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Programming  

• implement a real-valued arithmetic function 

with Numerical Uncertainties 
• roundoff errors 
• measurement uncertainties

def	sine(x:	???):	???	=	{	

		x	-	(x*x*x)/6.0	+	(x*x*x*x*x)/120.0	-	(x*x*x*x*x*x*x)/5040.0	

}



Which data type?

abs. errors 

runtime



Which data type?

abs. errors 

runtime



Programming  

• implement a real-valued arithmetic function 

… with Numerical Uncertainties 
• roundoff errors 
• input errors (e.g. measurement uncertainties) 
• deliberate approximations (approximate computing) 

… correctly



Programming  

• implement a real-valued arithmetic function 

… with Numerical Uncertainties 
• roundoff errors 
• input errors (e.g. measurement uncertainties) 
• deliberate approximations (approximate computing) 

… correctly



Outline

• a new programming model 

• estimating errors soundly & accurately 
• nonlinearity 
• discontinuities 
• loops 

• improving accuracy
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A Real-Valued Spec

def	sine(x:	Real):	Real	=	{	
		require(x	>	-1.57079632679	&&	x	<	1.57079632679	&&	x	+/-	1e-11)	

		x	-	(x*x*x)/6.0	+	(x*x*x*x*x)/120.0	-	(x*x*x*x*x*x*x)/5040.0	

}	ensuring(res	=>	res	+/-	1.001e-11)
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input intervals

max error tolerated

input errors

A Real-Valued Spec



def	sine(x:	Real):	Real	=	{	
		require(x	>	-1.57079632679	&&	x	<	1.57079632679	&&	x	+/-	1e-11)	

		x	-	(x*x*x)/6.0	+	(x*x*x*x*x)/120.0	-	(x*x*x*x*x*x*x)/5040.0	

}	ensuring(res	=>	res	+/-	1.001e-11)

• what a scientist has on paper/in mind 
• what you may have proven correct 
• ideal baseline 
• allows compiler optimisations

A Real-Valued Spec



Rosa - the Verifying Compiler
def	sine(x:	Real):	Real	=	{	
		require(x	>	-1.57079632679	&&	x	<	1.57079632679	&&	x	+/-	1e-11)	

		x	-	(x*x*x)/6.0	+	(x*x*x*x*x)/120.0	-	(x*x*x*x*x*x*x)/5040.0	

}	ensuring(res	=>	res	+/-	1.001e-11)

Float	

Double	

DoubleDouble	

QuadDouble

fixed-pointfloating-point

A:4 E. Darulova and V. Kuncak

Fig. 2. Running times vs accuracy for different finite-precision data types

/*
@param x (x +/- 1.e-11)
@return ((-1.0003675439019308 <= result && result <= 1.0003675439019308 &&

(result +/- 3.8907801077969955e-09)))

*/
def sineWithError(x : Long): Long = {
require(-1.5707963268 <= x && x <= 1.5707963268)

val _tmp1 = ((x * x) >> 31)
val _tmp2 = ((_tmp1 * x) >> 30)
val _tmp3 = ((_tmp2 << 30) / 1610612736l)
val _tmp4 = ((x << 1) - _tmp3)
val _tmp5 = ((x * x) >> 31)
val _tmp6 = ((_tmp5 * x) >> 30)
val _tmp7 = ((_tmp6 * x) >> 31)
val _tmp8 = ((_tmp7 * x) >> 31)
val _tmp9 = ((_tmp8 << 28) / 2013265920l)
val _tmp10 = ((_tmp4 + _tmp9) >> 1)
val _tmp11 = ((x * x) >> 31)
val _tmp12 = ((_tmp11 * x) >> 30)
val _tmp13 = ((_tmp12 * x) >> 31)
val _tmp14 = ((_tmp13 * x) >> 31)
val _tmp15 = ((_tmp14 * x) >> 30)
val _tmp16 = ((_tmp15 * x) >> 31)
val _tmp17 = ((_tmp16 << 23) / 1321205760l)
val _tmp18 = (((_tmp10 << 1) - _tmp17) >> 1)
val result = _tmp18

