Newton sums for an effective formalization of algebraic numbers

Cyril Cohen, <u>Boris Djalal</u> Inria Sophia Antipolis – Méditerranée, France

project funded by Microsoft Research Inria Joint Center

January 12, 2016

・ロ ・ ・ (日 ・ く 言 ・ く 言 ・ こ の へ ペ 1/26

Motivation

Applications:

- semialgebraic sets
- computer algebra
- formalization of robotics.

Motivation

Applications:

- semialgebraic sets
- computer algebra
- formalization of robotics.

Concerns: efficiency + certification.

Our goals:

- formalize efficient algorithms to compute real algebraic numbers in Coq
- provide computable versions of these algorithms.

Benefits of algebraic numbers:

- field structure
- decidable equality
- countable.

Introduction: what is an algebraic number ?

An algebraic number is a number which is the root of a polynomial with rational coefficients

・ロン ・四と ・日と ・日

3 / 26

- ▶ for example, √2 is an algebraic number because it is a root of the polynomial X² - 2
- π is not an algebraic number.
- We denote algebraic numbers by $\overline{\mathbb{Q}}$.

Representation of algebraic numbers

- We represent an algebraic number by:
 - a polynomial
 - ▶ a piece of information to retain one root of the polynomial.
- For example, we can represent $\sqrt{2}$ by:
 - $X^3 X^2 2X + 2$
 - ▶ the interval [1.3, 2]
 - ▶ a proof that P has exactly one root in [1.3, 2].
- All operations

(addition, multiplication, inversion and comparison) must be based on our representation.

Representation of algebraic numbers

- We represent an algebraic number by:
 - a polynomial
 - ▶ a piece of information to retain one root of the polynomial.
- For example, we can represent $\sqrt{2}$ by:
 - $X^3 X^2 2X + 2$
 - ▶ the interval [1.3, 2]
 - ▶ a proof that P has exactly one root in [1.3, 2].
- All operations

(addition, multiplication, inversion and comparison) must be based on our representation.

Let a, b ∈ Q and P, Q ∈ Q[X] such that P(a) = 0, Q(b) = 0.
 We want to compute polynomials R₁ and R₂ such that R₁(a + b) = 0 and R₂(a × b) = 0.

Composed sum and composed product

- $\blacktriangleright \ \alpha,\beta, \mathbf{a},\mathbf{b}\in\overline{\mathbb{Q}}$
- a is a root of $P \in \mathbb{Q}[X]$: P(a) = 0
- *b* is a root of $Q \in \mathbb{Q}[X]$: Q(b) = 0.
- roots(*P*) denotes the multiset of roots of *P* in $\overline{\mathbb{Q}}$

Composed sum and composed product

- $\blacktriangleright \ \alpha, \beta, \mathbf{a}, \mathbf{b} \in \overline{\mathbb{Q}}$
- a is a root of $P \in \mathbb{Q}[X]$: P(a) = 0
- *b* is a root of $Q \in \mathbb{Q}[X]$: Q(b) = 0.
- roots(*P*) denotes the multiset of roots of *P* in $\overline{\mathbb{Q}}$
- ► The number a + b is a root of $\prod_{\substack{\alpha \in \text{roots}(P) \\ \beta \in \text{roots}(Q)}} (X (\alpha + \beta))$
- we note this polynomial: $P \oplus Q$
- we call it the "composed sum" of P and Q.
- Coefficients of $P \oplus Q$ are a symmetric function of its roots
- ► thus, according to the theorem of symmetric polynomials, the coefficients of P ⊕ Q belong to Q.

