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SWchts

Theorem

Suppose that (X , T ) is a compact Hausdorff topological space and Φ ⊆ C(X ) satisfying:

(i) Φ is a subalgebra of C(X ).

(ii) Φ separates the points of X : ∀x,y∈X (x 6= y → ∃f∈Φ(f (x) 6= f (y))).

(iii) Const(X ) ⊆ Φ.

Then the uniform closure of Φ is C(X ).
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Constructive versions of SWchts

Banaschewski and Mulvey (1997) considered a compact, completely regular locale
instead of a compact Hausdorff topological space.

Coquand (2001) gave a simple, constructive localic proof of it, replacing the ring
structure of C(X ) by its lattice structure.

Coquand (2005) studied the usual formulation of SWchts in this point-free
topological framework.

Bishop (1967) formulated BSWcms a theorem of Stone-Weierstrass type for compact
metric spaces (complete and totally bounded metric spaces) using the notion of a
Bishop-separating set of uniformly continuous functions.

His result holds for totally bounded metric spaces (for every ε > 0 there exists a finite
ε-approximation of X ).

Total boundedness is maybe more fundamental than compactness.
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Throughout this talk:

(X , d) is a totally bounded metric space,

Cu(X ) denotes the uniformly continuous real-valued functions on X ,

Φ ⊆ Cu(X ).

Definition

Φ is called Bishop-separating, if there is

δ : R+ → R+

such that:

(Bsep1) For all ε > 0 and x0, y0 ∈ X , if d(x0, y0) ≥ ε, there exists gε,x0,y0 ∈ Φ such
that

∀z∈X (dx0 (z) ≤ δ(ε)→ |gε,x0,y0 (z)| ≤ ε) and

∀z∈X (dy0 (z) ≤ δ(ε)→ |gε,x0,y0 (z)− 1| ≤ ε).

(Bsep2) For all ε > 0 and x0 ∈ X there exists gε,x0 ∈ Φ such that

∀z∈X (dx0 (z) ≤ δ(ε)→ |gε,x0 (z)− 1| ≤ ε).
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For every x0 ∈ X the map
dx0 : X → R,

x 7→ d(x0, x)

is in Cu(X ) with ωdx0
= idR+ .

U0(X ) := {dx0 | x0 ∈ X}.

U∗0 (X ) := U0(X ) ∪ {1}.

We call Φ positively separating, if

∀x,y∈X (x 1d y → ∃g∈Φ(g(x) 1R g(y))),

where
x 1d y ↔ d(x , y) > 0,

for every x , y ∈ X , and

a 1R b ↔ |a− b| > 0↔ a < b ∨ b < a,

for every a, b ∈ R. Clearly, U0(X ) is positively separating.

Remark

If Φ is Bishop-separating, then Φ is positively separating.
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BSWtbms

A(Φ) is the least subset of Cu(X ) that includes Φ and it is closed with respect to
addition, multiplication, and multiplication by reals.

Bishop didn’t define A(Φ) inductively but explicitly, as the set of compositions of
strict real polynomials in several variables with vectors of elements of Φ.

Theorem (Bishop’s Stone-Weierstrass theorem for totally bounded metric spaces
(BSWtbms))

If Φ is Bishop-separating, then A(Φ) is dense in Cu(X ).

The condition of Φ being Bishop-separating implies that the constant map 1 is in the
closure of A(Φ).

Its proof is non-trivial!
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Bishop’s formulation of BSWtbms represents a non-trivial technical achievement,
namely to find a formulation of a theorem of Stone-Weierstrass type in the
constructive theory of metric spaces that resembles the formulation of the classical
SWchts.