}

Fig. 3. Sine function implemented in fixed-point arithmetic

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

…



Rosa - the Verifying Compiler
def	sine(x:	Real):	Real	=	{	
		require(x	>	-1.57079632679	&&	x	<	1.57079632679	&&	x	+/-	1e-11)	

		x	-	(x*x*x)/6.0	+	(x*x*x*x*x)/120.0	-	(x*x*x*x*x*x*x)/5040.0	

}	ensuring(res	=>	res	+/-	1.001e-11)

Float	

Double	

DoubleDouble	

QuadDouble

fixed-pointfloating-point
*
def sineWithError(x : Long): Long = {
require(-1.5707963268 <= x && x <= 1.5707963268)

val _tmp1 = ((x * x) >> 31)
val _tmp2 = ((_tmp1 * x) >> 30)
val _tmp3 = ((_tmp2 << 30) / 1610612736l)
val _tmp4 = ((x << 1) - _tmp3)
val _tmp5 = ((x * x) >> 31)
val _tmp6 = ((_tmp5 * x) >> 30)
val _tmp7 = ((_tmp6 * x) >> 31)
val _tmp8 = ((_tmp7 * x) >> 31)
val _tmp9 = ((_tmp8 << 28) / 2013265920l)
val _tmp10 = ((_tmp4 + _tmp9) >> 1)

_ …

https://github.com/malyzajko/rosa



State of the Art 
quantifying numerical errors

• numerical analysis [e.g. Higham’02] 
‣ manual analysis by expert 

• interactive theorem proving [e.g. in Coq: Boldo’11] 

‣ partly manual, requires expert guidance 

• testing [Benz’12, Chiang’14,Paganelli’13, …] 
‣ gives no strong guarantees 

• static analysis 
‣ automated, with guarantees - and reasonable accuracy
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Quantifying Numerical Errors
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Goal: statically, soundly, accurately and automatically



Quantifying Numerical Errors 
in loop-free, branch-free code

Sound absolute error bound: 
• worst-case roundoff errors 
• worst-case error propagation 

‣ both depend on the ranges 
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for	each	arithmetic	operation		

1.	compute	real	range	for	intermediate	value	

2.	propagate	existing	errors	

3.	compute	new	roundoff	error
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• interval arithmetic

Standard Range Arithmetic

• affine arithmetic (AA)
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nonlinear operations have to be approximated
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def	jetEngine(x:	Real,	y:	Real):	Real	=	{	
		require(-5	<=	x	&&	x	<=	5	&&	-20	<=	y	&&	y	<=	5)	

		val	t	=	3*x*x	+	2*y	-	x	
		val	t2	=	x*x	+	1	
		x	+	((2*x*(t/t2)*(t/t2	-	3)	+	x*x*(4*(t/t2)-6))*t2	+	
				3*x*x*(t/t2)	+	x*x*x	+	x	+	3*((3*x*x	+	2*y	-	x)/t2))	
}

def	triangleArea(a:	Real,	b:	Real,	c:	Real):	Real	=	{	
require(1.0	<	a	&&	a	<	9.0	&&	1.0	<	b	&&	b	<	9.0	&&	1.0	<	c	&&	c	<	9.0	&&	
												a	+	b	>	c	+	0.1	&&	a	+	c	>	b	+	0.1	&&	b	+	c	>	a	+	0.1)	

		val	s	=	(a	+	b	+	c)/2.0	
		sqrt(s	*	(s	-	a)	*	(s	-	b)	*	(s	-	c))	

}

interval arithmetic:  
[-24.0, 26.0] 

[-∞, ∞]
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def	jetEngine(x:	Real,	y:	Real):	Real	=	{	
		require(-5	<=	x	&&	x	<=	5	&&	-20	<=	y	&&	y	<=	5)	

		val	t	=	3*x*x	+	2*y	-	x	
		val	t2	=	x*x	+	1	
		x	+	((2*x*(t/t2)*(t/t2	-	3)	+	x*x*(4*(t/t2)-6))*t2	+	
				3*x*x*(t/t2)	+	x*x*x	+	x	+	3*((3*x*x	+	2*y	-	x)/t2))	
}

def	triangleArea(a:	Real,	b:	Real,	c:	Real):	Real	=	{	
require(1.0	<	a	&&	a	<	9.0	&&	1.0	<	b	&&	b	<	9.0	&&	1.0	<	c	&&	c	<	9.0	&&	
												a	+	b	>	c	+	0.1	&&	a	+	c	>	b	+	0.1	&&	b	+	c	>	a	+	0.1)	

		val	s	=	(a	+	b	+	c)/2.0	
		sqrt(s	*	(s	-	a)	*	(s	-	b)	*	(s	-	c))	

