
1 / 24

Implementing Logic and Real Arithmetic

Pieter Collins

Department of Knowledge Engineering

Maastricht University

pieter.collins@maastrichtuniversity.nl

Michal Konec̆ný

Aston University

Maik Brschkens

Maastricht University

Effective Analysis: Foundations, Implementation and Certification, Marseille, 13 January 2016



Introduction

Introduction

• Aims

• Example code

• Motivation

• Logic and Numbers

• Kinds of Information

• Generic, concrete

and numeric data

• Numerical types

Design Issues

Implementation Issues

Proposal

2 / 24



Aims

3 / 24

• Develop a C++ library to support numerical operations on real numbers,

Euclidean functions and logical types.

◦ Safe: Strong typing preventing e.g. approximate information accidentally

being used in place of exact information.

◦ Clean: Solid theoretical foundation and implementation.

◦ Usable: Accessible to non-experts e.g. applied mathematicians

◦ Efficient: Should support use of builtin double-precision floating-point, or

multiple-precision floating-point libraries.

◦ Broad: Handle a wide range of problems in analysis.

◦ Extensible: Allow for new user-defined data-types and algorithms.

• Here, focus on logic and numbers with a view to extending to functions.

• Problems more in design decisions than mathematics...



Example code

4 / 24

• High-level usage working with Real numbers.

x=RealVariable("x"), v=RealVariable("v"); t=TimeVariable();

phi = flow(dot(x,v)={v,-v+sin(x)+cos(t)},init(x,v)={0,1});
xf=phi[x](t=2);

get bounds(xf,precision=96);

check(xf<1,effort=3);

• Low-level usage working with Float Bounds for Real numbers.

RealFunction f=sin(x);

Float64Bounds pi = interval newton.solve(f,Interval(3,4));

Real e;

Float64Bounds xkcd = pow(e,pi) - pi;



Motivation

5 / 24

• Motivated by work on ARIADNE, a tool for reachability analysis and verification

of hybrid systems.

http://ariadne.parades.rm.cnr.it/

• Stable version of ARIADNE has simple numerical module with classes

Rational, symbolic Real numbers, Intervals with floating-point endpoints

and Float.

• Above approach not sufficiently strongly typed, requiring much explicit

rounding.

◦ Need to distinguish Exact and Approximate Float objects.

◦ Reserve Interval for geometric sets.

◦ · · ·

• Working version fixes these problems but is overly complex.



Logic and Numbers

6 / 24

• Support mathematical operations on a Real number type R.

◦ Exact number types Dyadic Q2 and Rational Q.

◦ Distinguish LowerReal R< and UpperReal R> (useful for probabilities

and metrics).

• For concrete computations use floating-point numbers.

◦ Raw Float types F64, F{MP}.

◦ Intermediate answers given by FloatBounds [F,F] or FloatBall F± F.

• To support comparisons, need Kleenean logical type with values

K = {T, F,⊥} ≡ B⊥.

◦ Exact Boolean supertype B = {T, F} for decidable predicates.

◦ Sierpinskian subtype S = {T,⊥} ≡ K> for verifyable predicates.



Kinds of Information

7 / 24

• Qualitatively different kinds of information:

• Abstract: Exact symbolic information, without computational algorithm:

◦ e.g. cos(1) is a real number (which may be computed in many ways).

◦ Useful for problem specification.

• Effective: Exact information, with algorithm to compute arbitrarily accurately:

◦ e.g. cos(1) is given by
∑N−1

n=0
(−1)n/(2n)!± 1/(2N)!.

◦ Main type from computable analysis.

• Validated: Finite precision information with bounds

◦ e.g. cos(1) is in ball 4357/8064± 1/3628800.

◦ Useful in concrete rigorous numerics.

• Approximate: No information about accuracy

◦ e.g. cos(1) is roughly 0.541.

◦ Useful for scratch computations and preconditioning.

• All levels should support the operations of the mathematical type.



Generic, concrete and numeric data

8 / 24

• Countable sets can be represented by concrete data types

◦ Natural mathematical types, such as Rational.

◦ Efficient computational types, such as Floats.

• Polymorphic C++ classes can represent data in arbitrary ways.

◦ Specified by supported operations

EffectiveReal::get(Accuracy) -> ValidatedReal.

◦ Uncountable types, such as EffectiveReal and ValidatedReal.



Numerical types

9 / 24

• Provide raw double-precision floating-point numbers F64 as class Float64,

and multiple-precision numbers FMP as class FloatMP.

◦ To create a F64 or FMP from a R need a rounding mode.

◦ To create a FMP from a R also need a precision.

◦ For uniform creation, use a Precision64 tag to create F64.

