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Motivation
Applications:
> semialgebraic sets
» computer algebra

» formalization of robotics.
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Motivation
Applications:
> semialgebraic sets
» computer algebra
» formalization of robotics.

Concerns: efficiency + certification.

Our goals:

» formalize efficient algorithms
to compute real algebraic numbers in Coq

» provide computable versions of these algorithms.

Benefits of algebraic numbers:
> field structure
» decidable equality
> countable.
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Introduction: what is an algebraic number ?

v

An algebraic number is a number which
is the root of a polynomial with rational coefficients

v

for example, v/2 is an algebraic number
because it is a root of the polynomial X2 — 2

» 7 is not an algebraic number.

v

We denote algebraic numbers by Q.
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Representation of algebraic numbers

> We represent an algebraic number by:

» a polynomial

» a piece of information to retain one root of the polynomial.
» For example, we can represent V2 by:

» X3 - X2 -2X +2

» the interval [1.3,2]

» a proof that P has exactly one root in [1.3,2].

» All operations
(addition, multiplication, inversion and comparison)
must be based on our representation.
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Representation of algebraic numbers

> We represent an algebraic number by:

» a polynomial

» a piece of information to retain one root of the polynomial.
» For example, we can represent V2 by:

» X3 - X2 -2X +2

» the interval [1.3,2]

» a proof that P has exactly one root in [1.3,2].

» All operations
(addition, multiplication, inversion and comparison)
must be based on our representation.

» Let a,b € Q and P, @ € Q[X] such that P(a) =0, Q(b) = 0.
We want to compute polynomials R; and R such that
Ri(a+ b) =0 and Ry(a x b) = 0.
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Composed sum and composed product

a,B,a,beQ

» ais aroot of P € Q[X]: P(a)=0

» bis aroot of @ € Q[X]: Q(b) =0.

roots(P) denotes the multiset of roots of P in Q

v

v

26



Composed sum and composed product

>

>

>

>

a,B,a,beQ

ais a root of P € Q[X]: P(a)=0

b is a root of Q € Q[X]: Q(b) = 0.

roots(P) denotes the multiset of roots of P in Q

The number a+ b is a root of H (X =(a+p))

a€roots(P)
B€eroots(Q)

we note this polynomial: P @& Q

we call it the “composed sum” of P and Q.

Coefficients of P & Q are a symmetric function of its roots

thus, according to the theorem of symmetric polynomials,
the coefficients of P & @ belong to Q.
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Composed sum and composed product

>

>

>

>

a,B,a,beQ

ais a root of P € Q[X]: P(a)=0

b is a root of Q € Q[X]: Q(b) = 0.

roots(P) denotes the multiset of roots of P in Q

The number a+ b is a root of H (X =(a+p))

a€roots(P)
B€eroots(Q)

we note this polynomial: P @& Q

we call it the “composed sum” of P and Q.

Coefficients of P & Q are a symmetric function of its roots

thus, according to the theorem of symmetric polynomials,
the coefficients of P & @ belong to Q.

Similarly, we define the composed product of P and Q.
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Newton representation

» Qur work is based on Algorithmique efficace pour des
opérations de base en Calcul formel - Alin Bostan (2003).

» Definition: N : Q[X] — Q[X]

oo

PoNPY=Y | Y o|X

i=0 \ a€roots(P)
» we call it the Newton representation of P.

» In pratice, we only need the first terms of N'(P)

» the truncated power series can be computed
without knowing a's.
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Newton transformations

[Alin Bostan 2003] provides a method to:
» transform a polynomial into a power series with \.
» transform back from A(P) into P.

[Alin Bostan 2003] defines:
» an addition H in the Newton space

» a multiplication X in the Newton space.

We formally described the algorithms and proved these statements:

» N=YWN(P)) = P when P(0) #0
» PO Q=N"YN(P)BN(Q))
» P®Q=N"HN(P)RN(Q)).
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Newton transformations

N7YHF) = rev (exp </ %(f0 — f))>
Need for:

> rev: reverse the coefficients of a polynomial
» exponential of FPS
» primitive [ on FPS
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High-level picture of involved objects

] g —

N
™

Q[X] ——"— Qp [X] ———— Q, [X]

ﬂ/egspanse
Qe(X)

» Q[X] denotes the ring of formal power series
» Qm[X] denotes the ring of truncated formal power series

» Qe(X) denotes the ring of expansible rational fractions
examples: 115 expanses to 1+ X + X2 +... but + ¢ Qe(X)

» Q[X] — Qm[X] denotes the canonical surjection
which sends any polynomial P to P modulo X™*1.
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Contributions

We needed to develop the following notions:

» truncated formal power series
derivative

primitive

composition

logarithm

exponential

vV vy VY VvYyy

» fractions of polynomials

» expansible rational fractions.
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Truncated formal power series (TFPS)

» We formalize TFPS,, with a Record in Coq:

Record tfps := MkTfps
{
truncated_tfps :> {poly K};
_ : size truncated_tfps <= m.+1

.

> polynomial + proof on the degree
» dependent type allow us to create such a pair

» our Record is a subtype of polynomials because
we can decide whether the size is less than m + 1.
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Results on TFPS

» Build a TFPS,,, from the proof that
size(P mod X™1) < m+1.

» Build a TFPS from its coefficients.
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Results on TFPS

» Build a TFPS,,, from the proof that
size(P mod X™1) < m+1.

