Multi-degree smooth polar splines a framework for design and analysis

Hendrik Speleers University of Rome "Tor Vergata"

Deepesh Toshniwal, Réne R. Hiemstra, Thomas J.R. Hughes The University of Texas at Austin

> Workshop SIGMA 2016 November 3, CIRM, Luminy

Outline

Introduction

Boundary description

- Smooth parametrization of circles
- Univariate basis functions

C^k polar splines

- Polar setting
- Polar spline extraction operator
- Examples

3

Applications

- Design
- Analysis

Outline

Introduction

Boundary description

- Smooth parametrization of circles
- Univariate basis functions

C^k polar splines

- Polar setting
- Polar spline extraction operator
- Examples

Applications

- Design
- Analysis

Closure

Polar splines: Overview

What?

- a periodic surface defined on a rectangular domain with one of its boundaries degenerating to a point
- smooth boundary

Polar splines: Overview

What?

- a periodic surface defined on a rectangular domain with one of its boundaries degenerating to a point
- smooth boundary

Where?

- · surfaces of revolution
- filleting an end-point of a part with large radius
- (For, e.g., the head of an airplane, end of a screwdriver)

Polar splines: Applications

in computer graphics

Polar splines: Applications

in biomechanics

To use C^k polar spline patches as "standard" tools for design and analysis

- Analysis:
 - C^k basis functions (higher order PDEs)
 - optimal approximation behavior
- Design:
 - ► convex, partition of unity, "nice" basis functions
 - control net:
 - to be combined with C^k basis functions to construct C^k polar surfaces
 - · to be used to manipulate such surfaces in an intuitive manner

Existing body of work

Smooth parametrization of conics

• C^k smooth circles of degree 2(k + 1)

C. Bangert, H. Prautzsch: Circle and sphere as rational splines. Neural Parallel Scient. Comput. 5 (1997)

Smooth circular elements

J. Lu: Circular element: Isogeometric elements of smooth boundary. Comput. Methods Appl. Mech. Eng. 198 (2009)

...

Non-uniform degree splines

Multi-degree splines

T.W. Sederberg, J. Zheng, X. Song: Knot intervals and multi-degree splines Comput. Aided Geom. Des. 20 (2003)

• Changeable degree splines

W. Shen, G. Wang: Changeable degree spline basis functions. J. Comput. Appl. Math. 234 (2010)

Existing body of work

Polar surfaces

. . .

• C¹ and C² polar subdivision surfaces

K. Karčiauskas, J. Peters: Bicubic polar subdivision. ACM Trans. Graph. 26 (2007)

A. Myles, J. Peters: Bi-3 C² polar subdivision. ACM Trans. Graph. 28 (2009)

• C² polar splines

A. Myles, J. Peters: C² splines covering polar configurations Comput. Aided Des. 43 (2011)

• *G^k* polar NURBS

K.-L. Shi, et al.: Gⁿ blending multiple surfaces in polar coordinates. Comput. Aided Des. 42 (2010)

K.-L. Shi, et al.: Polar NURBS surface with curvature continuity. Comput. Graph. Forum 32 (2013)

Outline

Introduction

Boundary description

- Smooth parametrization of circles
- Univariate basis functions

C^k polar splines

- Polar setting
- Polar spline extraction operator
- Examples

Applications

- Design
- Analysis

Closure

Usual quadratic 8-point circle

$$\boldsymbol{C}(\xi) = \boldsymbol{Q}^T \hat{\boldsymbol{b}}(\xi)$$

Usual quadratic 8-point circle

 $\boldsymbol{C}(\xi) = \boldsymbol{Q}^T \hat{\boldsymbol{b}}(\xi)$

These splines are C^0 NURBS

Quadratic 4-point circle

Quadratic 4-point circle

Quadratic 4-point circle

These splines are not C^0 NURBS, but C^1 piecewise-NURBS

NURBS

Piecewise-NURBS

Spline extraction operator:

$\hat{\pmb{B}} = \pmb{H}\hat{\pmb{b}}$

What conditions must *H* satisfy?

Spline extraction operator:

$\hat{\pmb{B}}=\pmb{H}\hat{\pmb{b}}$

What conditions must *H* satisfy?

IGA-suitable extraction

(Motivation: Bézier extraction operator)

- Maximally-sparse
- Non-negative entries
- Each column sums up to 1
- Full-rank

Spline extraction operator:

$\hat{\pmb{B}}=\pmb{H}\hat{\pmb{b}}$

What conditions must *H* satisfy?