}
interval arithmetic: 

error

interval arithmetic:  
[-24.0, 26.0] 

[-∞, ∞]



Quantifying Numerical Errors
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Challenges: 
• nonlinearity 

- range estimation 
- error computation & propagation 

• discontinuities  
• loops

Goal: statically, soundly, accurately and automatically



Interval arithmetic meets SMT

			 

• includes any correlations between variables 

• includes additional constraints 

‣ includes runtime error checks (overflow, div-by-zero, …)

20

for	every	computation	step	
- get	initial	range	with	interval	arithmetic	
- refine	bounds	with	binary	search	with	Z3

Use Z3’s nonlinear solver:
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total error
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total error

new roundoff errorspropagation of initial errors

Separation of Errors
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total error

new roundoff errorspropagation of initial errors

local 

finite-precision artifact

global 

real-valued property

‣ affine arithmetic‣ derivatives

Separation of Errors
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Tracking Roundoff Errors
with affine arithmetic 

for each arithmetic operation 

• propagate existing xi’s 

• add a new xn+1 for the new roundoff error 
determined according to finite-precision format

25

2.3. Affine Arithmetic

Interval arithmetic can be used to obtain sound bounds on finite-precision round-off errors
by interpreting the width of the interval as the error on the corresponding variable. Input
intervals are point intervals, if the number can be represented exacly in finite precision, or
have the lower and upper bound be the next smaller and bigger representable finite-precision
number respectively. After performing the computation in standard interval arithmetic, we
can read off the bound on the round-off error from the width of the result’s interval.

Unfortunately intervals give too pessimistic estimates in many cases. The problem is easy to
demonstrate: if X is an interval [0, a] then interval arithmetic approximates the expression
X °X with [°a, a], although it is, in fact, always equal to zero. Essentially, interval arithmetic
ignores correlations between variables, i.e. it approximates x °x in the same way as it would
approximate x°y when x and y are unrelated variables that both belong to [0, a]. Furthermore,
when such approaches are used to estimate the behavior over a range of input values, as
opposed to point intervals, they fail to distinguish two sources of uncertainty:

• uncertainty in the error between the ideal and the floating point value and

• uncertainty in the actual values of floating point variables when analyzing code, if the
initial values can belong to any point in a given interval

Any approach that lumps together these two sources of uncertainty will quickly become
inaccurate. That said, intervals can be very useful in certain carefully chosen cases, and we
also use them in later chapters.

2.3 Affine Arithmetic

Affine arithmetic (AA) addresses the difficulty of interval arithmetic in handling correlations
between variables. Affine arithmetic was originally introduced in [50] and developed to com-
pute ranges of functions over the domain of reals, with the actual calculations implemented
in double floating-point precision. A possible application of affine arithmetic, as originally
proposed, is finding zeros of a function in a given initial interval by a branch-and-bound
approach.

Affine arithmetic represents possible values of variables as affine forms

x̂ = x±+
nX

i=1
xi ≤i

where x± denotes the central value (the mid point of the represented interval) and each noise
symbol ≤i 2 [°1,1] is a formal variable denoting a deviation from the central value. The
maximum magnitude of each noise term is given by the corresponding xi . Note that the sign
of xi does not matter in isolation, it does, however, reflect the relative dependence between
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of xi does not matter in isolation, it does, however, reflect the relative dependence between

13
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based on Lipschitz continuity

• constants Ki capture maximum steepness of f 

‣ ability to magnify errors 
• partial derivatives computed symbolically 
• bounded with Z3-based range computation 
‣ automatic
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require(-5	<=	x	&&	x	<=	5	&&	-20	<=	y	&&	y	<=	5	&&		
x	+/-	1e-11	&&	y	+/-	1e-11)	

		val	t	=	(3*x*x	+	2*y	-	x)	

		val	t2	=	x*x	+	1	

	

roundoff errors 
become initial errors

both affine arithmetic and Lipschitz continuity  
introduce over-approximations  

‣ AA is fine for small errors, for shorter computations 
‣ derivatives most useful on larger expressions 



The ‘Competition’
Fluctuat 
• developed concurrently 
• AA-based 
• constraints on affine terms 
• interval subdivision 

