
Constructive logic for concurrent real number
computation

Ulrich Berger
Swansea University

MAP 2016

January 11-15, CIRM, Luminy, France

1 / 26

Overview

The aim of this talk is to show that concurrent programs can be
specified and extracted at an abstract logical level using
realizability.

The crucial novelty is a concurrent treatment of disjunction
expressed by a semi-constructive axiom scheme and a concurrent
realizability interpretation.

As a concrete example we extract a concurrent program translating
Tsuiki’s infinite Gray-code for real numbers to signed digit
representation.

2 / 26

Formal framework

I Intuitionistic many-sorted logic in finite types.

I Sorts represent abstract mathematical structures given by
∨-free axioms.

I Inductive and coinductive definitions of predicates as least and
greatest fixed points of monotone predicate transformers.

I Realizers are untyped recursive programs.

I The definition of realizability is usual except that quantifiers
are interpreted uniformly:

I a r ∃x A(x) means ∃x (a rA(x)).
I a r ∀x A(x) means ∀x (a rA(x)).

3 / 26

Real, natural and rational numbers

The structure of the real numbers R = (0, 1,+, ∗,−, /,<, | · |) is
treated as a sort specified by ∨-free axioms.

The natural numbers are defined as the least subset of R that
contains 0 and is closed under successor:

N µ
= { 0 } ∪ { x + 1 | x ∈ N }

Realizability automatically associates with this definition the unary
representation of natural numbers and with proofs of closure
properties of N programs operating on that representation.

Q := { p ∗ m
n
| p ∈ {−1, 1},m, n ∈ N, n 6= 0 } ⊆ R

4 / 26

Cauchy- and Signed-Digit-representation

A Cauchy representation of a real number x ∈ I = [−1, 1] ⊆ R is
a sequence f : N→ Q such that for all n ∈ N

|x − f (n)| ≤ 2−n

A signed digit representation of a real number x ∈ I is a stream
d0 : d1 : . . . ∈ SDω, where SD = {−1, 0, 1}, such that

x =
∑
i∈N

di ∗ 2−(i+1)

5 / 26

Gray code

Gray code (named after Frank Gray in 1946 who called it
“reflected binary code”) is an alternative to the binary
representation of natural numbers where neighbouring numbers
differ in only one digit.

Tsuiki extended this to a representation of real numbers.

Hideki Tsuiki: Real Number Computation through Gray Code
Embedding. TCS 284, 2002.

(Dagstuhl seminar Mathematical Structures for Computable
Topology and Geometry, May 2002)

6 / 26

Tsuiki’s partial Gray code for real numbers

The Gray code or Gray representation of x ∈ [−1, 1] is the
itinerary of the tent map t(x) = 1− 2|x |. This means that the
n-th digit is 0 resp. 1 if tn(x) < 0 resp. > 0.

If tn(x) = 0, then the n-th digit is undefined.

Remarkably, every real in [−1, 1] has a unique Gray code.

One easily sees that at most one digit of the Gray code can be
undefined. Therefore, computation with the Gray code can be
modeled by a Two-Head-Turing-Machine.

Such a machine cannot be extracted from a proof in the current
system since it exhibits a kind of parallelism, or rather concurrency,
that is absent in extracted programs.

Problem: Devise a logic that can extract concurrent programs.

7 / 26

Related work: Realizing Gray Code deterministically

B., Kenji Miyamoto, Helmut Schwichtenberg, Hideki Tsuiki: Logic for

Gray-code computation (submitted)

gives a realizability interpretation and Minlog implementation of an
intensional version of Gray Code, called pre-Gray code, using a
conventional constructive system and conventional program
extraction. This skirts the issue of concurrency at the price of
giving up the uniqueness of Gray code.

This approach is currently being extended to pre-Gray code for
compact sets by Dieter Spreen and Hideki Tsuiki.

In this talk we dive headlong into concurrency. The results that
follow are not published yet, but exist as a draft paper.

8 / 26

Representations in logical form

We call a predicate A(x) a

Φ-representation in logical form

where Φ is a notion of representation, for example ’Cauchy’,
’Signed digit’ or ’Gray’, if for all x ∈ I and potential realizers a

a rA(x) iff a is is an Φ-representation of x

I.o.w. the realizers of A(x) are exactly the Φ-representations of x .

9 / 26

Three representations of real numbers in logical form

Cauchy representation

A(x) := ∀n ∈ N∃q ∈ Q ∩ I . |x − q| ≤ 2−n

Signed Digit representation

C(x)
ν
= ∃d ∈ SD . x ∈ Id ∧ C(2x − d)

where Id := [d/2− 1/2, d/2 + 1/2] and
ν
= means ’largest’.