Build a TFPS from its coefficients.

v

v

structure on TFPS,,

» commutative ring
» in TFPS;, X2-X2=0 (mod X4)

v

derivative: Qpm11[X] — Qm[X]

v

primitive: Qpn[X] — Qm+1[X]

v

logarithm, exponential: from a subtype of Qn,[X] to Qm[X].
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TFPS: exponential and logarithm

Let f be a TFPS,,.

» If fop = 0 we define:

» If f5 = 1 we define:
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TFPS: derivative

VmeN, Vf, g € Kmt1[X]

> (F+8) =kaix) ' +4
> (f-g) =Km[X] f'lgl,+ [fln-&
»if =0 (expf) =x,x) ' - Lexp(F)],,

| f
> if fb =1: (IOg f)/ =Km[X] m .
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Universal property of the field of fractions

R is an integral domain.
There is a field F(R) and a ring morphism ¢ satisfying:

for any field K and injective ring morphism f from R to K,
there is a unique ring morphism & s.t. our diagram commutes.

15/26



Universal property of field of fractions: how x is defined ?

R ———— F(R)--—-"—> K
I

Let ¥ € F(R):
» by definition of F(R), v # 0
» since v # 0 and f is an injective ring morphism, f(v) # 0

» thus we can compute the inverse of f(v) in K

> we set K(4) = ;gs;
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Universal property of field of fractions: how x is defined ?

R ———— F(R)-----"----> K
I

Let ¥ € F(R):
» by definition of F(R), v # 0
» since v # 0 and f is an injective ring morphism, f(v) # 0

» thus we can compute the inverse of f(v) in K

> we set K(4) = ;gs;

We generalize the condition on f:

» we just require f(v) # 0, not f injectivity.
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Regular morphism

The computability of « is guaranted when
these three points are satisfied:

» f is computable

» given x € F(R) it is decidable

» whether there is a regular representation for x
» whether x is regular for f
» whether Ju, v € R, f(v) #0 and x = 4

v
» when x is regular for f,
a regular representation of x is computable.
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Regular morphism

The computability of « is guaranted when
these three points are satisfied:

» f is computable

» given x € F(R) it is decidable

» whether there is a regular representation for x
» whether x is regular for f
» whether Ju, v € R, f(v) #0 and x = 4

v
» when x is regular for f,
a regular representation of x is computable.

We say that f is regular.
If f is injective then f is regular and all x € F(R) are regular for f.
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Abstract evaluation results

We derive formally the following results:

» k(0)=0
» k(1) =1
> Vx € F(R), w(=x)=—r(x)

v

—~

Vx, y regular for f, k(x+y)=r(x)+k y)

v

Vx, y regular for f, k(x-y) =k(x) Kk
Vx, y € F(R), K(y) #0 = (%) =

= /—\
‘ X ~—
Na3

v

—~—

R\Y

» if f is injective then x is a ring morphism

This interface is then instanciated twice in our code.
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First case: evaluating fractions of polynomials

The evaluation of X2 — 2 in 3 gives 7

| 4
2 7
> the evaluation of X15 in 3 gives 3
2 _
> the evaluation of X_3 in 3 is not defined because
we cannot find a regular representation (3 is a pole)
23X
» the evaluation of XZ-X_6 in 3 is defined:

» we move to the equivalent regular representation >

> it ives§
g 5
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Abstraction over the evaluation on fractions of polynomials

K is a field
K[X] is an integral domain R
K(X) is the field of fractions of R, noted F(R)

f: R — K is the evaluation of polynomials in a = 3.

v

v

v

v

» Our evaluation of fractions of polynomials is the map:
k:F(R)—K
;g”g if x can be written as ¥ with f(v) # 0
/{(X — v ) ) v
undefined  otherwise.

v

Note that f is parameterized by an element a € K.
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Second case: lifting from F(X) to L(X)

» F — L is a field extension.

» we know how to lift from F[X] to L(X)

» problem: we want to lift any element of x € F(X) to L(X).
Solution:

> x writes as § with u € F[X], v € F[X]

» we lift v and v and perform a division.
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Abstraction over the lifting from F(X) to L(X)

» F[X] is an integral domain R

» F(X) is the field of fractions of R, noted F(R)
» L(X) is a field K

» {1 R — K is the lifting from F[X] to L(X).

» Our lifting function from F(X) to L(X) is the map:

k:F(R) —K

;Eu) if x can be written as ¥ with f(v) # 0
H(X — v ' v

undefined  otherwise.

» Note that here f is injective.
» Thus, k is defined on whole F(R).
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Sum-up of our contributions

v

Formalization of truncated power series
» +, x, commutative ring

» Newton space:
» Newton transformation in both directions
» H and X in Newton space
» morphism lemmas

v

formal proofs of correctness

abstract evaluation of fractions.

v
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Related work

During our formalization, we had to use existing concepts
from Mathematical Components:

» polynomials

» polynomial divisibility

» finite iterations of operations (bigop.v)
> binomial numbers

» fractions.

We also used developments for elliptic curves
from Pierre-Yves Strub (xseq, polyorder, polyall, polydec):

» polynomials and multiplicity

» roots of polynomials and equality up to a permutation.
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Future work

» select one root of a polynomial

» Thom encoding

Algorithms in Real Algebraic Geometry
- Saugata Basu, Richard Pollack, Marie-Francoise Roy (2011)

» Newton method
> work of lona Pasca on multivariate analysis

» run computable versions of the algorithms inside Coq.
» CoqEAL https://github.com/CoqEAL/CoqEAL
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https://github.com/CoqEAL/CoqEAL

Questions
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