
Newton sums
for an effective formalization of algebraic numbers

Cyril Cohen, Boris Djalal
Inria Sophia Antipolis – Méditerranée, France

project funded by Microsoft Research Inria Joint Center

January 12, 2016

1 / 26

Motivation
Applications:

I semialgebraic sets

I computer algebra

I formalization of robotics.

Concerns: efficiency + certification.

Our goals:

I formalize efficient algorithms
to compute real algebraic numbers in Coq

I provide computable versions of these algorithms.

Benefits of algebraic numbers:

I field structure

I decidable equality

I countable.

2 / 26

Motivation
Applications:

I semialgebraic sets

I computer algebra

I formalization of robotics.

Concerns: efficiency + certification.

Our goals:

I formalize efficient algorithms
to compute real algebraic numbers in Coq

I provide computable versions of these algorithms.

Benefits of algebraic numbers:

I field structure

I decidable equality

I countable.
2 / 26

Introduction: what is an algebraic number ?

I An algebraic number is a number which
is the root of a polynomial with rational coefficients

I for example,
√

2 is an algebraic number
because it is a root of the polynomial X 2 − 2

I π is not an algebraic number.

I We denote algebraic numbers by Q.

3 / 26

Representation of algebraic numbers

I We represent an algebraic number by:
I a polynomial
I a piece of information to retain one root of the polynomial.

I For example, we can represent
√

2 by:
I X 3 − X 2 − 2X + 2
I the interval [1.3, 2]
I a proof that P has exactly one root in [1.3, 2].

I All operations
(addition, multiplication, inversion and comparison)
must be based on our representation.

I Let a, b ∈ Q and P,Q ∈ Q[X] such that P(a) = 0, Q(b) = 0.
We want to compute polynomials R1 and R2 such that
R1(a + b) = 0 and R2(a× b) = 0.

4 / 26

Representation of algebraic numbers

I We represent an algebraic number by:
I a polynomial
I a piece of information to retain one root of the polynomial.

I For example, we can represent
√

2 by:
I X 3 − X 2 − 2X + 2
I the interval [1.3, 2]
I a proof that P has exactly one root in [1.3, 2].

I All operations
(addition, multiplication, inversion and comparison)
must be based on our representation.

I Let a, b ∈ Q and P,Q ∈ Q[X] such that P(a) = 0, Q(b) = 0.
We want to compute polynomials R1 and R2 such that
R1(a + b) = 0 and R2(a× b) = 0.

4 / 26

Composed sum and composed product

I α, β, a, b ∈ Q
I a is a root of P ∈ Q[X]: P(a) = 0

I b is a root of Q ∈ Q[X]: Q(b) = 0.

I roots(P) denotes the multiset of roots of P in Q

I The number a + b is a root of
∏

α∈roots(P)
β∈roots(Q)

(X − (α + β))

I we note this polynomial: P ⊕ Q

I we call it the “composed sum” of P and Q.

I Coefficients of P ⊕ Q are a symmetric function of its roots

I thus, according to the theorem of symmetric polynomials,
the coefficients of P ⊕ Q belong to Q.

I Similarly, we define the composed product of P and Q.

5 / 26

Composed sum and composed product

I α, β, a, b ∈ Q
I a is a root of P ∈ Q[X]: P(a) = 0

I b is a root of Q ∈ Q[X]: Q(b) = 0.

I roots(P) denotes the multiset of roots of P in Q
I The number a + b is a root of

∏
α∈roots(P)
β∈roots(Q)

(X − (α + β))

I we note this polynomial: P ⊕ Q

I we call it the “composed sum” of P and Q.

I Coefficients of P ⊕ Q are a symmetric function of its roots

I thus, according to the theorem of symmetric polynomials,
the coefficients of P ⊕ Q belong to Q.

I Similarly, we define the composed product of P and Q.

5 / 26

Composed sum and composed product

I α, β, a, b ∈ Q
I a is a root of P ∈ Q[X]: P(a) = 0

I b is a root of Q ∈ Q[X]: Q(b) = 0.

I roots(P) denotes the multiset of roots of P in Q
I The number a + b is a root of

∏
α∈roots(P)
β∈roots(Q)

(X − (α + β))

I we note this polynomial: P ⊕ Q

I we call it the “composed sum” of P and Q.

I Coefficients of P ⊕ Q are a symmetric function of its roots

I thus, according to the theorem of symmetric polynomials,
the coefficients of P ⊕ Q belong to Q.

I Similarly, we define the composed product of P and Q.

5 / 26

Newton representation

I Our work is based on Algorithmique efficace pour des
opérations de base en Calcul formel - Alin Bostan (2003).