FPTaylor 
• Taylor approximation wrt. errors 
• optimisation-based 
• transcendentals 
• certificates 

Real2Float

29



30
roundoff + input error + constraint



Conclusions

• for straight-line code, differences are small 

• three tools, three implementations 

• different (asymptotic) limitations: 
• Rosa: SMT solver may time-out unpredictably 
• Fluctuat: predictable times, but accuracy may deteriorate 
• FPTaylor: potentially large running time with constraints 

31



Quantifying Numerical Errors

32

Challenges: 
• nonlinearity 

- range estimation 
- error computation & propagation 

• discontinuities 
• loops

Goal: statically, soundly, accurately and automatically
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def	anApproximation(x:	Real,	y:	Real):	Real	=	{	
				require(-5	<=	x	&&	x	<=	5	&&	-5	<=	y	&&	y	<=	5	&&	

		x	+/-	1e-11	&&	y	+/-	1e-11)	

				if	(y	<	x)	
						-0.317581	+	0.0563331*x	+	0.0966019*x*x	+	0.0132828*y	+		
								0.0372319*x*y	+	0.00204579*y*y	

				else	
						-0.330458	+	0.0478931*x	+	0.154893*x*x	+	0.0185116*y	-		
								0.0153842*x*y	-	0.00204579*y*y	

		}

What happens  
when the real and the finite precision computation  

take different paths?
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always include the real ones ([a, b] ✓ [c, d]), and we use the actual ranges ([c, d])
for the computation of K and �. We believe that it is reasonable to assume that
a user writing these applications to have the domain knowledge to be able to
provide these specifications.

4 Errors due to Discontinuities

Recall the piece-wise jet engine approximation from Figure 3. Due to the initial
errors on x and y, the real-valued computation may take a different branch than
the finite-precision one, and thus produce a different result. We call this difference
the discontinuity error.

Previous approaches construct a constraint encoding the difference between
the real value computed by one branch and the finite-precision value computed by
the other. The other direction is handled symmetrically. They differ in how they
handle the constraints introduced by the branch condition. Fluctuat constrains
the affine forms of the real and floating- point computation in its abstract
domain based on a logical product with the interval domain [17]. Rosa essentially
constructs one constraint that encodes the computation along both paths and the
correlation between the variables of these two paths. The resulting difference is
refined with the Z3 SMT solver. Fluctuat’s approach becomes quickly imprecise
when the functions are not linear due to the underlying domain. Rosa’s approach
produces very precise but complex constraints which work nicely for simple
functions, but are hard to handle beyond these. In this section, we show how
to apply the separation of errors idea and overcome the limitations of these
techniques.

Individual branch conditions are of the form e1�e2, where � 2 {<,, >,�} and
e1, e2 are arithmetic expressions and more complex conditions can be obtained by
nesting. Further, we do not assume the function represented by the conditional
to be neither smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case, an exponential
number of cases to consider, we found that many of these cases are infeasible
due to inconsistent branch conditions and are eliminated early.

4.1 Applying Separation of Errors

Using our previous notation, let us consider a function with a single branch
statement like in the example above and let f1 and f2 be the real-valued functions
corresponding to the if and the else branch respectively. Then, the discontinuity
error is given by |f1(x)� ˜f2(x̃)|, i.e. the real computation takes branch f1, and
the finite-precision one f2. The opposite case is analogous. We again apply the
idea of separation of errors:

|f1(x)� ˜f2(x̃)|  |f1(x)� f1(x̃)|+ |f1(x̃)� f2(x̃)|+ |f2(x̃)� ˜f2(x̃)| (6)

The individual components are

if	(c)		f1	
else				f2
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always include the real ones ([a, b] ✓ [c, d]), and we use the actual ranges ([c, d])
for the computation of K and �. We believe that it is reasonable to assume that
a user writing these applications to have the domain knowledge to be able to
provide these specifications.

4 Errors due to Discontinuities

Recall the piece-wise jet engine approximation from Figure 3. Due to the initial
errors on x and y, the real-valued computation may take a different branch than
the finite-precision one, and thus produce a different result. We call this difference
the discontinuity error.