Composed sum and composed product

- $\blacktriangleright \ \alpha, \beta, \mathbf{a}, \mathbf{b} \in \overline{\mathbb{Q}}$
- a is a root of $P \in \mathbb{Q}[X]$: P(a) = 0
- *b* is a root of $Q \in \mathbb{Q}[X]$: Q(b) = 0.
- roots(*P*) denotes the multiset of roots of *P* in $\overline{\mathbb{Q}}$
- ► The number a + b is a root of $\prod_{\substack{\alpha \in \operatorname{roots}(P)\\\beta \in \operatorname{roots}(Q)}} (X (\alpha + \beta))$
- we note this polynomial: $P \oplus Q$
- we call it the "composed sum" of P and Q.
- Coefficients of $P \oplus Q$ are a symmetric function of its roots
- ► thus, according to the theorem of symmetric polynomials, the coefficients of P ⊕ Q belong to Q.
- ► Similarly, we define the composed product of *P* and *Q*.

Newton representation

 Our work is based on Algorithmique efficace pour des opérations de base en Calcul formel - Alin Bostan (2003).

• Definition:
$$\mathcal{N} : \mathbb{Q}[X] \to \mathbb{Q}[X]$$

 $P \mapsto \mathcal{N}(P) = \sum_{i=0}^{\infty} \left(\sum_{\alpha \in \text{roots}(P)} \alpha^i \right) X^i$

- we call it the Newton representation of P.
- In pratice, we only need the first terms of $\mathcal{N}(P)$
- the truncated power series can be computed without knowing \(\alpha\)'s.

Newton transformations

[Alin Bostan 2003] provides a method to:

- transform a polynomial into a power series with \mathcal{N} .
- transform back from $\mathcal{N}(P)$ into P.

[Alin Bostan 2003] defines:

- an addition \boxplus in the Newton space
- a multiplication \boxtimes in the Newton space.

We formally described the algorithms and proved these statements:

•
$$\mathcal{N}^{-1}(\mathcal{N}(P)) = P$$
 when $P(0) \neq 0$

$$\blacktriangleright P \oplus Q = \mathcal{N}^{-1}(\mathcal{N}(P) \boxplus \mathcal{N}(Q))$$

•
$$P \otimes Q = \mathcal{N}^{-1}(\mathcal{N}(P) \boxtimes \mathcal{N}(Q)).$$

Newton transformations

$$\mathcal{N}(P) = rac{\operatorname{rev}(P')}{\operatorname{rev}(P)}$$
 $\mathcal{N}^{-1}(f) = \operatorname{rev}\left(\exp\left(\int rac{1}{X}(f_0 - f)\right)
ight)$

Need for:

- rev: reverse the coefficients of a polynomial
- exponential of FPS
- primitive \int on FPS

High-level picture of involved objects

- ▶ Q[[X]] denotes the ring of formal power series
- $\mathbb{Q}_m[X]$ denotes the ring of truncated formal power series
- ▶ $\mathbb{Q}_e(X)$ denotes the ring of expansible rational fractions examples: $\frac{1}{1-X}$ expanses to $1 + X + X^2 + ...$ but $\frac{1}{X} \notin \mathbb{Q}_e(X)$

Contributions

We needed to develop the following notions:

- truncated formal power series
 - derivative
 - primitive
 - composition
 - logarithm
 - exponential
- fractions of polynomials
- expansible rational fractions.

Truncated formal power series (TFPS)

```
We formalize TFPS<sub>m</sub> with a Record in Coq:
Record tfps := MkTfps
{
   truncated_tfps :> {poly K};
   _ : size truncated_tfps <= m.+1
}.
```

- polynomial + proof on the degree
- dependent type allow us to create such a pair
- ▶ our Record is a subtype of polynomials because we can decide whether the size is less than m + 1.

Results on TFPS

► Build a TFPS_m from the proof that size (P mod X^{m+1}) ≤ m + 1.

Build a TFPS from its coefficients.

Results on TFPS

► Build a TFPS_m from the proof that size (P mod X^{m+1}) ≤ m + 1.

Build a TFPS from its coefficients.

