieve:

interoperability

ease of maintenance (less track equipment)

higher capacity (40%)

Open research questions include:
1 How can safety be verified?
2 How can capacity be measured and improved?
3 How can reliability be measured and estimated?

Here: 1 and, partially, 2.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 24 / 39

Part 2: Real-timed Railway Control Systems I: ERTMS – what it is and how it works

European Rail Traffic Management System (ERTMS) II

Traditional railway interlockings control the rail traffic via signals.
In short: ERTMS removes the signals, and replaces them by
communication between trains and interlockings.

ERTMS shall achieve:

interoperability

ease of maintenance (less track equipment)

higher capacity (40%)

Open research questions include:
1 How can safety be verified?
2 How can capacity be measured and improved?
3 How can reliability be measured and estimated?

Here: 1 and, partially, 2.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 24 / 39

Part 2: Real-timed Railway Control Systems I: ERTMS – what it is and how it works

European Rail Traffic Management System (ERTMS) II

Traditional railway interlockings control the rail traffic via signals.
In short: ERTMS removes the signals, and replaces them by
communication between trains and interlockings.

ERTMS shall achieve:

interoperability

ease of maintenance (less track equipment)

higher capacity (40%)

Open research questions include:
1 How can safety be verified?
2 How can capacity be measured and improved?
3 How can reliability be measured and estimated?

Here: 1 and, partially, 2.
Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 24 / 39

Part 2: Real-timed Railway Control Systems ERTMS – how it works

System components of ERTMS, level 2

Main Responsibilities:
Trains - communicate position/speed, and receive movement authorities.
RBC - grants MAs/denies MA requests, consults with Interlocking
Interlocking - allows for setting new routes, responsible for safety.

Controller (not in picture) - requests new routes.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 25 / 39

Part 2: Real-timed Railway Control Systems ERTMS – how it works

System components of ERTMS, level 2

Main Responsibilities:
Trains - communicate position/speed, and receive movement authorities.
RBC - grants MAs/denies MA requests, consults with Interlocking
Interlocking - allows for setting new routes, responsible for safety.
Controller (not in picture) - requests new routes.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 25 / 39

Part 2: Real-timed Railway Control Systems ERTMS – how it works

Information flow in ERTMS, level 2

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 26 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Object Oriented Modelling in Real-Time-Maude

- Real-Time Maude (Peter C. Ölveczky and José Meseguer 2004) is a
language and tool extending Maude, that allows for simulation and formal
analysis of real-time and hybrid systems.

- Object based systems are modelled as multisets of objects and messages
of a sort Configuration, a subset of Maude’s built-in in sort System.

- A real-time specification consists of

the sort Time (in our case NNegRat),
the constructor {_} : System -> Globalsystem

instantaneous rewrite rules,
a so-called tick rule that defines how time elapses.

crl [tick] : {CURRENT} => {delta(CURRENT,T)} in time T

if T <= mte(CURRENT) [nonexec] .

where delta defines the effect of time elapse on a configuration.
mte defines the maximal possible time elapse.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 27 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Object Oriented Modelling in Real-Time-Maude

- Real-Time Maude (Peter C. Ölveczky and José Meseguer 2004) is a
language and tool extending Maude, that allows for simulation and formal
analysis of real-time and hybrid systems.

- Object based systems are modelled as multisets of objects and messages
of a sort Configuration, a subset of Maude’s built-in in sort System.

- A real-time specification consists of

the sort Time (in our case NNegRat),
the constructor {_} : System -> Globalsystem

instantaneous rewrite rules,
a so-called tick rule that defines how time elapses.

crl [tick] : {CURRENT} => {delta(CURRENT,T)} in time T

if T <= mte(CURRENT) [nonexec] .

where delta defines the effect of time elapse on a configuration.
mte defines the maximal possible time elapse.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 27 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Object Oriented Modelling in Real-Time-Maude

- Real-Time Maude (Peter C. Ölveczky and José Meseguer 2004) is a
language and tool extending Maude, that allows for simulation and formal
analysis of real-time and hybrid systems.

- Object based systems are modelled as multisets of objects and messages
of a sort Configuration, a subset of Maude’s built-in in sort System.