Coquand and Spitters 2009: constructive proofs using a concrete presentation of
topological notions (e.g., the Gelfand spectrum as a lattice) are “more direct than
proofs via an encoding of topology in metric spaces, as is common in Bishop’s
constructive mathematics”.
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We present a Stone-Weierstrass theorem for metric spaces which

(i) avoids the concept of a Bishop-separating set,

(ii) it has an informative and direct proof,

(iii) it implies BSWtbms,

(iv) it proves directly all corollaries of BSWtbms.
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Definition

If f , g ∈ Cu(X ) and ε > 0, then

f ∧ g := min{f , g}, f ∨ g := max{f , g},

and the uniform closure U(Φ) of Φ is defined by

U(g , f , ε) :↔ ∀x∈X (|g(x)− f (x)| ≤ ε),

U(Φ, f ) :↔ ∀ε>0∃g∈Φ(U(g , f , ε)),

U(Φ) := {f ∈ Cu(X ) | U(Φ, f )}.

Remark

If Φ is closed under addition, multiplication by reals and multiplication, then U(Φ) is
closed under addition, multiplication by reals and multiplication.

If Φ is closed under |.|, then U(Φ) is closed under |.|.
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Lemma

If Const(X ) ⊆ Φ, and Φ is closed under addition and multiplication, then U(Φ) is
closed under |.|,∨ and ∧.

Lemma

If Φ is closed under addition, multiplication by reals, and multiplication, and f ∈ U(Φ)
such that for some c > 0

∀x∈X (|f (x)| ≥ c),

then
1

f
∈ U(Φ).

Corollary

If x0, y0 ∈ X such that d(x0, y0) > 0, then 1 ∈ U(A(U0(X ))).

Proof.

If x ∈ X , then 0 < d(x0, y0) ≤ d(x0, x) + d(x , y0) = dx0 (x) + dy0 (x) i.e., d(x0, y0) ≤
dx0 + dy0 ∈ A(U0(X )). By the second lemma 1

dx0
+dy0

∈ U(A(U0(X ))), therefore

1 ∈ U(A(U0(X ))).
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Definition

If F(X ) denotes the set of real-valued functions on X , the set of Lipschitz functions
Lip(X ) on (X , d) is defined by

Lip(X , k) := {f ∈ F(X ) | ∀x,y∈X (|f (x)− f (y)| ≤ kd(x , y))},

Lip(X ) :=
⋃

k≥0

Lip(X , k).

Remark

The set Lip(X ) ⊆ Cu(X ) includes U0(X ), Const(X ) and it is closed under addition,
multiplication by reals, and multiplication.

Proof.

If x0 ∈ X , then |d(x0, x) − d(x0, y)| ≤ d(x , y), for every x , y ∈ X , therefore U0(X ) ⊆
Lip(X , 1). Clearly, Const(X ) ⊆ Lip(X , k), for every k ≥ 0. Recall that f · g =
1
2

((f + g)2 − f 2 − g2), and if Mf > 0 is a bound of f , it is immediate to see that

f ∈ Lip(X , k1)→ g ∈ Lip(X , k2)→ f + g ∈ Lip(X , k1 + k2),

f ∈ Lip(X , k)→ λ ∈ R→ λf ∈ Lip(X , |λ|k),

f ∈ Lip(X , k)→ f 2 ∈ Lip(X , 2Mf k).
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Lemma

If Φ = A(U∗0 (X )), then Lip(X ) ⊆ U(Φ).

Proof: It suffices to show that Lip(X , 1) ⊆ U(Φ), since if f ∈ Lip(X , k), for some
k > 0, then 1

k
f ∈ Lip(X , 1) and we have, for every ε > 0 and θ ∈ Φ,

U(θ,
1

k
f ,
ε

k
)→ U(kθ, f , ε).

Suppose next that f ∈ Lip(X , 1) and ε > 0. We find g ∈ U(Φ) such that U(g , f , ε),
therefore f ∈ U(U(Φ)) = U(Φ).
If {z1, . . . , zm} is an ε

2
-approximation of X , we find g ∈ U(Φ) such that

g(zi ) = f (zi ), for every i ∈ {1, . . . ,m},

|g(x)− g(zi )| = |g(x)− f (zi )| ≤
ε

2
,

for every x ∈ X and zi such that d(x , zi ) ≤ ε
2

. Consequently,

|g(x)− f (x)| ≤ |g(x)− g(zi )|+ |g(zi )− f (zi )|+ |f (zi )− f (x)|

≤
ε

2
+ 0 + d(zi , x)

≤
ε

2
+
ε

2

= ε.
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g :=
m∧

k=1

(f (zk ) + dzk ).