- structure on TFPS_m
 - commutative ring
 - in TFPS₃, $X^2 \cdot X^2 = 0 \pmod{X^4}$
- derivative: $\mathbb{Q}_{m+1}[X] \longrightarrow \mathbb{Q}_m[X]$
- primitive: $\mathbb{Q}_m[X] \longrightarrow \mathbb{Q}_{m+1}[X]$
- ▶ logarithm, exponential: from a subtype of $\mathbb{Q}_m[X]$ to $\mathbb{Q}_m[X]$.

TFPS: exponential and logarithm

Let f be a TFPS_m.

• If $f_0 = 0$ we define:

$$\exp(f) = \sum_{i=0}^{m} \frac{f^{i}}{i!}$$

• If $f_0 = 1$ we define:

$$\log(f) = -\sum_{i=1}^m \frac{(1-f)^i}{i}.$$

TFPS: derivative

$$\forall m \in \mathbb{N}, \quad \forall f, g \in K_{m+1}[X]$$

$$\bullet (f+g)' =_{K_m[X]} f' + g'$$

$$\bullet (f \cdot g)' =_{K_m[X]} f' \cdot \lfloor g \rfloor_m + \lfloor f \rfloor_m \cdot g'$$

$$\bullet \text{ if } f_0 = 0: \quad (\exp f)' =_{K_m[X]} f' \cdot \lfloor \exp(f) \rfloor_m$$

$$\bullet \text{ if } f_0 = 1: \quad (\log f)' =_{K_m[X]} \frac{f'}{\lfloor f \rfloor}_m.$$

Universal property of the field of fractions

R is an integral domain. There is a field $\mathcal{F}(R)$ and a ring morphism ι satisfying:

for any field \mathbb{K} and injective ring morphism f from R to \mathbb{K} , there is a unique ring morphism κ s.t. our diagram commutes.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Universal property of field of fractions: how κ is defined ?

Let $\frac{u}{v} \in \mathcal{F}(R)$:

- by definition of $\mathcal{F}(R)$, $v \neq 0$
- ▶ since $v \neq 0$ and f is an injective ring morphism, $f(v) \neq 0$
- thus we can compute the inverse of f(v) in \mathbb{K}

• we set
$$\kappa(\frac{u}{v}) = \frac{f(u)}{f(v)}$$

Universal property of field of fractions: how κ is defined ?

Let $\frac{u}{v} \in \mathcal{F}(R)$:

- by definition of $\mathcal{F}(R)$, $v \neq 0$
- ▶ since $v \neq 0$ and f is an injective ring morphism, $f(v) \neq 0$
- thus we can compute the inverse of f(v) in \mathbb{K}

• we set
$$\kappa(\frac{u}{v}) = \frac{f(u)}{f(v)}$$
.

We generalize the condition on f:

• we just require $f(v) \neq 0$, not f injectivity.

Regular morphism

The computability of κ is guaranted when these three points are satisfied:

- f is computable
- given $x \in \mathcal{F}(R)$ it is decidable
 - whether there is a regular representation for x
 - whether x is regular for f
 - whether $\exists u, v \in R, f(v) \neq 0$ and $x = \frac{u}{v}$
- ▶ when x is regular for f,

a regular representation of x is computable.

Regular morphism

The computability of κ is guaranted when these three points are satisfied:

- f is computable
- given $x \in \mathcal{F}(R)$ it is decidable
 - whether there is a regular representation for x
 - whether x is regular for f
 - whether $\exists u, v \in R, f(v) \neq 0$ and $x = \frac{u}{v}$
- ▶ when *x* is regular for *f*,

a regular representation of x is computable.

We say that f is regular.

If f is injective then f is regular and all $x \in \mathcal{F}(R)$ are regular for f.

Abstract evaluation results

We derive formally the following results:

▶ κ(1) = 1

$$\blacktriangleright \quad \forall x \in \mathcal{F}(R), \ \ \kappa(-x) = -\kappa(x)$$

- $\forall x, y \text{ regular for } f, \quad \kappa(x+y) = \kappa(x) + \kappa(y)$
- $\forall x, y \text{ regular for } f, \quad \kappa(x \cdot y) = \kappa(x) \cdot \kappa(y)$

$$\blacktriangleright \ \forall x, y \in \mathcal{F}(R), \ \kappa(y) \neq 0 \implies \kappa(\frac{x}{y}) = \frac{\kappa(x)}{\kappa(y)}$$

• if f is injective then κ is a ring morphism

This interface is then instanciated twice in our code.