Previous approaches construct a constraint encoding the difference between
the real value computed by one branch and the finite-precision value computed by
the other. The other direction is handled symmetrically. They differ in how they
handle the constraints introduced by the branch condition. Fluctuat constrains
the affine forms of the real and floating- point computation in its abstract
domain based on a logical product with the interval domain [17]. Rosa essentially
constructs one constraint that encodes the computation along both paths and the
correlation between the variables of these two paths. The resulting difference is
refined with the Z3 SMT solver. Fluctuat’s approach becomes quickly imprecise
when the functions are not linear due to the underlying domain. Rosa’s approach
produces very precise but complex constraints which work nicely for simple
functions, but are hard to handle beyond these. In this section, we show how
to apply the separation of errors idea and overcome the limitations of these
techniques.

Individual branch conditions are of the form e1�e2, where � 2 {<,, >,�} and
e1, e2 are arithmetic expressions and more complex conditions can be obtained by
nesting. Further, we do not assume the function represented by the conditional
to be neither smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case, an exponential
number of cases to consider, we found that many of these cases are infeasible
due to inconsistent branch conditions and are eliminated early.

4.1 Applying Separation of Errors

Using our previous notation, let us consider a function with a single branch
statement like in the example above and let f1 and f2 be the real-valued functions
corresponding to the if and the else branch respectively. Then, the discontinuity
error is given by |f1(x)� ˜f2(x̃)|, i.e. the real computation takes branch f1, and
the finite-precision one f2. The opposite case is analogous. We again apply the
idea of separation of errors:

|f1(x)� ˜f2(x̃)|  |f1(x)� f1(x̃)|+ |f1(x̃)� f2(x̃)|+ |f2(x̃)� ˜f2(x̃)| (6)

The individual components are

if	(c)		f1	
else				f2

separation of errors:

amplification within if-branch 
(Lipschitz continuity)

real-valued difference 
between branches

roundoff error 
in else branch
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Challenges: 
• nonlinearity 

- range estimation 
- error computation & propagation 

• discontinuities  
• loops

Goal: statically, soundly, accurately and automatically



Loops

• numerical errors in general grow without bound 
• one possible strategy: unrolling 
• our strategy (for some loops):  

compute error as function of # iterations

38
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Chapter 7. Handling Control Structures

7.2 Loops

For loops where errors grow without a constant absolute bound, current tools are forced to
unroll the loops or apply widening, often returning a trivial upper bound of 1. Even if the
loop is bounded, unrolling often scales poorly. We propose to compute the numerical errors
as a function of the number of iterations. This allows us to derive a closed form expression on
the loop’s error which constitutes an inductive loop invariant and also characterizes the loop’s
behavior. This expression can also be used to compute concrete error bounds for any given
number of loop iterations, often returning better results than unrolling.

In order to derive the closed-form expression, we apply again the idea of propagation of errors.
We want to compute the overall error after m-fold iteration f m of f . We define for any function
H : H 0(x) = x, H m+1(x) = H(H m(x)). We are thus interested in bounding:

| f m(x)° f̃ m(x̃)|

f , g and æ are now vector-valued: f , g ,æ : Rn ! Rn , because we are nesting the potentially
multivariate function f .

Theorem 7.1 Let g be such that | f (x)° f (y)|∑ g (|x ° y |), it satisfies g (x + y) ∑ g (x)+ g (y) and
is monotonic. Further, æ and ∏ satisfy æ(x̃) = | f (x̃)° f̃ (x̃)| and |x ° x̃|∑∏. The absolute value is
taken component-wise. Then the numerical error after m iterations is given by

| f m(x)° f̃ m(x̃)|∑ g m(|x ° x̃|)+
m°1X

i=0
g i (æ( f̃ m°i°1(x̃))) (7.2)

Proof: We show this by induction. The base case m = 1 has already been covered in subsec-
tion 6.2.1. By adding and subtracting f ( f̃ m°1(x̃))1 we get

0

BB@

| f m(x)1 ° f̃ m(x̃)1|
...

| f m(x)n ° f̃ m(x̃)n |

1

CCA

∑

0

BB@

| f m(x)1 ° f ( f̃ m°1(x̃))1|
...

| f m(x)n ° f ( f̃ m°1(x̃))n |

1

CCA+

0

BB@

| f ( f̃ m°1(x̃))1 ° f̃ m(x̃)1|
...

| f ( f̃ m°1(x̃))n ° f̃ m(x̃)n |

1

CCA

Applying the definitions of g and æ

∑ g

0

BB@

| f m°1(x)1 ° f̃ m°1(x̃)1|
...