Since f (zk ) + dzk ∈ Φ and since by the lemma U(Φ) is closed under ∧ we get
g ∈ U(Φ). Moreover,

g(zi ) =
m∧

k=1

(f (zk ) + dzk (zi )) ≤ f (zi ) + dzi (zi ) = f (zi ).

For the converse inequality we suppose that g(zi ) < f (zi ) and reach a contradiction
(here we use ¬(a < b)→ a ≥ b, for every a, b ∈ R).
If a, b, c ∈ R, then a ∧ b < c → a < c ∨ b < c.

m∧
k=1

(f (zk ) + dzk (zi )) < f (zi )→ ∃j∈{1,...,m}(f (zj ) + d(zj , zi ) < f (zi ))

→ d(zj , zi ) < f (zi )− f (zj ) ≤ |f (zi )− f (zj )| ≤ d(zj , zi ),

which is a contradiction. Using the equality g(zi ) = f (zi ) we have that

g(x) =
m∧

k=1

(f (zk ) + dzk (x)) ≤ f (zi ) + dzi (x)→

g(x)− g(zi ) ≤ dzi (x) = d(x , zi ) ≤
ε

2
.
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If k ∈ {1, . . . ,m}, then

f (zi )− f (zk ) ≤ |f (zi )− f (zk )| ≤ d(zi , zk ) ≤ d(zi , x) + d(x , zk ),

therefore

∀k∈{1,...,m}(f (zi )− d(zi , x) ≤ f (zk ) + d(zk , x))→

f (zi )− d(zi , x) ≤
m∧

k=1

(f (zk ) + d(zk , x))↔

f (zi )−
m∧

k=1

(f (zk ) + d(zk , x)) ≤ d(zi , x)→

g(zi )− g(x) ≤ d(zi , x)→

g(zi )− g(x) ≤
ε

2
.

From g(x)− g(zi ) ≤ ε
2

and g(zi )− g(x) ≤ ε
2

we get

|g(x)− g(zi )| ≤
ε

2
.
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Lemma

If f ∈ Cu(X ) and ε > 0, there exist σ > 0 and g , g∗ ∈ Lip(X , σ) such that

(i) ∀x∈X (f (x)− ε ≤ g(x) ≤ f (x) ≤ g∗(x) ≤ f (x) + ε).

(ii) For every e ∈ Lip(X , σ), if e ≤ f , then e ≤ g.

(iii) For every e∗ ∈ Lip(X , σ), if f ≤ e∗, then g∗ ≤ e∗.

Proof: (i) Let ωf be a modulus of continuity of f and Mf > 0 a bound of f . We
define the functions

hx : X → R

g : X → R

hx := f + σdx ,

σ :=
2Mf

ωf (ε)
> 0,

g(x) := inf{hx (y) | y ∈ X} = inf{f (y) + σd(x , y) | y ∈ X},

for every x ∈ X . Note that g(x) is well-defined, since hx ∈ Cu(X ) and the infimum of
hx exists.

Iosif Petrakis Bishop’s Stone-Weierstrass theorem for compact metric spaces revisited



First we show that g ∈ Lip(X , σ). If x1, x2, y ∈ X then

d(x1, y) ≤ d(x2, y) + d(x1, x2)→
f (y) + σd(x1, y) ≤ (f (y) + σd(x2, y)) + σd(x1, x2)→
g(x1) ≤ (f (y) + σd(x2, y)) + σd(x1, x2)→
g(x1) ≤ g(x2) + σd(x1, x2)→
g(x1)− g(x2) ≤ σd(x1, x2).

Starting with the inequality d(x2, y) ≤ d(x1, y) + d(x1, x2) and working similarly we
get that

g(x2)− g(x1) ≤ σd(x1, x2),

therefore
|g(x1)− g(x2)| ≤ σd(x1, x2).
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Next we show that
∀x∈X (f (x)− ε ≤ g(x) ≤ f (x)).