I Definition: N : Q[X]→ Q[[X]]

P 7→ N (P) =
∞∑
i=0

 ∑
α∈roots(P)

αi

X i

I we call it the Newton representation of P.

I In pratice, we only need the first terms of N (P)

I the truncated power series can be computed
without knowing α’s.

6 / 26

Newton transformations

[Alin Bostan 2003] provides a method to:

I transform a polynomial into a power series with N .

I transform back from N (P) into P.

[Alin Bostan 2003] defines:

I an addition � in the Newton space

I a multiplication � in the Newton space.

We formally described the algorithms and proved these statements:

I N−1(N (P)) = P when P(0) 6= 0

I P ⊕ Q = N−1(N (P)�N (Q))

I P ⊗ Q = N−1(N (P)�N (Q)).

7 / 26

Newton transformations

N (P) =
rev(P ′)

rev(P)

N−1(f) = rev

(
exp

(∫
1

X
(f0 − f)

))
Need for:

I rev: reverse the coefficients of a polynomial

I exponential of FPS

I primitive
∫

on FPS

8 / 26

High-level picture of involved objects

I Q[[X]] denotes the ring of formal power series

I Qm[X] denotes the ring of truncated formal power series

I Qe(X) denotes the ring of expansible rational fractions
examples: 1

1−X expanses to 1 + X + X 2 + . . . but 1
X /∈ Qe(X)

I Q[X]→ Qm[X] denotes the canonical surjection
which sends any polynomial P to P modulo Xm+1.

9 / 26

Contributions

We needed to develop the following notions:
I truncated formal power series

I derivative
I primitive
I composition
I logarithm
I exponential

I fractions of polynomials

I expansible rational fractions.

10 / 26

Truncated formal power series (TFPS)

I We formalize TFPSm with a Record in Coq:

Record tfps := MkTfps

{

truncated_tfps :> {poly K};

_ : size truncated_tfps <= m.+1

}.

I polynomial + proof on the degree

I dependent type allow us to create such a pair

I our Record is a subtype of polynomials because
we can decide whether the size is less than m + 1.

11 / 26

Results on TFPS

I Build a TFPSm from the proof that
size (P mod Xm+1) ≤ m + 1.

I Build a TFPS from its coefficients.

I structure on TFPSm

I commutative ring
I in TFPS3, X 2 · X 2 = 0

(
mod X 4

)
I derivative: Qm+1[X] −→ Qm[X]

I primitive: Qm[X] −→ Qm+1[X]

I logarithm, exponential: from a subtype of Qm[X] to Qm[X].

12 / 26

Results on TFPS

I Build a TFPSm from the proof that
size (P mod Xm+1) ≤ m + 1.

I Build a TFPS from its coefficients.

I structure on TFPSm

I commutative ring
I in TFPS3, X 2 · X 2 = 0

(
mod X 4

)
I derivative: Qm+1[X] −→ Qm[X]

I primitive: Qm[X] −→ Qm+1[X]

I logarithm, exponential: from a subtype of Qm[X] to Qm[X].

12 / 26

TFPS: exponential and logarithm

Let f be a TFPSm.

I If f0 = 0 we define:

exp(f) =
m∑
i=0

f i

i !

I If f0 = 1 we define:

log(f) = −
m∑
i=1

(1− f)i

i
.

13 / 26

TFPS: derivative

∀m ∈ N, ∀f , g ∈ Km+1[X]

I (f + g)′ =Km[X] f ′ + g ′

I (f · g)′ =Km[X] f ′ · bgcm + bf cm · g
′

I if f0 = 0: (exp f)′ =Km[X] f ′ · bexp(f)cm

I if f0 = 1: (log f)′ =Km[X]
f ′

bf cm
.

14 / 26

Universal property of the field of fractions

R is an integral domain.
There is a field F(R) and a ring morphism ι satisfying:

for any field K and injective ring morphism f from R to K,
there is a unique ring morphism κ s.t. our diagram commutes.

15 / 26

Universal property of field of fractions: how κ is defined ?

Let u
v ∈ F(R):

I by definition of F(R), v 6= 0

I since v 6= 0 and f is an injective ring morphism, f (v) 6= 0

I thus we can compute the inverse of f (v) in K
I we set κ(uv) = f (u)

f (v) .

We generalize the condition on f :

I we just require f (v) 6= 0, not f injectivity.

16 / 26

Universal property of field of fractions: how κ is defined ?

Let u
v ∈ F(R):

I by definition of F(R), v 6= 0

I since v 6= 0 and f is an injective ring morphism, f (v) 6= 0

I thus we can compute the inverse of f (v) in K
I we set κ(uv) = f (u)

f (v) .