| f m°1(x)n ° f̃ m°1(x̃)n |

1

CCA+æ( f̃ m°1(x̃))

96

g : propagation error 
σ : roundoff error
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Chapter 7. Handling Control Structures
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propagation of 
 initial error

propagation of 
 roundoff from each iteration

g : propagation error 
σ : roundoff error

initial error maximum roundoff  
over all iterations

7.2. Loops

then using the induction hypothesis and monotonicity of g ,

∑ g

√

g m°1(~∏)+
m°2X

i=0
g i (æ( f̃ m°i°1(x̃)))

!

+æ( f̃ m°1(x̃))

then using g (x + y) ∑ g (x)+ g (y), we finally have

∑ g m(~∏)+
m°1X

i=1
g i (æ( f̃ m°i°1(x̃)))+æ( f̃ m°1(x̃))

= g m(~∏)+
m°1X

i=0
g i (æ( f̃ m°i°1(x̃))) ⌅

In words, the overall error after m iterations can be decomposed into the initial error propa-
gated through m iterations, and round-off error from the i th iteration propagated through the
remaining iterations.

7.2.1 Closed Form Expression

We instantiate the propagation function g as before and would like to derive a closed-form
expression for the error, as Equation 7.2 is not very evaluation friendly. In fact, evaluating Equa-
tion 7.2 as given, with a fresh set of propagation coefficients for each iteration i amounts to
loop unrolling, but with a loss of correlation between each loop iteration.

Suppose we can compute K as a matrix of propagation coefficients, and similarly obtain
æ( f̃ i ) =æ as a vector of constants, both valid over all iterations. Then we obtain a closed-form
for the expression of the error:

| f m(x)° f̃ m(x̃)|∑ K m∏+
m°1X

i=1
K iæ+æ

= K m∏+
m°1X

i=0
K iæ

where ∏ is the vector of initial errors. If (I °K )n exists,

| f m(x)° f̃ m(x̃)|∑ K m∏+ ((I °K )°1(I °K m))æ

We obtain K m with power-by-squaring and compute the inverse with the Gauss-Jordan
method with rational coefficients to obtain sound results. When K = I , g becomes the identity
function and so

| f m(x)° f̃ m(x̃)|∑∏+
m°1X

i=1
æ+æ=∏+m ·æ

99

propagation  
over all iterations

IF we can compute error propagation and roundoff globally 
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def	sine(x:	Real):	Real	=	{		
		require(-5	<=	x	&&	x	<=	5)	
		x	-	x*x*x/6	+	x*x*x*x*x/120	
}	

def	pendulum(t:	Real,	w:	Real,	n:	LoopCounter):	(Real,Real)	=	{	
		require(-2	<=	t	&&	t	<=	2	&&	-5	<=	w	&&	w	<=	5	&&	
															-2.01	<=	~t	&&	~t	<=	2.01	&&	-5.01	<=	~w	&&	~w	<=	5.01)	
			
		if	(n	<	1000)	{	
				val	h:	Real	=	0.01	
				val	L:	Real	=	2.0	
				val	m:	Real	=	1.5	
				val	g:	Real	=	9.80665	
				val	k1t	=	w	
				val	k1w	=	-g/L	*	sine(t)	
				val	k2t	=	w	+	h/2*k1w	
				val	k2w	=	-g/L	*	sine(t	+	h/2*k1t)		
				val	tNew	=	t	+	h*k2t	
				val	wNew	=	w	+	h*k2w	
				pendulum(tNew,	wNew,	n	+	1)	
		}	else	{	
				(t,	w)	
		}	
}
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def	sine(x:	Real):	Real	=	{		
		require(-5	<=	x	&&	x	<=	5)	
		x	-	x*x*x/6	+	x*x*x*x*x/120	
}	

def	pendulum(t:	Real,	w:	Real,	n:	LoopCounter):	(Real,Real)	=	{	
		require(-2	<=	t	&&	t	<=	2	&&	-5	<=	w	&&	w	<=	5	&&	
															-2.01	<=	~t	&&	~t	<=	2.01	&&	-5.01	<=	~w	&&	~w	<=	5.01)	
			