IGA-suitable extraction

(Motivation: Bézier extraction operator)

- Maximally-sparse (B-splines are splines of minimal support)
- Non-negative entries (B-splines are non-negative)
- Each column sums up to 1 (B-splines form a partition of unity)
- Full-rank (B(asis)-splines)

Smoothness constraints

 $\hat{oldsymbol{b}}$ defined on U = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

Univariate basis functions

Smoothness constraints

We wish to increase smoothness to C^2 at $\xi = 2$:

$$\lim_{\xi \to 2^-} \frac{d^m f}{d\xi^m} = \lim_{\xi \to 2^+} \frac{d^m f}{d\xi^m}, \quad m = 1, 2$$

where $f(\xi) = \sum_{i=1}^{10} f_i \hat{b}_i(\xi)$

Smoothness constraints

We wish to increase smoothness to C^2 at $\xi = 2$:

$$\lim_{\xi \to 2^{-}} \frac{d^m f}{d\xi^m} = \lim_{\xi \to 2^{+}} \frac{d^m f}{d\xi^m}, \quad m = 1, \ 2$$

where $f(\xi) = \sum_{i=1}^{10} f_i \, \hat{b}_i(\xi)$
 $\begin{bmatrix} 0 & 0 & 0 & 0 & -3 & 6 & -3 & 0 & 0\\ 0 & 0 & 0 & 6 & -12 & 0 & 12 & -6 & 0 \end{bmatrix} \times [f_i] = \begin{bmatrix} 0\\ 0 \end{bmatrix}$
 $\boldsymbol{H}^T \leftarrow \text{Null-space}$

 $\hat{\boldsymbol{b}}$ defined on U = [0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3]

Maximally sparse null-space: C^2

Maximally sparse null-space: C^2

 $\hat{\boldsymbol{b}}$ defined on U = [0, 0, 0, 0, 1, 1, 1, 2, 3, 3, 3, 3]

Uniform degree B-splines

Non-uniform degree piecewise-NURBS

Non-uniform degree piecewise-NURBS

Outline

3

Introduction

Boundary description

- Smooth parametrization of circles
- Univariate basis functions

C^k polar splines

- Polar setting
- Polar spline extraction operator
- Examples

Applications

- Design
- Analysis

$$F: (\xi, \eta) \mapsto (u, v)$$

Ingredients

- Smooth tensor-product spline space $\mathcal{R}^{\xi\eta} := \mathcal{R}^{\xi} \otimes \mathcal{R}^{\eta}$
- A suitable map F
 - polar point: $F(\xi, 0) = (0, 0)$ for all ξ
 - ▶ mapped splines remain smooth everywhere except at (0,0)

Ingredients

- Smooth tensor-product spline space $\mathcal{R}^{\xi\eta}:=\mathcal{R}^{\xi}\otimes\mathcal{R}^{\eta}$
- A suitable map F
 - polar point: $F(\xi, 0) = (0, 0)$ for all ξ
 - mapped splines remain smooth everywhere except at (0,0)

C^k polar spline recipe

- Map tensor-product basis functions using F
- 2 Impose smoothness constraints at the polar point:
 - require reproduction of a linearly independent Hermite data set
 - obtain an extraction operator as the null-space of constraints

$$N = E^k B$$

	<u> </u>	20	00	*0
— ———————————————————————————————————	0	OH	1515	15
		_		

$$s(u,v) = \sum_{i=1}^{n^{\xi}} \sum_{j=1}^{n^{\eta}} s_{ij} B_{ij}(u,v)$$

$$\hat{\boldsymbol{s}}(\xi,\eta) := \boldsymbol{s}(\boldsymbol{F}(\xi,\eta)) = \sum_{i=1}^{n^{\xi}} \sum_{j=1}^{n^{\eta}} \boldsymbol{s}_{ij} \boldsymbol{B}_{ij} \left(\boldsymbol{F}(\xi,\eta)\right) = \sum_{i=1}^{n^{\xi}} \sum_{j=1}^{n^{\eta}} \boldsymbol{s}_{ij} \hat{\boldsymbol{B}}_{ij}(\xi,\eta)$$

$$\frac{\partial \hat{\mathbf{s}}}{\partial \eta}\Big|_{\eta=0} = \left[\begin{array}{cc} \frac{\partial u}{\partial \eta} & \frac{\partial v}{\partial \eta} \end{array}\right] \Big|_{\eta=0} \left[\begin{array}{c} \frac{\partial s}{\partial u}\\ \frac{\partial s}{\partial v} \end{array}\right] \Big|_{(u,v)=(0,0)}$$

$$\left. \frac{\partial \hat{\mathbf{s}}}{\partial \eta} \right|_{\eta=0} = \left[\begin{array}{cc} \frac{\partial u}{\partial \eta} & \frac{\partial v}{\partial \eta} \end{array} \right] \left|_{\eta=0} \left[\begin{array}{c} \frac{\partial \mathbf{s}}{\partial u} \\ \frac{\partial \mathbf{s}}{\partial v} \end{array} \right] \right|_{(u,v)=(0,0)}$$

 $\hat{s} \in \mathcal{R}^{\xi\eta}$ (say, bi-cubics), $u, v \in \mathcal{R}_F^{\xi\eta}$ (say, bi-cubics)

• In general, for $C^{\geq 2}$, products of *u* and *v* must belong to $\mathcal{R}^{\xi\eta}$.

