Verified Numerics for ODEs in Isabelle/HOL

Fabian Immler

MAP 2016

Ordinary Differential Equations

 modeling physics, biology, dynamical systems

- modeling physics, biology, dynamical systems
- no closed form solution

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision
- rigorous numerical algorithms: enclosures

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision
- rigorous numerical algorithms: enclosures

Ordinary Differential Equations

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision
- rigorous numerical algorithms: enclosures

Problem

correctness of computed enclosures?

4	
	X

Ordinary Differential Equations

- modeling physics, biology, dynamical systems
- no closed form solution
- numerical algorithms: approximate, finite precision
- rigorous numerical algorithms: enclosures

Problem

correctness of computed enclosures?

Formalization and Verification

• formalization of \mathbb{R}^n and ODEs in Isabelle

Formalization and Verification

- formalization of \mathbb{R}^n and ODEs in Isabelle
- verification of rigorous numerical algorithms

Formalization and Verification

- formalization of \mathbb{R}^n and ODEs in Isabelle
- verification of rigorous numerical algorithms
- refinement to executable specification

Formalization and Verification

- formalization of \mathbb{R}^n and ODEs in Isabelle
- verification of rigorous numerical algorithms
- refinement to executable specification
- code generation

Formalization and Verification

- formalization of \mathbb{R}^n and ODEs in Isabelle
- verification of rigorous numerical algorithms
- refinement to executable specification
- code generation

Result highly trusted code

Applications/Challenges

Oil reservoir: stiff

Applications/Challenges

- Oil reservoir: stiff
- van-der-Pol: nonlinear

Applications/Challenges

- Oil reservoir: stiff
- van-der-Pol: nonlinear
- Lorenz attractor: proof of topological properties based on computed enclosures

Formalization and Verification

Optimizations

Lorenz Attractor

Isabelle/HOL: interactive theorem prover

- Isabelle/HOL: interactive theorem prover
- higher order logic

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization
 - definition of concepts

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization
 - definition of concepts
 - statement of properties

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization
 - definition of concepts
 - statement of properties
- verification

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization
 - definition of concepts
 - statement of properties
- verification
 - proofs of properties

- Isabelle/HOL: interactive theorem prover
- higher order logic
 - functional programming
 - logic
- formalization
 - definition of concepts
 - statement of properties
- verification
 - proofs of properties
 - machine-checked

 $\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{Q} \rightsquigarrow \mathbb{R}$

$$\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{Q} \rightsquigarrow \mathbb{R}$$

► (Harrison's) multivariate analysis ℝⁿ: e.g.,

 $\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{O} \rightsquigarrow \mathbb{R}$

- ► (Harrison's) multivariate analysis ℝⁿ: e.g.,
 - Taylor series expansions

- $\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{Q} \rightsquigarrow \mathbb{R}$
- ► (Harrison's) multivariate analysis ℝⁿ: e.g.,
 - Taylor series expansions
 - Banach fixed point theorem

- $\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{Q} \rightsquigarrow \mathbb{R}$
- ► (Harrison's) multivariate analysis ℝⁿ: e.g.,
 - Taylor series expansions
 - Banach fixed point theorem
- based on axiomatic type classes

 $\blacktriangleright \mathbb{N} \rightsquigarrow \mathbb{Z} \rightsquigarrow \mathbb{Q} \rightsquigarrow \mathbb{R}$

- (Harrison's) multivariate analysis \mathbb{R}^n : e.g.,
 - Taylor series expansions
 - Banach fixed point theorem
- based on axiomatic type classes: e.g.,
 class metric_space =
 fixes dist::"'a ⇒ 'a ⇒ real"
 assumes "dist x y = 0 ↔ x = y"
 assumes "dist x y ≤ dist x z + dist y z"

```
instance real::metric_space
sorry
```

instance complex::metric_space
sorry
$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

 existence of unique solution (Picard-Lindelöf theorem)

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

 existence of unique solution (Picard-Lindelöf theorem)
 P: C^{[[t₀;t₁],ℝⁿ]} → C^{[[t₀;t₁],ℝⁿ]}

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

 existence of unique solution (Picard-Lindelöf theorem)
 P: C^{[[t₀;t₁],ℝⁿ]} → C^{[[t₀;t₁],ℝⁿ]}
 P(ψ) = (t ↦ x₀ + ∫^t_{t₀} f(ψ(τ))dτ)

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

 existence of unique solution (Picard-Lindelöf theorem)