		if	(n	<	1000)	{	
				val	h:	Real	=	0.01	
				val	L:	Real	=	2.0	
				val	m:	Real	=	1.5	
				val	g:	Real	=	9.80665	
				val	k1t	=	w	
				val	k1w	=	-g/L	*	sine(t)	
				val	k2t	=	w	+	h/2*k1w	
				val	k2w	=	-g/L	*	sine(t	+	h/2*k1t)		
				val	tNew	=	t	+	h*k2t	
				val	wNew	=	w	+	h*k2w	
				pendulum(tNew,	wNew,	n	+	1)	
		}	else	{	
				(t,	w)	
		}	
}

assumption:  
bounded ranges

for	loop	body	
1. analyse	derivative	
2. compute	new	roundoff
3.	plug	into		

closed-form	expression
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def	sine(x:	Real):	Real	=	{		
		require(-5	<=	x	&&	x	<=	5)	
		x	-	x*x*x/6	+	x*x*x*x*x/120	
}	

def	pendulum(t:	Real,	w:	Real,	n:	LoopCounter):	(Real,Real)	=	{	
		require(-2	<=	t	&&	t	<=	2	&&	-5	<=	w	&&	w	<=	5	&&	
															-2.01	<=	~t	&&	~t	<=	2.01	&&	-5.01	<=	~w	&&	~w	<=	5.01)	
			
		if	(n	<	1000)	{	
				val	h:	Real	=	0.01	
				val	L:	Real	=	2.0	
				val	m:	Real	=	1.5	
				val	g:	Real	=	9.80665	
				val	k1t	=	w	
				val	k1w	=	-g/L	*	sine(t)	
				val	k2t	=	w	+	h/2*k1w	
				val	k2w	=	-g/L	*	sine(t	+	h/2*k1t)		
				val	tNew	=	t	+	h*k2t	
				val	wNew	=	w	+	h*k2w	
				pendulum(tNew,	wNew,	n	+	1)	
		}	else	{	
				(t,	w)	
		}	
}

# iterations Fluctuat
(unrolling) Our tool

50 2.43e-13 2.21e-14

100 ∞ 8.82e-14

250 ∞ 2.67E-12

500 ∞ 6.54E-10

(time: 8s)
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Challenges: 
• nonlinearity 

• range estimation 
• error computation & propagation 

• discontinuities  
• loops

Goal: statically, soundly, accurately and automatically



Quantifying Numerical Errors
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Key Ideas: 
• separation of errors 
• combine interval/affine arithmetic with SMT  
• use derivatives with SMT

Goal: statically, soundly, accurately and automatically



Finite-Precision is Non-Associative

46

exploit non-associativity

Previous technique assumed fixed computation order.

((0.9052∗st2)+(((st3∗−0.0181)	+(−0.0078∗st1))+		
		(((−0.0392∗st4)	+(−0.0003∗y1))+(0.002∗y2)))) 1.39e-3

(−0.0078)∗st1+0.9052∗st2	+(−0.0181)∗st3	+		
		(−0.0392)∗st4	+(−0.0003)∗y1+0.0020∗y2 3.06e-3

error determined by simulation



• enumerating all expressions is infeasible 
• small local error can produce large global error 

• genetic programming as search strategy: 
• genetic algorithm over AST (instead of strings) 
• 30 generations with a population of 30 
• mutation: associativity, distributivity, etc. 
• crossover: labeling 
• fitness function: static analysis, AA-based

47

Synthesizing Accurate Expressions 
[E. Darulova, V. Kuncak, R. Majumdar and I. Saha, EMSOFT’13]



Static Analysis as Fitness Function 
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Guarantees

• no optimality 
• incomplete search 

• static, over-approximating analysis may not discriminate correctly 

• find expression with provable smallest bound

49



Evolution of Errors
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The ‘Competition’
[Martel’09, Ioualalen&Martel’12] 

• abstract domain to represent under-representation of possible rewritings 
• local search 
• optimise bit-length 

[Eldib&Wang’13] 
• SMT-base synthesis with skeleton 
• linear expressions only 
• local search 

Herbie [PLDI’15] 
• testing-based heuristic search 
• average error 
• ‘regime’ inference
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Conclusion
Quantifying numerical uncertainties is hard. 

Combination of techniques + advances in SMT 

 automated & accurate results 

‣ nonlinearity, branches and loops 
‣ non-associativity
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Thank you!
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