• Concrete validated classes

◦ Ball<FV,FE> and Bounds<FL,FU> for Real.

• Ball<FV,FE> corresponds to a Cauchy real,

• Bounds<FL,FU> to a Dedekind real.

◦ LowerBound<FL> for LowerReal and UpperBound<FU> for UpperReal.

• Concrete approximate class Approximation<FA> for R̃.

• Concrete exact classes Exact<F>.



Design Issues

Introduction

Design Issues

• What is a number?

• Polymorphic types

• Abstract information

• Uninformative reals

• Conversions

• Lossy conversions

• Binary operators

• Generic code

Implementation Issues

Proposal

10 / 24



What is a real number?

11 / 24

• A real number is

◦ an equivalence class of

• signed-digit (binary) expansions (zn ± 1)/2n, or

• strongly convergent Cauchy sequences of rationals qn ± 1/2n, or

• convergent sequences of nested intervals with dyadic endpoints [pn, pn].
• · · ·

• In applications, usually specified by a formula

◦ e.g. x = sin(π/3) or x =
√
3/2.

◦ It is unknown whether equality of real numbers specified by elementary

functions is decidable.

• Agnostically try to define a real number class independently of any one

representation.



Polymorphic type interfaces

12 / 24

• Many equivalent definitions of a real number; our code should allow any way of

specifying.

• To be usable, need standard ways to extract information.

• Many possible ways to extract bounds from a real number:

EffectiveReal::get bounds(Precision prec) -> Bounds<Float,Float>;

EffectiveReal::get bounds(Effort eff) -> Bounds<Dyadic,Dyadic>;

EffectiveReal::get ball(Accuracy acc) -> Ball<Rational,Dyadic>;

EffectiveReal::get(Accuracy acc) -> ValidatedReal;

Which should we use?

• To ensure safety, all approximations should specify their error.

◦ Allowing a Real to define an fast-converging Cauchy sequence interface

Real::get within(Accuracy acc) -> Rational;

is therefore not allowed!



Need for Abstract information

13 / 24

• Abstract information very similar to Effective information.

• Abstract information useless without specification of an algorithm.

• Maybe we can simplify framework by eliminating AbstractReal...

• Distinguishing Abstract and Effective allows user specification of

algorithms.

• For some operations e.g. add, cos, may be uncontroversial default choice.

◦ Unsophisticated users should invisibilly be given a default choice.

• For complex operations (usually functional operators like flow), a good

algorithm may be problem dependent.

◦ In ARIADNE function calculus, use evaluator classes e.g. Flower for

differential equations.



Uninformative reals and approximations

14 / 24

• A ValidatedReal R̂ is a (rational) ball x̌ ± ex or bounds (interval) [x, x].

• A ValidatedLowerReal R̂< is a (rational) lower bound x , and

a ValidatedUpperReal R̂> is a (rational) upper bound x .

• An ApproximateReal R̃ is a (rational) approximation x̃ , semantically the same

as ApproximateLowerReal and ApproximateUpperReal.

◦ Should we consider these as the same type??

• General convergent sequences define UninformativeReal type R?.

◦ No information about limit can be deduced from any finite subsequence.

◦ Related ValidatedUninformativeReal type is canonically a

ApproximateReal!

• Maybe this resolves the undesirable additional approximate real types...



Conversions

15 / 24

• It should be possible to convert to a mathematical subtype with weaker

information.

◦ An EffectiveReal should be usable whenever a ValidatedUpperReal is

required.

• Conversions need to occur in various situations:

◦ When explicitly required by the user.

◦ To implicitly downcast arguments to a variable.

◦ To implicitly downcast arguments to a (binary) operator.

• Especially important for binary operations e.g. R̂+ R< → R̂<

ValidatedReal + EffectiveLowerReal -> ValidatedLowerReal.

• Conversion to a mathematical subtype e.g. R → R< or R̂ → R̂< is

straightforward.

• There are many ways of moving to weaker information...



Conversions losing information

16 / 24

• Abstract to Effective conversion requires an algorithm.

◦ e.g. EffectiveReal q=sin(2) requires an algorithm for computing sin.

◦ Usually want to provide sensible defaults. This requires a (semi-)global

computation environment...

• Effective to Validated conversion needs some way of determining the

accuracy of calculation...

◦ Explicit conversions can use Accuracy, Effort or working Precision.

• Validated to Approximate conversions straightforward:

x̂ = [x, x] 7→ (x + x)/2 = x̃



Implicit conversions in binary operations

17 / 24

• Effective to Validated tricky for binary operation:

add(EffectiveReal r1, ValidatedReal r2) -> ValidatedReal

• Could use the accuracy of the Validated argument to give accuracy to

extract Effective argument.