Since
f (x) = f (x) + σd(x , x) = hx (x) ≥ inf{hx (y) | y ∈ X} = g(x),

for every x ∈ X , we have that g ≤ f . Next we show that

∀x∈X (f (x)− ε ≤ g(x)).

For that we fix x ∈ X and we show that ¬(f (x)− ε > g(x)). Note that if
A ⊆ R, b ∈ R, then b > inf A→ ∃a∈A(a < b). Therefore,

f (x)− ε > g(x)↔
f (x)− ε > inf{f (y) + σd(x , y) | y ∈ X} →
∃y∈X (f (x)− ε > f (y) + σd(x , y))↔
∃y∈X (f (x)− f (y) > ε+ σd(x , y)).

For this y we show that d(x , y) ≤ ωf (ε). If d(x , y) > ωf (ε), we have that

2Mf ≥ f (x) + Mf ≥ f (x)− f (y) > ε+ 2Mf
d(x , y)

ωf (ε)
> ε+ 2Mf > 2Mf ,

which is a contradiction. Hence, by the uniform continuity of f we get that
|f (x)− f (y)| ≤ ε, therefore the contradiction ε > ε is reached, since

ε ≥ |f (x)− f (y)| ≥ f (x)− f (y) > ε+ σd(x , y) ≥ ε.
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Next we define the functions
h∗x : X → R

g∗ : X → R

h∗x := f − σdx ,

σ =
2Mf

ωf (ε)
,

g∗(x) := sup{h∗x (y) | y ∈ X} = sup{f (y)− σd(x , y) | y ∈ X},

for every x ∈ X . Similarly to g we get that g∗ ∈ Lip(X , σ) and

∀x∈X (f (x) ≤ g∗(x) ≤ f (x) + ε).
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(ii) Let e ∈ Lip(X , σ) such that e ≤ f . If we fix some x ∈ X , then for every y ∈ X we
have that

e(x)− e(y) ≤ |e(x)− e(y)| ≤ σd(x , y),

hence
e(x) ≤ e(y) + σd(x , y) ≤ f (y) + σd(x , y),

therefore e(x) ≤ g(x).

(iii) Let e∗ ∈ Lip(X , σ) such that f ≤ e∗. If we fix some x ∈ X , then for every y ∈ X
we have that

e∗(y)− e∗(x) ≤ |e∗(y)− e∗(x)| ≤ σd(x , y),

hence
f (y)− σd(x , y) ≤ e∗(y)− σd(x , y) ≤ e∗(x),

therefore g∗(x) ≤ e∗(x).
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Hence g is the largest function in Lip(X , σ) which is smaller than f , and g∗ is the
smallest function in Lip(X , σ) which is larger than f .

This is in complete analogy to the McShane-Kirszbraun theorem. A ⊆ X is located, if
the distance

d(x ,A) := inf{d(x , y) | y ∈ Y }

exists for every x ∈ X , and a located subset of a totally bounded metric space is
totally bounded.

Proposition (McShane-Kirszbraun theorem for totally bounded metric spaces)

If σ > 0, A ⊆ X is located, and f : A → R ∈ Lip(A, σ), then there exist g , g∗ ∈
Lip(X , σ) such that g|A = g∗|A = f and for every e ∈ Lip(X , σ) such that e|A = f ,

g∗ ≤ e ≤ g .

Proof.

The functions g , g∗ defined by

g(x) := inf{f (a) + σd(x , a) | a ∈ A},

g∗(x) := sup{f (a)− σd(x , a) | a ∈ A},

for every x ∈ X , are well-defined and satisfy the required properties.
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Corollary

U(Lip(X )) = Cu(X ).

Proof.

If ε > 0, then the functions g , g∗ ∈ Lip(X , σ) of the lemma satisfy U(g , f , ε),
U(g∗, f , ε), respectively.

Theorem (Stone-Weierstrass theorem for totally bounded metric spaces (SWtbms))

If Φ = A(U∗0 (X )), then Cu(X ) = U(Φ).

Proof.