- A real-time specification consists of

the sort Time (in our case NNegRat),
the constructor {_} : System -> Globalsystem

instantaneous rewrite rules,
a so-called tick rule that defines how time elapses.

crl [tick] : {CURRENT} => {delta(CURRENT,T)} in time T

if T <= mte(CURRENT) [nonexec] .

where delta defines the effect of time elapse on a configuration.
mte defines the maximal possible time elapse.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 27 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Modelling 1: location specific data & messages

Encoding of the rail topology:

sort RouteName . ops RouteName1A ... : -> RouteName .

sort Track . ops AA AB AC ... : -> Track .

sort Point . ops P1 P2 : -> Point .

Messages to be exchanged between the ERMTS components:

msg routerequest : RouteName -> Msg .

msg marequest : Oid Track -> Msg .

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 28 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Modelling 2: Instantaneously reacting sub-systems

No time-constraints:

eq mte(< O1 : Controller | >) = INF .

Interlocking – a class with internal states:

class Inter | routeset : MapRouteName2Bool,

pointslocked : MapPoint2Bool,

occ : MapTrack2Bool,

pointPositions : MapPoint2PointPos .

Ignoring a route request:

crl routerequest(RN1)

< O : Inter | occ : MAPTB1, pointslocked : MAPPB3 >

=>

< O : Inter | > if (not checkClear(RN1, MAPTB1)) or

pointsLocked(RN1, MAPPB3) .

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 29 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Modelling 3: Trains with ERTMS equipment

crl [acc] :

...

delta(< O : Train | state : acc, dist : DT, speed : S,

ac : A, ma : MA , tseg : AN, maxspeed : MAX >, T)

=>

...

< O : Train | state : if (S + T * A == MAX)

then cons

else (if T == mteMA(DT,S,A,MA)

then brake

else acc fi) fi,

dist : DT + S * T + A * T * T * 1/2,

speed : S + A * T >) .

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 30 / 39

Part 2: Real-timed Railway Control Systems III: Modelling of ERTMS in Real-Time-Maude

Modelling 3: Trains with ERTMS equipment

Stop
(EoA)
S = 0

Ṡ = 0 D = EoA

Accelerating
Ṡ = 1 BD(S) ≤
DMA(D,EoA)
S ≤ MaxSpeed

Braking
Ṡ = −1
BD(S) =

DMA(D,EoA)

Full
Speed

S = MaxSpeed
Ṡ = 0 BD(S) ≤
DMA(D,EoA)

S =MaxSpeed

MA.x.y
if x = TrainId
then MA := y

DMA(D, EoA) =
BD(S)

MA.Req.TrainID

S = 0

DMA(D,EoA) =
BD(S)

MA.Req.TrainIDMA.x.y
if x = TrainID
then MA := y

train movement
events

train movement
events

train movement
events

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 31 / 39

Part 2: Real-timed Railway Control Systems III: Validation through Simulation and Error injection

III) Validation through Simulation

We have validated our model through exploring various train movements.

For example, rewriting a train starting on track AA:

(trew { < inter1 : Inter | pointPositions : (P1 |-> normal,

P2 |-> normal) , ... > < train1 : Train | state : acc, dist :

2, speed : 0, ac : 1, ma : 1498, tseg : AA , maxspeed : 60 >

} in time <= 39 .)

shows that it accelerates until it is required to begin braking due to its MA:

... < train1 : Train | ac : 1, dist : 1499446241/2000000, ma

: 1498, maxspeed : 60, speed : 38671/1000, state : brake,

tseg : AA >... in time 38671/1000

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 32 / 39

Part 2: Real-timed Railway Control Systems III: Validation through Simulation and Error injection

Validation through Simulation (2)

It then makes a movement authority request:

marequest(train1,AA) < inter1 : ...> < train1 : Train | speed

: 37671/1000, ... > in time 39671/1000

However at this point the system will not progress until we add an RBC to
deal with the request...

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 33 / 39

Part 2: Real-timed Railway Control Systems III: Validation through Simulation and Error injection

Error Injection: Train - Incorrect braking parameters

Our modelling is able to find errors, for example:

Decelleration for used for computation: 1; physical deceleration: 8/10.

