Implementing Logic and Real Arithmetic

Pieter Collins

Department of Knowledge Engineering Maastricht University pieter.collins@maastrichtuniversity.nl

> Michal Konečný Aston University

Maik Brschkens Maastricht University

Effective Analysis: Foundations, Implementation and Certification, Marseille, 13 January 2016

Introduction

- Aims
- Example code
- Motivation
- Logic and Numbers
- Kinds of Information
- Generic, concrete and numeric data
- Numerical types
- Design Issues

Implementation Issues

Proposal

Introduction

Aims

- Develop a C++ library to support numerical operations on real numbers, Euclidean functions and logical types.
 - Safe: Strong typing preventing e.g. approximate information accidentally being used in place of exact information.
 - Clean: Solid theoretical foundation and implementation.
 - Usable: Accessible to non-experts e.g. applied mathematicians
 - Efficient: Should support use of builtin double-precision floating-point, or multiple-precision floating-point libraries.
 - Broad: Handle a wide range of problems in analysis.
 - Extensible: Allow for new user-defined data-types and algorithms.
- Here, focus on logic and numbers with a view to extending to functions.
- Problems more in design decisions than mathematics...

Example code

- High-level usage working with Real numbers.
 x=RealVariable("x"), v=RealVariable("v"); t=TimeVariable(); phi = flow(dot(x,v)={v,-v+sin(x)+cos(t)},init(x,v)={0,1}); xf=phi[x](t=2); get_bounds(xf,precision=96); check(xf<1,effort=3);
- Low-level usage working with Float Bounds for Real numbers.

```
RealFunction f=sin(x);
Float64Bounds pi = interval_newton.solve(f,Interval(3,4));
Real e;
```

Float64Bounds xkcd = pow(e,pi) - pi;

Motivation

• Motivated by work on ARIADNE, a tool for reachability analysis and verification of hybrid systems.

```
http://ariadne.parades.rm.cnr.it/
```

- Stable version of ARIADNE has simple numerical module with classes Rational, symbolic Real numbers, Intervals with floating-point endpoints and Float.
- Above approach not sufficiently strongly typed, requiring much explicit rounding.
 - Need to distinguish Exact and Approximate Float objects.
 - Reserve Interval for geometric sets.
 - o •••
- Working version fixes these problems but is overly complex.

Logic and Numbers

- Support mathematical operations on a Real number type \mathbb{R} .
 - \circ Exact number types Dyadic \mathbb{Q}_2 and Rational \mathbb{Q} .
 - \circ Distinguish LowerReal $\mathbb{R}_{<}$ and UpperReal $\mathbb{R}_{>}$ (useful for probabilities and metrics).
- For concrete computations use floating-point numbers.
 - Raw Float types \mathbb{F}_{64} , $\mathbb{F}_{\{}\mathsf{MP}\}$.
 - Intermediate answers given by FloatBounds $[\mathbb{F},\mathbb{F}]$ or FloatBall $\mathbb{F}\pm\mathbb{F}.$
- To support comparisons, need Kleenean logical type with values $\mathbb{K} = \{T, F, \bot\} \equiv \mathbb{B}_{\bot}.$
 - \circ $\;$ Exact Boolean supertype $\mathbb{B} = \{\mathsf{T},\mathsf{F}\}$ for decidable predicates.
 - $\circ~$ Sierpinskian subtype $\mathbb{S}=\{\mathsf{T},\bot\}\equiv\mathbb{K}_>$ for verifyable predicates.

Kinds of Information

- Qualitatively different kinds of information:
- Abstract: Exact symbolic information, without computational algorithm:
 - e.g. $\cos(1)$ is a real number (which may be computed in many ways).
 - Useful for problem specification.
- Effective: Exact information, with algorithm to compute arbitrarily accurately:
 - e.g. $\cos(1)$ is given by $\sum_{n=0}^{N-1} (-1)^n / (2n)! \pm 1 / (2N)!$.
 - Main type from computable analysis.
- Validated: Finite precision information with bounds
 - e.g. $\cos(1)$ is in ball $4357/8064 \pm 1/3628800$.
 - Useful in concrete rigorous numerics.
- Approximate: No information about accuracy
 - \circ e.g. $\cos(1)$ is roughly 0.541.
 - Useful for scratch computations and preconditioning.
- All levels should support the operations of the mathematical type.

Generic, concrete and numeric data

- Countable sets can be represented by *concrete* data types
 - Natural mathematical types, such as Rational.
 - Efficient computational types, such as Floats.
- Polymorphic C++ classes can represent data in arbitrary ways.
 - Specified by supported operations
 EffectiveReal::get(Accuracy) -> ValidatedReal.
 - Uncountable types, such as EffectiveReal and ValidatedReal.