We show that Cu(X ) ⊆ U(Φ). If f ∈ Cu(X ) and ε > 0, then by the Corollary there is
h ∈ Lip(X ):

U(h, f ,
ε

2
),

while by our lemma there exists g ∈ Φ such that

U(g , h,
ε

2
),

hence U(g , f , ε).
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Proposition

SWtbms implies BSWtbms

Proof.

The proof follows immediately by inspection of Bishop’s proof of BSWtbms.

Bishop shows there that if Φ is Bishop-separating, then 1 ∈ U(A(Φ)),

and by his lemma 5.14.1 one shows that

U0(X ) ⊆ U(A(Φ)),

this is is a slight simplification of the final part of Bishop’s proof that Cu(X ) ⊆ U(A(Φ)).
Since

U∗0 (X ) ⊆ U(A(Φ)),

then
A(U∗0 (X )) ⊆ U(A(Φ)),

therefore
Cu(X ) = U(A(U∗0 (X ))) ⊆ U(U(A(Φ))) = U(A(Φ)).
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Bishop’s Corollary 5.16: if (X , d) has positive diameter, then A(U0(X )) is a
Bishop-separating set, therefore by BSWtbms we get that

U(A(U0(X ))) = Cu(X ).

Hence SWtbms is only “slightly” stronger than BSWtbms. If we use SWtbms, we
get immediately the same result.

Corollary

If (X , d) has positive diameter, then U(A(U0(X ))) = Cu(X ).

Proof.

The hypothesis of positive diameter implies the existence of x1, x2 ∈ X such that
d(x1, x2) > 0, therefore

1 ∈ U(A(U0(X ))) ⊆ Cu(X ),

U∗0 (X ) ⊆ U(A(U0(X ))),

A(U∗0 (X )) ⊆ A(U(A(U0(X )))) = U(A(U0(X ))),

Cu(X ) = U(A(U∗0 (X ))) ⊆ U(U(A(U0(X )))) = U(A(U0(X ))).
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If (X , d), (Y , ρ) are totally bounded, then (X × Y , σ) is totally bounded, where

σ((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2).

If A = {x1, . . . , xn} is an ε
2

-approximation of X and B = {y1, . . . , ym} is an
ε
2

-approximation of Y , then A× B is an ε-approximation of X × Y .

We denote by π1 the projection of X × Y onto X and by π2 its projection onto Y .

Corollary

If (X , d), (Y , ρ) are totally bounded metric spaces and

Φ := {
n∑

i=1

(fi ◦ π1)(gi ◦ π2) | fi ∈ Cu(X ), gi ∈ Cu(Y ), 1 ≤ i ≤ n, n ∈ N},

then
U(Φ) = Cu(X × Y ).
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Proof: Clearly, Φ ⊆ Cu(X × Y ), Φ is an algebra, actually,

Φ = A((Cu(X ) ◦ π1) ∪ (Cu(Y ) ◦ π2)).

and
U(Φ) ⊆ Cu(X × Y ).

The constant 1 on X × Y is equal to (1 ◦ π1)(1 ◦ π2).

If x0, x ∈ X and y0, y ∈ Y , then

σ(x0,y0)((x , y)) = σ((x0, y0), (x , y)) = d(x0, x) + ρ(y0, y) =

dx0 (x) + ρy0 (y) = (dx0 ◦ π1)((x , y)) + (ρy0 ◦ π2)((x , y)),

therefore
σ(x0,y0) = (dx0 ◦ π1) + (ρy0 ◦ π2) =

(dx0 ◦ π1)(1 ◦ π2) + (1 ◦ π1)(ρy0 ◦ π2) ∈ Φ.

Since U∗0 (X × Y ) ⊆ U(Φ), by SWtbms we get that

Cu(X × Y ) ⊆ U(Φ).
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If (Xn, dn) is totally bounded, where w.l.g.dn ≤ 1, for every n ∈ N, then (X , σ∞),
where

X =
∞∏

n=1

Xn,

σ∞((xn)∞n=1, (yn)∞n=1) :=
∞∑

n=1

dn(xn, yn)

2n
,

is totally bounded; if A(Xn, ε) is an ε-approximation of Xn and x0,n inhabits Xn, then

A(X , ε) =

n0∏
k=1

A(Xk ,
2k−1ε

n0
)×

∞∏
k=n0+1

{x0,k}

is an ε-approximation of X , where n0 ∈ N such that
∑∞

k=n0+1
1

2k ≤ ε
2
.