 $\blacktriangleright P: \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]} \to \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]}$

•
$$P(\psi) = (t \mapsto x_0 + \int_{t_0}^t f(\psi(\tau)) d\tau)$$

no dependent types

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

- existence of unique solution (Picard-Lindelöf theorem)
 - $\blacktriangleright P: \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]} \to \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]}$

•
$$P(\psi) = (t \mapsto x_0 + \int_{t_0}^t f(\psi(\tau)) d\tau)$$

- no dependent types
- type of bounded continuous functions $\overline{\mathcal{C}}^{[\mathbb{R},\mathbb{R}^n]}$

$$\dot{\psi}(t) = f(\psi(t)); \psi(t_0) = x_0$$

 existence of unique solution (Picard-Lindelöf theorem)

 $\blacktriangleright P: \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]} \to \mathcal{C}^{[[t_0;t_1],\mathbb{R}^n]}$

•
$$P(\psi) = (t \mapsto x_0 + \int_{t_0}^t f(\psi(\tau)) d\tau)$$

- no dependent types
- type of bounded continuous functions $\overline{\mathcal{C}}^{[\mathbb{R},\mathbb{R}^n]}$
- ▶ flow φ(x₀, t)
 (solution for initial value x₀ at time t)

• Euler step:

 $f \dots$ slope given by ODE $\varphi(x_0, h) = x_0 + h \cdot f(x_0)$

Euler Method • Euler step: $f \dots$ slope given by ODE $\varphi = \begin{bmatrix} \mathcal{O}(h^2) \\ h \cdot f(x_0) \end{bmatrix}$ $\varphi = \begin{bmatrix} \mathcal{O}(h^2) \\ h \cdot f(x_0) \end{bmatrix}$

- Euler step:
 - $f \dots$ slope given by ODE 0
 - $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step

•
$$x_0 \in X_0$$

enclosed by F, i.e.
$$f(X) \subseteq F(X)$$

 X_0

 $\begin{bmatrix} \mathcal{O}(h^2) \\ h \cdot f(x_0) \end{bmatrix}$

h

- Euler step:
 - f ... slope given by ODE \dot{c}
 - $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step
 - $x_0 \in X_0$
 - f enclosed by F, i.e. $f(X) \subseteq F(X)$

 X_0

h

Df enclosed by DF

- Euler step:
 - f ... slope given by ODE
 - $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step
 - $x_0 \in X_0$
 - f enclosed by F, i.e. $f(X) \subseteq F(X)$
 - Df enclosed by DF
 - $\varphi(X_0, [0; h]) \subseteq Q$

Euler step:

- $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step
 - $x_0 \in X_0$
 - f enclosed by F, i.e. $f(X) \subseteq F(X)$
 - Df enclosed by DF

•
$$\varphi(X_0, [0; h]) \subseteq Q = certify-stepsize(X_0)$$

Euler step:

- $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step

•
$$x_0 \in X_0$$

- f enclosed by F, i.e. $f(X) \subseteq F(X)$
- Df enclosed by DF

•
$$\varphi(X_0, [0; h]) \subseteq Q = certify-stepsize(X_0)$$

• Euler_h(X₀) = X₀ + h · F(X₀) + $\frac{1}{2}h^2$ · box (DF(Q)(F(Q)))

Xd

 $O(h^2)$

h

Euler step:

- $\varphi(x_0,h) = x_0 + h \cdot f(x_0) + O(h^2)$
- set-based Euler step

•
$$x_0 \in X_0$$

- f enclosed by F, i.e. $f(X) \subseteq F(X)$
- Df enclosed by DF

•
$$\varphi(X_0, [0; h]) \subseteq Q = certify-stepsize(X_0)$$

• Euler_h(X₀) = X₀ + h · F(X₀) + $\frac{1}{2}h^2$ · box (DF(Q)(F(Q)))

Xd

Theorem $\varphi(X_0,h) \subseteq \operatorname{Euler}_h(X_0)$

 $\begin{bmatrix} \mathcal{O}(h^2) \\ h \cdot f(x_0) \end{bmatrix}$

h

nested evaluations of f

- nested evaluations of f
- higher order approximations

- nested evaluations of f
- higher order approximations
- e.g., method of Heun

- nested evaluations of f
- higher order approximations
- e.g., method of Heun

•
$$\varphi(x,h) = x + h \cdot (\frac{1}{2}f(x) + \frac{1}{2}f(x+h \cdot f(x)) + O(h^3))$$