Numerical types

- Provide raw double-precision floating-point numbers \mathbb{F}_{64} as class Float64, and multiple-precision numbers \mathbb{F}_{MP} as class FloatMP.
 - To create a \mathbb{F}_{64} or \mathbb{F}_{MP} from a \mathbb{R} need a *rounding* mode.
 - To create a \mathbb{F}_{MP} from a \mathbb{R} also need a *precision*.
 - For uniform creation, use a Precision64 tag to create \mathbb{F}_{64} .
- Concrete validated classes
 - Ball<FV,FE> and Bounds<FL,FU> for Real.
 - Ball<FV, FE> corresponds to a Cauchy real,
 - Bounds<FL, FU> to a Dedekind real.
 - LowerBound<FL> for LowerReal and UpperBound<FU> for UpperReal.
- Concrete approximate class Approximation<FA> for \mathbb{R} .
- Concrete exact classes Exact<F>.

Introduction

Design Issues

- What is a number?
- Polymorphic types
- Abstract information
- Uninformative reals
- Conversions
- Lossy conversions
- Binary operators
- Generic code

Implementation Issues

Proposal

Design Issues

What is a real number?

- A real number is
 - o an equivalence class of
 - signed-digit (binary) expansions $(z_n \pm 1)/2^n$, or
 - strongly convergent Cauchy sequences of rationals $q_n \pm 1/2^n$, or
 - convergent sequences of nested intervals with dyadic endpoints $[\underline{p}_n, \overline{p}_n]$.
 - • •
- In applications, usually *specified* by a formula
 - e.g. $x = \sin(\pi/3)$ or $x = \sqrt{3}/2$.
 - It is unknown whether equality of real numbers specified by elementary functions is decidable.
- Agnostically try to define a real number class independently of any one representation.

Polymorphic type interfaces

- Many equivalent definitions of a real number; our code should allow any way of specifying.
- To be *usable*, need *standard* ways to *extract* information.
- Many possible ways to extract bounds from a real number:

EffectiveReal::get_bounds(Precision prec) -> Bounds<Float,Float>;
EffectiveReal::get_bounds(Effort eff) -> Bounds<Dyadic,Dyadic>;
EffectiveReal::get_ball(Accuracy acc) -> Ball<Rational,Dyadic>;
EffectiveReal::get(Accuracy acc) -> ValidatedReal;

Which should we use?

- To ensure safety, all approximations should specify their error.
 - Allowing a Real to define an fast-converging Cauchy sequence interface

```
Real::get_within(Accuracy acc) -> Rational;
```

is therefore not allowed!

Need for Abstract information

- Abstract information very similar to Effective information.
- Abstract information useless without specification of an algorithm.
- Maybe we can simplify framework by eliminating AbstractReal...
- Distinguishing Abstract and Effective allows user specification of algorithms.
- For some operations e.g. add, cos, may be uncontroversial default choice.
 Unsophisticated users should invisibilly be given a default choice.
- For complex operations (usually functional operators like flow), a good algorithm may be problem dependent.
 - In ARIADNE function calculus, use *evaluator* classes e.g. Flower for differential equations.

Uninformative reals and approximations

- A ValidatedReal $\widehat{\mathbb{R}}$ is a (rational) ball $\check{x} \pm e_x$ or bounds (interval) $[\underline{x}, \overline{x}]$.
- A ValidatedLowerReal $\widehat{\mathbb{R}}_{<}$ is a (rational) lower bound \underline{x} , and a ValidatedUpperReal $\widehat{\mathbb{R}}_{>}$ is a (rational) upper bound \overline{x} .
- An ApproximateReal $\widetilde{\mathbb{R}}$ is a (rational) approximation \widetilde{x} , semantically the same as ApproximateLowerReal and ApproximateUpperReal.
 - Should we consider these as the same type??
- General convergent sequences define UninformativeReal type $\mathbb{R}_?$.
 - No information about limit can be deduced from any finite subsequence.
 - Related ValidatedUninformativeReal type is canonically a ApproximateReal!
- Maybe this resolves the undesirable additional approximate real types...

Conversions

- It should be possible to convert to a mathematical subtype with weaker information.
 - An EffectiveReal should be usable whenever a ValidatedUpperReal is required.
- Conversions need to occur in various situations:
 - When explicitly required by the user.
 - To implicitly downcast arguments to a variable.
 - To implicitly downcast arguments to a (binary) operator.
- Especially important for binary operations e.g. $\widehat{\mathbb{R}} + \mathbb{R}_{<} \to \widehat{\mathbb{R}}_{<}$ ValidatedReal + EffectiveLowerReal -> ValidatedLowerReal.
- Conversion to a *mathematical* subtype e.g. $\mathbb{R} \to \mathbb{R}_{<}$ or $\widehat{\mathbb{R}} \to \widehat{\mathbb{R}}_{<}$ is straightforward.
- There are many ways of moving to weaker information...