◦ But this doesn’t work with non-metric types LowerReal

add(EffectiveLowerReal, ValidatedLowerReal) -> ValidatedLowerReal

since we don’t have an accuracy.

• Could use a precision of a Validated numerical argument to give precision to

extract Effective argument.

add(EffectiveReal, FloatMPBounds) -> FloatMPBounds

◦ But this strategy doesn’t work with logical types

and(EffectiveKleenean, ValidatedKleenean) -> ValidatedKleenean

since we don’t have a precision.

• Could use the effort used to compute the Validated argument.

◦ But this means every Validated object needs to carry around its own Effort.



Generic code

18 / 24

• Aim to implement similar types and operations using generic code

◦ Analytic functions on any Banach space e.g. R, C1(Rn → R).
◦ Real numbers and continuous functions as completions.

◦ Bounds and balls using arbitrary (floating-point) types and arbitrary ordered

and metric spaces.

• Real numbers are the completion of Q2 and Q! Which to use to define R?

◦ Maybe better to define R axiomatically, and then say the completion of Q2

and Q is R.



Implementation Issues

Introduction

Design Issues

Implementation Issues

• C++ Language

• Haskell Language

Proposal

19 / 24



C++: Language issues

20 / 24

• Conversions to subtypes uses different semantics to conversion

constructors/operators.

◦ Using subtyping, the inheritance hierarchy is transversed.

◦ Using operators, only the number of arguments which must be converted is

considered; many more ambiguities.

• Template functions have different conversion rules to non-template functions.

• Polymorphic types require references or pointers (memory leaks; different

syntax).

• Efficiency concerns mean concrete types cannot be part of class hierarchy;

require conversions to generic types.

• Compile times quickly become very long...



C++: Language issues

20 / 24

• Conversions to subtypes uses different semantics to conversion

constructors/operators.

◦ Using subtyping, the inheritance hierarchy is transversed.

◦ Using operators, only the number of arguments which must be converted is

considered; many more ambiguities.

• Template functions have different conversion rules to non-template functions.

• Polymorphic types require references or pointers (memory leaks; different

syntax).

• Efficiency concerns mean concrete types cannot be part of class hierarchy;

require conversions to generic types.

• Compile times quickly become very long...

• Why not use Haskell?



Haskell: Language Issues

21 / 24

• No subtypes (except at type class level) limits polymorphism.

• Refactoring type classes requires changing entire code.

• Use Strathclyde Haskell Extension (SHE) to allow subclasses to provide

defaults:

class (CanNeg a, a ~ NegType a, CanAdd a a, a ~ AddType a a,

CanMul a a, a ~ MulType a a) => Ring a where

instance CanNeg a where

type NegType a=a; neg :: a -> a

instance CanAdd a a where

type AddType a a=a; add :: a -> a -> a

instance CanSub a a where

type SubType a a=a; sub :: a -> a -> a;

sub x y = add x (neg y)

instance CanMul a a where

type MulType a a=a; mul :: a -> a -> a

• SHE is a rather buggy preprocessor...



Proposal

Introduction

Design Issues

Implementation Issues

Proposal

• Proposals

• Questions

22 / 24



Proposals

23 / 24

• Provide logical types B, K, S ≡ K<

• Provide numerical types

◦ exact N = Z+, Z, Q2, Q,

◦ generic R, R<, R>, and positive versions.

◦ concrete raw numerical types F64,FMP and bounds.

• Distinguish between

◦ Abstract symbolic formulae for specification,

◦ Effective arbitrarily accurate descriptions,

◦ Validated numerical bounds, and

◦ Approximate scratch values.

• Allow implicit conversion to weaker types, with appropriate defaults.

• Allow mixed operations with appropriate conversions.



Questions

24 / 24

• Should we provide an UniformativeReal with a ApproximateReal being a

ValidatedUninformativeReal?

• Does it make sense to provide a ApproximateLowerReal and

ApproximateUpperReal?

• Do we really need to distinguish Abstract and Effective information?

• Which operations should we supply to extract information from Real numbers?

• How to implement as generically as possible??

• How to specify additional data required for conversions???


	Introduction
	Aims
	Example code
	Motivation
	Logic and Numbers
	Kinds of Information
	Generic, concrete and numeric data
	Numerical types

	Design Issues
	What is a real number?
	Polymorphic type interfaces
	Need for Abstract information
	Uninformative reals and approximations
	Conversions
	Conversions losing information
	Implicit conversions in binary operations
	Generic code

	Implementation Issues
	C++: Language issues
	Haskell: Language Issues

	Proposal
	Proposals
	Questions