Motivation

enclose errors (algorithm/finite precision)

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic Problems

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic Problems

dependency problem:

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic Problems

• dependency problem: $x \in [0; 1] \Longrightarrow x - x \in [0; 1] - [0; 1] = [-1; 1]$

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic Problems

- dependency problem: $x \in [0; 1] \Longrightarrow x - x \in [0; 1] - [0; 1] = [-1; 1]$
- wrapping effect:

Motivation

enclose errors (algorithm/finite precision)

e.g., intervals / interval arithmetic Problems

• dependency problem: $x \in [0; 1] \Longrightarrow x - x \in [0; 1] - [0; 1] = [-1; 1]$

wrapping effect:

Affine Form $\langle a_0, \ldots, a_k \rangle = a_0 + \sum_{i=1}^k \varepsilon_i \cdot a_i$

Affine Form $\langle a_0, \dots, a_k \rangle = a_0 + \sum_{i=1}^k \varepsilon_i \cdot a_i$ Linear Operations $A : \mathbb{R}^n \to \mathbb{R}^m$ $\blacktriangleright A \langle a_0, \dots, a_k \rangle = \langle Aa_0, \dots, Aa_k \rangle$

Affine Form $\langle a_0,\ldots,a_k\rangle = a_0 + \sum_{i=1}^k \varepsilon_i \cdot a_i$ Linear Operations $A: \mathbb{R}^n \to \mathbb{R}^m$ $A\langle a_0, \ldots, a_k \rangle = \langle Aa_0, \ldots, Aa_k \rangle$ Nonlinear Operations (e.g., *, /) approximation with guadratic error

Affine Form $\langle a_0, \dots, a_k \rangle = a_0 + \sum_{i=1}^k \varepsilon_i \cdot a_i$ Linear Operations $A : \mathbb{R}^n \to \mathbb{R}^m$ $\blacktriangleright A \langle a_0, \dots, a_k \rangle = \langle Aa_0, \dots, Aa_k \rangle$

Nonlinear Operations (e.g., *, /) approximation with quadratic error

Explicit Round-Off Operation

round every generator collect errors in fresh noise symbols ε_i

abstract specification of ODEs/algorithms

- abstract specification of ODEs/algorithms
- refinement towards executable structures

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
 - $\ \ \, \sim \alpha(Float(m_1, e_1)) \cdot \alpha(Float(m_2, e_2)) = \\ \alpha(Float(m_1 \cdot m_2, e_1 + e_2)$

• set \rightsquigarrow list

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
 - $\alpha(Float(m_1, e_1)) \cdot \alpha(Float(m_2, e_2)) = \alpha(Float(m_1 \cdot m_2, e_1 + e_2))$
 - ▶ set ~→ list
 - set of $\mathbb{R}^n \rightsquigarrow$ list of affine forms

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
 - ▶ set ~→ list
 - set of $\mathbb{R}^n \rightsquigarrow$ list of affine forms
 - enclosure of solution \rightsquigarrow Euler/RK2

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
 - ▶ set ~→ list
 - set of $\mathbb{R}^n \rightsquigarrow$ list of affine forms
 - enclosure of solution \rightsquigarrow Euler/RK2
- code generation (Standard ML)

- abstract specification of ODEs/algorithms
- refinement towards executable structures
 - ► real numbers ~→ software floating point numbers:
 - $\alpha(Float(m, e)) = m \cdot 2^e$ for $m, e \in \mathbb{Z}$
 - set \rightsquigarrow list
 - set of $\mathbb{R}^n \rightsquigarrow$ list of affine forms
 - enclosure of solution \rightsquigarrow Euler/RK2
- code generation (Standard ML)
- in principle generic!

• flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$

•
$$RK(X,t) \supseteq \varphi(X,t)$$

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$
 - $RK(X,t) \supseteq \varphi(X,t)$
- refinement

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$
 - $RK(X,t) \supseteq \varphi(X,t)$
- refinement
 - executable RK

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$
 - $RK(X,t) \supseteq \varphi(X,t)$
- refinement
 - executable RK
 - $\alpha(\widetilde{\mathsf{RK}}(\tilde{X},\tilde{t})) = \mathsf{RK}(\alpha(\tilde{X}),\alpha(\tilde{t}))$