< train1 : Train | ... dist : 3249, ac : 1, ma : 6499, tseg

: AD , maxspeed : 20 > < train2 : Train | ... ac : 8/10, ma

: 1, tseg : Entry , maxspeed : 60 > ...

Model checking is able to produce a counter example

< train1 : Train | ac : 1,dist : 15662341/2500,ma : 6499,

maxspeed : 20,speed : 20,state : cons,tseg : AF > < train2 :

Train | ac : 4/5,dist : 968593576867/156250000, ma :

7999,maxspeed : 60,speed : 60,state : cons, tseg: AF > ...

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 34 / 39

Part 2: Real-timed Railway Control Systems III: Validation through Simulation and Error injection

Error Injection: RBC Design Error

Our modelling is able to find errors, for example:

Assume the RBC is designed with incorrect EoA values,
e.g. EoA of Route 1A = 3449m

Model checking is able to produce a couter example where train 1
ovveruns and hence is able to get within 100m of train 2:

...< train1 : Train | ac : 1,dist : 3449,ma : 3449,

maxspeed : 20,speed : 0,state : stop,tseg : AD >

< train2 : Train | ac : 1,dist : 12433788921/4000000,

ma : 6499,maxspeed : 60, speed : 60,state : cons, tseg

: AC > ...

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 35 / 39

Part 2: Real-timed Railway Control Systems III: Verification through Modellchecking

Safety Verification through Model-checking

Verification that trains cannot be within 100 metres of each other, e.g.:

mc initState |=t [] nocrashDistance(train1,train2) .

Scheme Plan Round Robin Controller Random Controller
Unbounded in Time 300

Junction 2.4s / 5,767,435 rewrites 268.3s / 208,715,358 rewrites
Pass-through Station 3.0s / 7,135,987 rewrites 439.2s / 308,629,500 rewrites
Three Platform Station 2.8s / 6,624,578 rewrites 2697.1s / 729,201,878 rewrites

Table: Verification results of model checking three scheme plans.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 36 / 39

Conlusion & Future Work

Conclusion and Future Work

Part1: Verification of Traditional Interlockings: all translation processes
can be automated; method included in industrial process between design
and testing. Industry will still do testing (involves humans), but the
burden of guaranteeing is completeness and correcteness greately reduced.

Second, we presented a conceptually new approach to the synthesis and
verification of SAT algorithms.

does not require the formalisation of the algorithm, but obtains it by
program extraction.

interesting point: do optimisations not on the programme level, but
on the proof level.

Future work: Extension to include backtracking and clauselearning.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 37 / 39

Conlusion & Future Work

Conclusion: Part 2: Real-Timed Railway Control Systems

The firsts:

First use of Maude / Real-Time Maude in the railway domain.

First formal model comprising of all ERTMS subsystems required for
the control cycle.

Rail control modelled as a hybrid system,

Safety properties in physical rather than in logical terms.

Future work: Improving the models:

Bi-directional rail-yards.

Further controller strategies.

More complex train progression behaviour.

Reflecting on the models:

Address completeness/Use of Real Numbers

Include further safety properties.

Develop abstractions to increase in verification speed.
Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 38 / 39

Conlusion & Future Work

References

James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger,
M. and Setzer, A.Chadwick, S. ,P. Kanso, K., :
Verification of solid state interlocking programs.
In SEFM’13, LNCS 8368, Springer 2014.

Berger, U., Lawrence, A., Nordvall Forsberg, F. , Seisenberger, M.
Extraction of Verified Decision Procedures.
LMCS 11(1:6), 2015.

James , P., Lawrence, A., Roggenbach, M., Seisenberger, M.
Towards Safety Analysis of ERTMS/ETCS Level 2 in Real-Time
Maude.
FTSCS 2015, to appear, Springer, 2016.

Monika Seisenberger (Swansea University) Verification of Railway Control Systems CIRM, 11 January 2016 39 / 39

	Part 1: Discrete Railway Control Systems
	Part 1.2: Extraction of a SAT solving algorithm
	Part 2: Real-timed Railway Control Systems
	I: ERTMS – what it is and how it works
	 ERTMS – how it works
	III: Modelling of ERTMS in Real-Time-Maude
	III: Validation through Simulation and Error injection
	III: Verification through Modellchecking

	Conlusion & Future Work