We generalize the condition on f :

I we just require f (v) 6= 0, not f injectivity.

16 / 26

Regular morphism

The computability of κ is guaranted when
these three points are satisfied:

I f is computable
I given x ∈ F(R) it is decidable

I whether there is a regular representation for x
I whether x is regular for f
I whether ∃u, v ∈ R, f (v) 6= 0 and x = u

v

I when x is regular for f ,
a regular representation of x is computable.

We say that f is regular.
If f is injective then f is regular and all x ∈ F(R) are regular for f .

17 / 26

Regular morphism

The computability of κ is guaranted when
these three points are satisfied:

I f is computable
I given x ∈ F(R) it is decidable

I whether there is a regular representation for x
I whether x is regular for f
I whether ∃u, v ∈ R, f (v) 6= 0 and x = u

v

I when x is regular for f ,
a regular representation of x is computable.

We say that f is regular.
If f is injective then f is regular and all x ∈ F(R) are regular for f .

17 / 26

Abstract evaluation results

We derive formally the following results:

I κ(0) = 0

I κ(1) = 1

I ∀x ∈ F(R), κ(−x) = −κ(x)

I ∀x , y regular for f , κ(x + y) = κ(x) + κ(y)

I ∀x , y regular for f , κ(x · y) = κ(x) · κ(y)

I ∀x , y ∈ F(R), κ(y) 6= 0 =⇒ κ(xy) = κ(x)
κ(y)

I if f is injective then κ is a ring morphism

This interface is then instanciated twice in our code.

18 / 26

First case: evaluating fractions of polynomials

I The evaluation of X 2 − 2 in 3 gives 7

I the evaluation of
X 2 − 2

X + 5
in 3 gives

7

8

I the evaluation of
X 2 − 2

X − 3
in 3 is not defined because

we cannot find a regular representation (3 is a pole)

I the evaluation of
X 2 − 3X

X 2 − X − 6
in 3 is defined:

I we move to the equivalent regular representation
X

X + 2

I it gives
3

5
.

19 / 26

Abstraction over the evaluation on fractions of polynomials

I K is a field

I K[X] is an integral domain R

I K(X) is the field of fractions of R, noted F(R)

I f : R −→ K is the evaluation of polynomials in a = 3.

I Our evaluation of fractions of polynomials is the map:
κ : F(R) −→ K

κ(x) =

{
f (u)
f (v) if x can be written as u

v with f (v) 6= 0

undefined otherwise.

I Note that f is parameterized by an element a ∈ K.

20 / 26

Second case: lifting from F (X) to L(X)

I F ↪→ L is a field extension.

I we know how to lift from F [X] to L(X)

I problem: we want to lift any element of x ∈ F (X) to L(X).

Solution:

I x writes as u
v with u ∈ F [X], v ∈ F [X]

I we lift u and v and perform a division.

21 / 26

Abstraction over the lifting from F (X) to L(X)

I F [X] is an integral domain R

I F (X) is the field of fractions of R, noted F(R)

I L(X) is a field K
I f : R −→ K is the lifting from F [X] to L(X).

I Our lifting function from F (X) to L(X) is the map:
κ : F(R) −→ K

κ(x) =

{
f (u)
f (v) if x can be written as u

v with f (v) 6= 0

undefined otherwise.

I Note that here f is injective.

I Thus, κ is defined on whole F(R).

22 / 26

Sum-up of our contributions

I Formalization of truncated power series
I +, x , commutative ring

I Newton space:
I Newton transformation in both directions
I � and � in Newton space
I morphism lemmas

I formal proofs of correctness

I abstract evaluation of fractions.

23 / 26

Related work

During our formalization, we had to use existing concepts
from Mathematical Components:

I polynomials

I polynomial divisibility

I finite iterations of operations (bigop.v)

I binomial numbers

I fractions.

We also used developments for elliptic curves
from Pierre-Yves Strub (xseq, polyorder, polyall, polydec):

I polynomials and multiplicity

I roots of polynomials and equality up to a permutation.

24 / 26

Future work

I select one root of a polynomial

I Thom encoding

Algorithms in Real Algebraic Geometry
- Saugata Basu, Richard Pollack, Marie-Françoise Roy (2011)

I Newton method
I work of Iona Pasca on multivariate analysis

I run computable versions of the algorithms inside Coq.
I CoqEAL https://github.com/CoqEAL/CoqEAL

25 / 26

https://github.com/CoqEAL/CoqEAL

Questions

26 / 26