- flow of ODE: $\varphi :: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$
- set based Runge-Kutta methods [Bouissou et al. 2013]
 - $RK :: \mathcal{P}(\mathbb{R}^n) \times \mathbb{R} \to \mathcal{P}(\mathbb{R}^n)$
 - $RK(X,t) \supseteq \varphi(X,t)$
- refinement
 - executable RK
 - $\alpha(\widetilde{\mathsf{RK}}(\tilde{X},\tilde{t})) = \mathsf{RK}(\alpha(\tilde{X}),\alpha(\tilde{t}))$

Up Next applications/optimizations

- stiff: small step sizes required
- ▶ performance:
 ≈ 20 times slower than
 [Bouissou et al., 2013]
- nontrivial: VNODE fails to maintain precision

- stiff: small step sizes required
- performance:
 ≈ 20 times slower than
 [Bouissou et al., 2013]
- nontrivial: VNODE fails to maintain precision

////	* * * * * * * * * * * * * * * * * * * *
*******	****
	* * * * * * * * * * * * * * *
********	***********
********	* * * * * * * * * * * * * * *
*********	*************
*********	************
*********	************

**********	**********
********	* * * * * * * * * * * * * * * *
	* * * * * * * * * * * * * * * *
	1111111111111111
1111111111	111111111111111
	1111111111111111
11111111111	1111111111111111
11111111111	*****
11111111111	***********

- stiff: small step sizes required
- performance:
 ≈ 20 times slower than
 [Bouissou et al., 2013]
- nontrivial: VNODE fails to maintain precision

////	<i>, , , , , , , , , , , , , , , , , , , </i>

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

**********	*************

_ <u> </u>	
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

- stiff: small step sizes required
- performance:
 ≈ 20 times slower than
 [Bouissou et al., 2013]
- nontrivial: VNODE fails to maintain precision

	1 / /

- K K K K K 🔥 K K 🏌	
- 1 1 1 1 1 1 1 1 1 1 1 1	
- * * * * * * * <mark>*</mark> * <mark>!</mark> !	* * * * * * * * * * * * * * *
_ <u> </u>	*************
111111111111	
• † † † † † † † † † † †	
-	************
- † † † † † † † † † † † †	
- 	
	* * * * * * * * * * * * * * * *
·	
	,,,,,,,,,,,,,,,,,,

Formalization and Verification

Optimizations

Lorenz Attractor

zonotopes: convex

- zonotopes: convex
- wrapping non-convex sets

- zonotopes: convex
- wrapping non-convex sets

- zonotopes: convex
- wrapping non-convex sets

Splitting

 \leadsto

Heuristics

split largest generator of affine form

Heuristics

- split largest generator of affine form
- split when diameter exceeds threshold

f

Reduction

Reduction

• $X_C \cap H$ can be smaller

Reduction

- $X_C \cap H$ can be smaller
- geometric zonotope/hyperplane intersection

Van-der-Pol Oscillator

х

Lorenz attractor (reduction)

N

Х

Enclosures in Affine Arithmetic

Zonotope

$$\gamma \langle \mathbf{a}_0, \dots, \mathbf{a}_k \rangle = \\ \left\{ \mathbf{a}_0 + \sum_{i=1}^k \varepsilon_i \cdot \mathbf{a}_i \middle| \varepsilon_i \in [-1; 1], \mathbf{a}_i \in \mathbb{R}^n \right\}$$

Enclosures in Affine Arithmetic

Zonotope

$$\gamma \langle \mathbf{a}_0, \dots, \mathbf{a}_k \rangle = \\ \left\{ \mathbf{a}_0 + \sum_{i=1}^k \varepsilon_i \cdot \mathbf{a}_i \middle| \varepsilon_i \in [-1; 1], \mathbf{a}_i \in \mathbb{R}^n \right\}$$

$$a_3$$
 a_2
 a_1

Enclosures in Affine Arithmetic

Zonotope

$$\gamma \langle \mathbf{a}_0, \dots, \mathbf{a}_k \rangle = \\ \left\{ \mathbf{a}_0 + \sum_{i=1}^k \varepsilon_i \cdot \mathbf{a}_i \middle| \varepsilon_i \in [-1; 1], \mathbf{a}_i \in \mathbb{R}^n \right\}$$

$\mathsf{Zonotope}\,\cap\,\mathsf{Hyperplane}$

- approximate geometric algorithm [Girard/Le Guernic 2008]
- "proof" not at all formal!
- but similar to convex hull [Knuth: Axioms and Hulls, 1992]

 reduction to two-dimensional problem

Proposition 1. Let G be a hyperplane, $G = \{x \in \mathbb{R}^d : x \cdot n = \gamma\}$, Z a set, and ℓ a vector. Let $\prod_{n,\ell}$ be the following linear transformation:

