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Categories, Algorithms, and Programming

Spectral Sequence Algorithm

Let A be an abelian category (e.g. the category of abelian groups).

Q: How to handle spectral sequences in A algorithmically?

Spectral Sequence Algorithm

F ∈ Filt (Ch (A))
3-dimensional

array of objects
and morphisms

Spectral Sequence Algorithm

Depends only on primitive operations dictated by the .
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Categories, Algorithms, and Programming

Axioms of on Abelian Category

Needed operations: ◦,+,−

, ⊕, , Coker. Let ϕ be a morphism.

To
handle the kernel of ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.
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Categories, Algorithms, and Programming

CAP

So we need a computer algebra system with . . .

the possibility to implement sophisticated categorical algorithms
and data structures using primitive categorical operations,
an interface to interpret these primitive categorical operations by
computable operations (of various computer algebra systems).

 CAP
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Categories, Algorithms, and Programming

What is CAP?

CAP means Categories, algorithms, and programming

and is a
software project implemented in GAP (Groups, algorithms, and
programming) (joint work with Sebastian Gutsche, based on ideas of
the homalg project (Mohamed Barakat).

CAP serves as a categorical programming language with
categorical operations as primitives.
CAP has an interface for the interpretation of these categorical
operations.

Using CAP we are now able to implement the categorical data
structures and algorithms which we need.
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Categories, Algorithms, and Programming

CAP Packages

CAP

LinearAlgebraForCAP

ModulePresentationsForCAP

GeneralizedMorphismsForCAP

ComplexesAndFilteredObjectsForCAP

ActionsForCAP

HomologicalAlgebraForCAP
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Section 2

Generalized Morphisms
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Generalized Morphisms

Connecting Homomorphism in the Snake Lemma

ker(γ)

A B C 0

0 A′ B′ C′

coker(α)

ε

α β γ

µ

Wanted: ker(γ)
∂−→ coker(α).
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Generalized Morphisms

Connecting Homomorphism in the Snake Lemma
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A b ∈ B c ∈ C 0
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Generalized Morphisms

Connecting Homomorphism in the Snake Lemma

c ∈ ker(γ)

A b ∈ B c ∈ C 0

0 a′ ∈ A′ b′ ∈ B′ C′

a′ + im(α) ∈ coker(α)

ε

α β γ

µ

Idea: Use relations instead of maps. c 7→ ε−1({b})
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Generalized Morphisms

Relations

Let A,B be abelian groups.

Definition
A subgroup f ⊆ A⊕ B is called a relation from A to B.

Example
Let ε : B → C be a homomorphism of abelian groups.

Γ(ε) := {(b, c) ∈ B ⊕ C | ε(b) = c}

is a relation from B to C, called graph of ε, and

ε−1 := {(c,b) ∈ C ⊕ B | ε(b) = c}

is a relation from C to B, called pseudo-inverse.
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Generalized Morphisms

Relations

Composition of Relations

Given f ⊆ A⊕ B and g ⊆ B ⊕ C, define

g ◦ f := {(a, c) ∈ A⊕ C | ∃b ∈ B : (a,b) ∈ f , (b, c) ∈ g}

If f and g correspond to maps, this describes their usual composition.
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Snake Lemma Revisited
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∂ is a composition of relations!
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Generalized Morphisms

From Relations to Generalized Morphisms

Wanted: A categorical framework for relations.

Solution: Generalized Morphisms.
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Generalized Morphisms

From Relations to Generalized Morphisms

Let A,B be objects in an abelian category A.

Relation Generalized Morphism

A A⊕ B B

D

(
α β

)
α β
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Generalized Morphisms

Composition of Generalized Morphisms

Composition

A

A

B

B

B

C

C

D

D E

E

D ×B E

Pullbacks Composition of generalized morphisms
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Generalized Morphisms

Pseudo-Inverses
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Generalized Morphisms

Generalized Morphisms in CAP

Realization in CAP

CAP provides generalized morphisms as a data structure.

3 different data structures:
1 Spans: A← D → B
2 Cospans: A→ D ← B
3 3-arrow: A← D → E ← B

They are useful for:
1 Diagram chases
2 Spectral sequences
3 Localization of categories (Serre quotients)
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Download CAP

Download CAP

http://homalg-project.github.io/CAP_project/
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