First case: evaluating fractions of polynomials

• The evaluation of $X^2 - 2$ in 3 gives 7 • the evaluation of $\frac{X^2 - 2}{X + 5}$ in 3 gives $\frac{7}{8}$ • the evaluation of $\frac{X^2 - 2}{X - 3}$ in 3 is not defined because we cannot find a regular representation (3 is a pole) • the evaluation of $\frac{X^2 - 3X}{X^2 - X - 6}$ in 3 is defined: • we move to the equivalent regular representation $\frac{X}{Y \perp 2}$ • it gives $\frac{3}{5}$.

Abstraction over the evaluation on fractions of polynomials

- \mathbb{K} is a field
- ▶ 𝒴[X] is an integral domain *R*
- $\mathbb{K}(X)$ is the field of fractions of R, noted $\mathcal{F}(R)$
- $f: \mathbb{R} \longrightarrow \mathbb{K}$ is the evaluation of polynomials in a = 3.
- Our evaluation of fractions of polynomials is the map: $\kappa : \mathcal{F}(R) \longrightarrow \mathbb{K}$ $\kappa(x) = \begin{cases} \frac{f(u)}{f(v)} & \text{if } x \text{ can be written as } \frac{u}{v} \text{ with } f(v) \neq 0 \\ undefined & \text{otherwise.} \end{cases}$
- Note that f is parameterized by an element $a \in \mathbb{K}$.

Second case: lifting from F(X) to L(X)

- $F \hookrightarrow L$ is a field extension.
- we know how to lift from F[X] to L(X)
- ▶ problem: we want to lift any element of $x \in F(X)$ to L(X).

Solution:

- x writes as $\frac{u}{v}$ with $u \in F[X]$, $v \in F[X]$
- we lift u and v and perform a division.

Abstraction over the lifting from F(X) to L(X)

- ► *F*[X] is an integral domain *R*
- F(X) is the field of fractions of R, noted $\mathcal{F}(R)$
- L(X) is a field \mathbb{K}
- $f: \mathbb{R} \longrightarrow \mathbb{K}$ is the lifting from F[X] to L(X).
- Our lifting function from F(X) to L(X) is the map: $\kappa : \mathcal{F}(R) \longrightarrow \mathbb{K}$ $\kappa(x) = \begin{cases} \frac{f(u)}{f(v)} & \text{if } x \text{ can be written as } \frac{u}{v} \text{ with } f(v) \neq 0 \\ undefined & \text{otherwise.} \end{cases}$
- ▶ Note that here *f* is injective.
- Thus, κ is defined on whole $\mathcal{F}(R)$.

Sum-up of our contributions

- Formalization of truncated power series
 - ► +, x, commutative ring
- Newton space:
 - Newton transformation in both directions
 - \boxplus and \boxtimes in Newton space
 - morphism lemmas
- formal proofs of correctness
- abstract evaluation of fractions.

Related work

During our formalization, we had to use existing concepts from Mathematical Components:

- polynomials
- polynomial divisibility
- finite iterations of operations (bigop.v)
- binomial numbers
- fractions.

We also used developments for elliptic curves from Pierre-Yves Strub (xseq, polyorder, polyall, polydec):

- polynomials and multiplicity
- roots of polynomials and equality up to a permutation.

Future work

select one root of a polynomial

Thom encoding

Algorithms in Real Algebraic Geometry - Saugata Basu, Richard Pollack, Marie-Françoise Roy (2011)

- Newton method
 - work of Iona Pasca on multivariate analysis
- run computable versions of the algorithms inside Coq.
 - CoqEAL https://github.com/CoqEAL/CoqEAL

Questions