Conversions losing information

- Abstract to Effective conversion requires an *algorithm*.
 - \circ e.g. EffectiveReal q=sin(2) requires an algorithm for computing sin.
 - Usually want to provide sensible defaults. This requires a (semi-)global computation environment...
- Effective to Validated conversion needs some way of determining the accuracy of calculation...
 - Explicit conversions can use Accuracy, Effort or working Precision.
- Validated to Approximate conversions straightforward:

$$\hat{\mathbf{x}} = [\underline{\mathbf{x}}, \overline{\mathbf{x}}] \mapsto (\underline{\mathbf{x}} + \overline{\mathbf{x}})/2 = \widetilde{\mathbf{x}}$$

Implicit conversions in binary operations

- Effective to Validated tricky for binary operation: add(EffectiveReal r1, ValidatedReal r2) -> ValidatedReal
- Could use the *accuracy* of the Validated argument to give accuracy to extract Effective argument.
 - But this doesn't work with non-metric types LowerReal
 add(EffectiveLowerReal, ValidatedLowerReal) -> ValidatedLowerReal
 since we don't have an accuracy.
- Could use a *precision* of a Validated numerical argument to give precision to extract Effective argument.

add(EffectiveReal, FloatMPBounds) -> FloatMPBounds

- But this strategy doesn't work with logical types and (EffectiveKleenean, ValidatedKleenean) -> ValidatedKleenean since we don't have a precision.
- Could use the *effort* used to compute the Validated argument.
 - But this means every Validated object needs to carry around its own Effort.

Generic code

- Aim to implement similar types and operations using generic code
 - Analytic functions on any Banach space e.g. \mathbb{R} , $C^1(\mathbb{R}^n \to \mathbb{R})$.
 - Real numbers and continuous functions as completions.
 - Bounds and balls using arbitrary (floating-point) types and arbitrary ordered and metric spaces.
- Real numbers are the completion of \mathbb{Q}_2 and \mathbb{Q} ! Which to use to *define* \mathbb{R} ?
 - Maybe better to define \mathbb{R} axiomatically, and then say the completion of \mathbb{Q}_2 and \mathbb{Q} is \mathbb{R} .

Introduction

Design Issues

Implementation Issues

- C++ Language
- Haskell Language

Proposal

Implementation Issues

C++: Language issues

- Conversions to subtypes uses different semantics to conversion constructors/operators.
 - Using subtyping, the inheritance hierarchy is transversed.
 - Using operators, only the number of arguments which must be converted is considered; *many* more ambiguities.
- Template functions have different conversion rules to non-template functions.
- Polymorphic types require references or pointers (memory leaks; different syntax).
- Efficiency concerns mean concrete types cannot be part of class hierarchy; require conversions to generic types.
- Compile times quickly become very long...

C++: Language issues

- Conversions to subtypes uses different semantics to conversion constructors/operators.
 - Using subtyping, the inheritance hierarchy is transversed.
 - Using operators, only the number of arguments which must be converted is considered; *many* more ambiguities.
- Template functions have different conversion rules to non-template functions.
- Polymorphic types require references or pointers (memory leaks; different syntax).
- Efficiency concerns mean concrete types cannot be part of class hierarchy; require conversions to generic types.
- Compile times quickly become very long...
- Why not use Haskell?

Haskell: Language Issues

- No subtypes (except at type class level) limits polymorphism.
- Refactoring type classes requires changing entire code.
- Use Strathclyde Haskell Extension (SHE) to allow subclasses to provide defaults:

class (CanNeg a, a ~ NegType a, CanAdd a a, a ~ AddType a a, CanMul a a, a ~ MulType a a) => Ring a where instance CanNeg a where type NegType a=a; neg :: a -> a instance CanAdd a a where type AddType a a=a; add :: a -> a -> a instance CanSub a a where type SubType a a=a; sub :: a -> a -> a; sub x y = add x (neg y) instance CanMul a a where type MulType a a=a; mul :: a -> a -> a

• SHE is a rather buggy preprocessor...

Introduction

Design Issues

Implementation Issues

Proposal

Proposals

• Questions

Proposal

-

Proposals

- Provide logical types \mathbb{B} , \mathbb{K} , $\mathbb{S} \equiv \mathbb{K}_{<}$
- Provide numerical types
 - exact $\mathbb{N} = \mathbb{Z}^+$, \mathbb{Z} , \mathbb{Q}_2 , \mathbb{Q} ,
 - generic \mathbb{R} , $\mathbb{R}_{<}$, $\mathbb{R}_{>}$, and positive versions.
 - \circ $\$ concrete raw numerical types $\mathbb{F}_{64}, \mathbb{F}_{\text{MP}}$ and bounds.
- Distinguish between
 - Abstract symbolic formulae for specification,
 - Effective arbitrarily accurate descriptions,
 - Validated numerical bounds, and
 - Approximate scratch values.
- Allow implicit conversion to weaker types, with appropriate defaults.
- Allow mixed operations with appropriate conversions.

Questions

- Should we provide an UniformativeReal with a ApproximateReal being a ValidatedUninformativeReal?
- Does it make sense to provide a ApproximateLowerReal and ApproximateUpperReal?
- Do we really need to distinguish Abstract and Effective information?
- Which operations should we supply to extract information from Real numbers?
- How to implement as generically as possible??
- How to specify additional data required for conversions???