Gray code

G(x)
ν
= D(x) ∧G(t(x))

where D(x) := x 6= 0→ x ≤ 0 ∨ x ≥ 0.

We want to show constructively A = C = G which will give us
programs translating between the three representations.

We will show A ⊆ G ⊆ C ⊆ A.
Since the last inclusion is straightforward, we omit it.

10 / 26

Proving A ⊆ G

To prove A ⊆ G one seems to need the following semi-constructive
principles:

(AP) ∀x . (∀n ∈ N |x | ≤ 2−n)→ x = 0
(Archimedean Property).

(ACω) (∀n ∈ N ∃q ∈ QA(n, q))→ ∃f : N→ Q∀n ∈ NA(n, f (n))
(countable choice for rational numbers).

(MP) (∀n ∈ N .A(n) ∨ ¬A(n)) ∧ (¬¬∃n ∈ NA(n))→ ∃n ∈ NA(n)
(Markov’s Principle)

AP has a trivial realizer, ACω is realized by the identity,
MP is realized by unbounded search.

11 / 26

Proving G ⊆ C

The only really hard part of the proof is to determine the first
signed digit of an x ∈ G, that is, to show

If x ∈ G, then x ∈ Id for some d ∈ SD.

For this we use the following Disjunction Principle:

(DP) (A
P
∨ B) ∧ (P

Q
∨ C)→ (A ∨ B) ∨ C

where

A
P
∨ B := (P → A ∨ B) ∧ (¬P → A ∧ B)

and A,B,C ,P,Q range over propositions without computational
content.

12 / 26

Determining the first signed digit of an x ∈ G

Lemma
If x ∈ G, then x ∈ Id for some d ∈ SD.

Proof.
Assume x ∈ G. Then D(x) and D(t(x)). Apply (DP) with

A := x ∈ I−1, B := x ∈ I1, C := x ∈ I0,

P := x 6= 0, Q := t(x) 6= 0.

We have to show A
P
∨ B and P

Q
∨ C .

I P → A ∨ B is D(x).

I To show ¬P → A ∧ B, assume ¬(x 6= 0). Then clearly
x ∈ I−1 and x ∈ I1.

I To show Q → P ∨ C , assume t(x) 6= 0. Then
t(x) ≤ 0 ∨ t(x) ≥ 0, since D(t(x)). If t(x) ≤ 0, then |x | ≥ 1

2 ,
hence x 6= 0. If t(x) ≥ 0, then x ∈ I0.

I To show ¬Q → P ∧ C , assume ¬(t(x) 6= 0). Then |x | = 1
2 ,

hence x 6= 0 and x ∈ I0.
13 / 26

Concurrent realizability
We add to the domain of realizers a new component DI for
non-deterministic concurrent computations

D ' 1 + D + D + D × D + [D → D] + DI

where I is the least set containing the constant ∗ and with i , j the
elements (0, i), (1, i) and (i , j).

The constructors of D are called Nil, In0, In1, Pair, Fun, Fam.

Realizability of disjunctions is redefined as

a r (A0 ∨ A1) := (∃ϕ∃p ∈ {0, 1} ∃i ∃b . a = Famϕ ∧ ϕ i = Inp b) ∧
(∀ϕ∀p ∀i ∀b . a = Famϕ ∧ ϕ i = Inp b → b rAp)

Compare this with the original definition

a r (A0 ∨ A1) := ∃p ∈ {0, 1} ∃b . a = Inp b ∧ b rAp

14 / 26

Weakening disjunction elimination

With the new realizability interpretation of disjunction the usual
disjunction elimination is no longer realizable.

We replace it by two rules:

Disjunction Transformation (DT):

Γ ` A ∨ B Γ,A ` A′ Γ,B ` B ′

Γ ` A′ ∨ B ′

Disjunction Contraction (DC):

Γ ` A ∨ A

Γ ` A
(A a disjunction)

15 / 26

Weak disjunction elimination

Disjunction elimination can be partly recovered by the following
derived rule:

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C
(C a quasi disjunction)

where quasi disjunctions are inductively defined as follows:

(i) Every disjunction is a quasi disjunction.

(ii) If A is a quasi disjunction, so are ∀x A and B → A (for
arbitrary variables x and formulas B).

(iii) If A and B are quasi disjunctions, so is A ∧ B.