 $\Pi_{n,\ell} : \mathbb{R}^d \rightarrow \mathbb{R}^2$ $x \mapsto (x \cdot n, x \cdot \ell)$

Then, we have the following equality

 $\{x \cdot \ell : x \in Z \cap G\} = \{y : (\gamma, y) \in \Pi_{n,\ell}(Z)\}$

Proof. Let y belongs to $\{x \cdot \ell : x \in Z \cap G\}$, then there exists x in $Z \cap G$ such that $x \cdot \ell = y$. Since $x \in G$, we have $x \cdot n = \gamma$. Therefore $(\gamma, y) = In_{n,\ell}(x) \in In_{n,\ell}(x)$ because $x \in Z$. Thus, $y \in \{y : (\gamma, y) \in In_{n,\ell}(Z)$. Conversely, $y \in \{y : (\gamma, y) \in In_{n,\ell}(Z)\}$, then $(\gamma, y) \in In_{n,\ell}(Z)$. It follows that there exists $x \in Z$ such that $x \cdot n = \gamma$ and $x \cdot \ell = y$. Since $x \cdot n = \gamma$, it follows that $x \in G$. Thus, $y = x \cdot \ell$ with $x \in Z \cap G$ and it follows that $y \in \{x \cdot \ell : x \in Z \cap G\}$.

 reduction to two-dimensional problem

> lemma inter_proj_eq: fixes n g l defines "G \equiv {x. x • n = g}" shows "($\lambda x. x • l$) ` (Z \cap G) = {y. (g, y) \in ($\lambda x. (x • n, x • l$)) ` Z}" by (auto simp: G_def)

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line

```
lemma inter_proj_eq:
fixes n g l
defines "G \equiv {x. x • n = g}"
shows "(\lambda x. x • l) ` (Z \cap G) =
{y. (g, y) \in (\lambda x. (x • n, x • l)) ` Z}"
by (auto simp: G_def)
```

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line
- compute hull of 2D-zonotope: append sorted line segments

- reduction to two-dimensional problem
- ▶ 2D-zonotope ∩ line
- compute hull of 2D-zonotope: append sorted line segments
- intersection: minimum/maximum intersection of segment

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments
- intersection: minimum/maximum intersection of segment

- reduction to two-dimensional problem
- 2D-zonotope \cap line
- compute hull of 2D-zonotope: append sorted line segments
- intersection: minimum/maximum intersection of segment

cyclic symmetry:

 $pqr \implies qrp$

cyclic symmetry:

 $pqr \implies qrp$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

$$pqr \implies \neg prq$$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

▶ nondegeneracy: pqr ∨ prq

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

 $tpq \wedge tqr \wedge trp \implies pqr$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

▶ nondegeneracy: pqr ∨ prq

 $tpq \wedge tqr \wedge trp \implies pqr$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

$$tpq \wedge tqr \wedge trp \implies pqr$$

transitivity:
 tsp \lapha tsq \lapha tsr

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

$$tpq \wedge tqr \wedge trp \implies pqr$$

transitivity:

 $tsp \wedge tsq \wedge tsr \wedge tpq \wedge tqr$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

$$tpq \wedge tqr \wedge trp \implies pqr$$

• transitivity: $tsp \wedge tsq \wedge tsr \wedge tpq \wedge tqr \implies tpr$

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

$$tpq \wedge tqr \wedge trp \implies pqr$$

► transitivity: tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr

tpr

total order in halfplane left of ts

 \implies

cyclic symmetry:

 $pqr \implies qrp$

antisymmetry:

 $pqr \implies \neg prq$

- ▶ nondegeneracy: pqr ∨ prq
- interiority:

 $tpq \wedge tqr \wedge trp \implies pqr$

transitivity:

 $tsp \wedge tsq \wedge tsr \wedge tpq \wedge tqr \implies tpr$

total order in halfplane left of ts sorted[p, q, r]
• translation: $(p+s)(q+s)(r+s) \Leftrightarrow pqr$

q

$$\alpha > 0 \implies 0(\alpha \cdot q)r \Longleftrightarrow 0qr$$

$$\alpha > 0 \implies 0(\alpha \cdot q)r \Longleftrightarrow 0qr$$

-	-1
	ſ`.
	·
11	
/	
0 q	

$$\alpha > 0 \implies 0(\alpha \cdot q)r \Longleftrightarrow 0qr$$

$$\alpha > 0 \implies 0(\alpha \cdot q)r \Longleftrightarrow 0qr$$

- translation: $(p+s)(q+s)(r+s) \Leftrightarrow pqr$
- scaling:

$$\alpha > 0 \implies \mathbf{0}(\alpha \cdot q)r \Longleftrightarrow \mathbf{0}qr$$