Corollary

If (X , σ∞) is the product of the totally bounded metric spaces (Xn, dn)∞n=1, then

U(Φ) = Cu(X ),

Φ0 := {
n∏

i=1

(fi ◦ πi ) | fi ∈ Cu(Xi ), 1 ≤ i ≤ n, n ∈ N},

Φ := {
n∑

k=1

hk | hk ∈ Φ0, 1 ≤ k ≤ n, n ∈ N}.
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Proof: Without loss of generality let dn ≤ 1, for every n ∈ N. The only difference with
the proof of the finite case is treated as follows.

If (x0
n )∞n=1 ∈ X and ε > 0, let

g :=

n0∑
k=1

dk,x0
k
◦ πk

2k
=

n0∑
k=1

(
dk,x0

k

2k
) ◦ πk ∈ Φ,

where n0 ∈ N such that
∞∑

k=n0+1

1

2k
≤ ε.

We get
U(g , σ∞,(x0

n )∞n=1
, ε),

since

|g((yn)∞n=1)− σ∞,(x0
n )∞n=1

((yn)∞n=1)| = |
∞∑

k=n0+1

dk,x0
k

(yk )

2k
| ≤

∞∑
k=n0+1

|
dk (x0

k , yk )

2k
| ≤ ε.
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A totally bounded metric space is separable. Cu(X ) is also separable.

Corollary

If Q = {qn | n ∈ N} is dense in (X , d), then

U(Φ∗0 ) = Cu(X ),

Φ∗0 = A(U0(Q) ∪ {1}),

U0(Q) := {dqn | n ∈ N}.

Lemma: If (xn)∞n=1 ∈ XN converges pointwise to x , then (dxn )∞n=1 converges uniformly
to dx ;

∀ε>0∃n0∀n≥n0
(d(xn, x) ≤ ε)→

∀ε>0∃n0∀n≥n0
∀y∈X (|d(xn, y)− d(x , y)| ≤ ε).

If ε > 0 and n ≥ n0, then

d(xn, y) ≤ d(xn, x) + d(x , y)→

d(xn, y)− d(x , y) ≤ d(xn, x) ≤ ε,

d(x , y)− d(xn, y) ≤ d(xn, x) ≤ ε.
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By SWtbms it suffices to show that

U0(X ) ⊆ U(A(U0(Q))).

If dx ∈ U0(X ), for some x ∈ X , and (qkn )∞n=1 is a subsequence of Q that converges
pointwise to x , then (dqkn

)∞n=1 converges uniformly to dx , therefore

dx ∈ U(A(U0(Q))).
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Conclusions

We presented a direct constructive proof of SWtbms with a clear computational
content.

Its translation to Type Theory and its implementation to a proof assistant like Coq are
expected to be straightforward.

Although SWtbms does not look like a theorem of Stone-Weierstrass type, as
BSWtbms does, it has certain advantages over it. Its proof is “natural”, in
comparison to Bishop’s technical proof and his difficult to motivate concept of a
Bishop-separating set. We know of no application of BSWtbms which cannot be
derived directly by SWtbms.

For the case of locally compact metric spaces Bishop just shows that the functions
with compact support is a uniformly dense subset of the set of all functions which
vanish at infinity.

There are many questions relating our SWtbms to Lipschitz Analysis (which is
underdeveloped constructively).

E.g., if (X , d) totally bounded and (Y , ρ) complete metric space, is the set of
Lipschitz functions Lip(X ,Y ) a dense subset of Cu(X ,Y )?

A similar classical result requires a Lipschitz extension property, which indicates that
the correlation of our lemma to the McShane-Kirszbraun theorem may not be
accidental.
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