(iv) If Φ is a quasi disjunction, strictly positive in X , then
(µ (λX λ~x .Φ))~t and (ν (λX λ~x .Φ))~t are quasi disjunctions.

16 / 26

Soundness for concurrent realizability

Let Conc be the logical system where Disjunction Elimination is
replaced by Disjunction Transformation and Disjunction
Contraction, and the Archimedean Principle, Countable Choice and
Markov’s Principle are added.

Let a crA mean that a realizes A where disjunction is realized
concurrently.

Theorem (Soundness Theorem for concurrent realizability)

If Conc ` A, then Conc ` M crA for some concurrent program
term M : δ.

Proof.
We only look at the disjunction principle . . .

17 / 26

Realizing the Disjunction Principle

Assume a cr (A
P
∨ B) and b cr (P

Q
∨ C).

Then a = Famϕ and b = Famψ.

Define χ ∈ DI by

χ(0, i) := if ϕ(i) = Inp b then In0 a else ⊥
χ(1, i) := if ψ(i) = In1 c then In1 c else ⊥
χ(j) := ⊥ otherwise

Then (Famχ) cr ((A ∨ B) ∨ C).

This can be checked by a lengthy, but elementary argument
involving classical logic.

18 / 26

Concurrent operational semantics

Intuitively, a family ϕ ∈ DI represents a choice between all family
members. Hence, roughly speaking, we have for each i ∈ I a
reduction rule rule

ϕ −→ ϕ(i)

The Soundness Theorem is a result about the denotational
semantics of realizers.

For the extraction of runnable programs we must link the
denotational with the operational semantics.

19 / 26

Computational Adequacy and Program Extraction

Theorem (Computational Adequacy)

If d is in the set data(M) of data denoted by M, then M reduces
to d.

Furthermore, one can show that the two notions of realizability
coincide for data formulas A.

Theorem (Faithfulness)

If M crA, then data(M) 6= ∅ and d rA for all d ∈ data(M).

All together one obtains:

Theorem (Program Extraction)

From a proof Conc ` A one can extract a concurrent program
term M such that M redues to some data d with d rA.

20 / 26

Parallelism in Exact Real Number Computation

I Computing with the interval domain as a model of real
numbers appears to require a parallel if-then-else operation
(Potts, Edalat, Escardo, 1997).

I In fact, this parallelism is unavoidable (Escardo, Hofmann,
Streicher, 2004).

I Computing with TTE representations (e.g. Cauchy- or signed
digit representation) does not require parallelism.

I Gray code (though very similar to signed digits) requires
parallelism.

21 / 26

Extracted programs for Gray code
Lemma 9. If x ∈ G, then x ∈ Id for some d ∈ SD.

f9 (a:s) = conv a if a /= bot

f9 (a:1:s) = 0

where conv 0 = -1

conv 1 = 1

conv bot = bot

The equations above should be read as overlapping reduction rules.

Lemma 10. If x ∈ G, then −x ∈ G.

f10 (a:s) = swap a : s

where swap 0 = 1

swap 1 = 0

swap bot = bot

22 / 26

Extracted programs for Gray code ctd.

Lemma 11. If 0 ≤ x ≤ 1 and G(x), then G(2x − 1).

f11 (a:s) = f10 s

hence

f11 (a:b:s) = swap b : s

Lemma 12. If −1 ≤ x ≤ 0 and G(x), then G(2x + 1).

f12 (a:s) = s

23 / 26

Extracted programs for Gray code ctd.

Lemma 13. If 0 ≤ x ≤ 1 and G(x), then G(1− x).

f13 (a:s) = 1 : f11 (a:s)

Hence

f13 (a:b:s) = 1 : swap b : s

Lemma 14. If −1
2 ≤ x ≤ 1

2 and G(x), then G(2x).

f14 (a:s) = a : f13 s

Hence

f14 (a:b:c:s) = a : swap c : s

24 / 26

Extracted programs for Gray code ctd.

Lemma 15. G ⊆ C.

f15 s = let { d = f9 s}

in d : case d of { -1 -> f12 s ;

0 -> f14 s ;

1 -> f11 s }

Hence

f15 (0:s) = -1 : f15 s

f15 (1:a:s) = 1 : f15 (swap a : s)

f15 (a:1:c:s) = 0 : f15 (a : swap c : s)

Again, read the equations above as overlapping rewrite rules.

One observes that the equations for f15 correspond exactly to
those given by Tsuiki.

25 / 26

Next steps

I Replace the Disjunction Principle by a more fundamental
axiom.

I Implement everything and do more case studies.

26 / 26