• reflection: $0(-p)q \iff 0qp$

- translation: $(p+s)(q+s)(r+s) \Leftrightarrow pqr$
- scaling:

$$\alpha > 0 \implies 0(\alpha \cdot q)r \Longleftrightarrow 0qr$$

• reflection: $0(-p)q \iff 0qp$

addition

$$0pq \implies 0pr \implies 0p(q+r)$$

Close Parenthesis

Formalization and Verification

Optimizations

Lorenz Attractor

Lorenz equations (1963)

$$\dot{x} = 10(y - x)$$
$$\dot{y} = x(28 - z) - y$$
$$\dot{z} = xy - \frac{8}{3}z$$

Edward N. Lorenz

- Lorenz equations (1963)
- numerical simulations

Lorenz attractor

- Lorenz equations (1963)
- numerical simulations
- conjecture: chaos (strange attractor)

Smale's 14th problem

- Lorenz equations (1963)
- numerical simulations
- conjecture: chaos (strange attractor)
- proof: Tucker (1999), relying on C++-program

Warwick Tucker

- Lorenz equations (1963)
- numerical simulations
- conjecture: chaos (strange attractor)
- proof: Tucker (1999), relying on C++-program
- correctness of program?

1. attracting set (numerically enclose ODE)

- 1. attracting set (numerically enclose ODE)
- 2. sensitive dependence on initial conditions (numerically enclose variational equation)

- 1. attracting set (numerically enclose ODE)
- 2. sensitive dependence on initial conditions (numerically enclose variational equation)
- 3. analytical reasoning where numerics cannot work

- 1. attracting set (numerically enclose ODE)
- 2. sensitive dependence on initial conditions (numerically enclose variational equation)
- 3. analytical reasoning where numerics cannot work

Contribution

part 1. using *verified* ODE solver

3D continuous dynamics

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R : \Sigma \to \Sigma$
 - $\varphi(x, t)$... solution with initial value x after time t

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R : \Sigma \to \Sigma$

φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R : \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- 3D continuous dynamics
- standard reduction: return plane Σ iteration of 2D return map $R: \Sigma \to \Sigma$
 - φ(x, t) ... solution with initial value x after time t
 τ(x) ... "first return time"
 - $R(x) := \varphi(x, \tau(x))$... "return map"
- \blacktriangleright Tucker: numerical enclosures for φ,τ

- ▶ given N
- show: $R(N) \subseteq N$

- ▶ given N
- show: $R(N) \subseteq N$
- Parallelization

- ▶ given N
- show: $R(N) \subseteq N$

Parallelization

• subdivision:
$$N = \bigcup_{i=0}^{14000} N_i$$

- ► given N
- show: $R(N) \subseteq N$

Parallelization

- subdivision: $N = \bigcup_{i=0}^{14000} N_i$
- compute independently for each *i*: $R(N_i) \subseteq N$

- ► given N
- show: $R(N) \subseteq N$

Parallelization

- subdivision: $N = \bigcup_{i=0}^{14000} N_i$
- compute independently for each *i*: $R(N_i) \subseteq N$
- time: \approx 1000 * 5h (Tucker: \approx 2000h)

- ► given N
- show: $R(N) \subseteq N$

Parallelization

- subdivision: $N = \bigcup_{i=0}^{14000} N_i$
- compute independently for each *i*: $R(N_i) \subseteq N$
- time: \approx 1000 * 5h (Tucker: \approx 2000h)

Result verified a sufficiently precise N

Bound on N

► blue: N_{Tucker}, black: N_{Isabelle}

Lorenz Attractor (Front)

29 / 30

Lorenz Attractor (Left)

29 / 30

Lorenz Attractor (Bottom)

29 / 30

verification is feasible and useful:

verified computation as part of proof

Conclusion

verification is feasible and useful:

- verified computation as part of proof
- novel combination of affine arithmetic/Runge-Kutta methods/reduction

Verified Numerics for ODEs in Isabelle/HOL

Fabian Immler

MAP 2016