$N = E^k B$

$N = E^k B$

Basis functions B_{ij} for j > k + 1 are already C^k at the polar point (first *k* derivatives are zero).

$N = E^k B$

Basis functions B_{ij} for $j \le k + 1$ have nonzero k^{th} derivatives at $\eta = 0$.

$N = E^k B$

Basis functions B_{ij} for $j \le k + 1$ have nonzero k^{th} derivatives at $\eta = 0$.

For a flexible C^k space, we require at least $n_k = \frac{(k+1)(k+2)}{2}$ basis functions non-zero at the polar point.

Computation of n_k new basis functions is done as follows:

Reproduction of Hermite data at (0, 0)

For all $m_1, m_2 \in \mathbb{N} \cup \{0\}$ such that $m_1 + m_2 \leq k$,

$$\lim_{(u,v)\to(0,0)}\frac{\partial^{m_1+m_2}N_l}{\partial u^{m_1}\partial v^{m_2}}(u,v)=\frac{\partial^{m_1+m_2}T_l}{\partial u^{m_1}\partial v^{m_2}}(0,0),$$

where $\{T_l\}_{l=1}^{n_k}$ are Bernstein polynomials of degree *k* defined with respect to particular triangles T_k .

Triangular Bernstein polynomials

Let $\mathcal{T}_k = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$, we have $n_k = \frac{(k+1)(k+2)}{2}$ triangular Bernstein polynomials of degree *k*:

$$T_{i_1i_2i_3}(u,v) := \binom{k}{i_1 \ i_2 \ i_3} \prod_{j=1}^3 (\lambda_j)^{i_j}, \quad i_1 + i_2 + i_3 = k$$

where $\{\lambda_j\}_{j=1}^3$ are barycentric coordinates of (u, v) with respect to \mathcal{T}_k :

$$\sum_{j=1}^{3} \lambda_j \boldsymbol{v}_j = (\boldsymbol{u}, \boldsymbol{v}) , \quad \sum_{j=1}^{3} \lambda_j = 1$$

Polar extraction operator $N = E^k B$

$$\mathbf{E}^k = \left[egin{array}{ccc} ar{m{E}}^k & m{0} \ m{0} & m{I}^k \end{array}
ight]$$

where I^k is an identity matrix of size $(n - n_k) \times (n - n_k)$ and \overline{E}^k is a matrix of size $n_k \times n^{\xi}(k + 1)$, where $n := n^{\xi} n^{\eta} + n_k - n^{\xi}(k + 1)$

Polar extraction operator $N = E^k B$

$$\mathbf{E}^k = \left[egin{array}{ccc} ar{m{E}}^k & m{0} \ m{0} & m{I}^k \end{array}
ight]$$

where I^k is an identity matrix of size $(n - n_k) \times (n - n_k)$ and \overline{E}^k is a matrix of size $n_k \times n^{\xi}(k + 1)$, where $n := n^{\xi}n^{\eta} + n_k - n^{\xi}(k + 1)$

Theorem

The $\{N_i\}_{i=1}^n$ form a partition of unity. Moreover, for \mathcal{T}_k sufficiently large, we are guaranteed an IGA-suitable \mathbf{E}^k

Control-net at polar point

Examples

C^0 polar splines

An example of a C^0 polar basis function

C^1 polar splines

An example of C^1 polar basis functions

C^1 polar splines

C^1 hemisphere (original)

Examples

C^1 polar splines

 C^1 hemisphere (deformed)

Examples

C^1 polar splines

\mathcal{T}_1 tangent to the surface

C^2 polar splines

An example of C^2 polar basis functions (first three)

Examples

C^2 polar splines

An example of C^2 polar basis functions (last three)

Examples

C^2 polar splines

 C^2 surface

Outline

Introduction

Boundary description

- Smooth parametrization of circles
- Univariate basis functions

C^k polar splines

- Polar setting
- Polar spline extraction operator
- Examples

Freeform design: Mushroom

Design

Freeform design: Mushroom

Numerical results for analysis suitability

Convergence behaviour

Problems solved:

- Function approximation
- Poisson equation

Spaces used:

- C¹: (2,2) and (3,3)
- C²: (6,5) and (6,6)

Cahn-Hilliard on a circular disk

 C^1 space used: (2,2)
Function approximation

$$s(u,v) = \sin\left(\pi u + rac{\pi}{3}
ight) \cos\left(\pi v + rac{\pi}{4}
ight)$$

Function approximation

$$s(u, v) = \sin\left(\pi u + rac{\pi}{3}
ight) \cos\left(\pi v + rac{\pi}{4}
ight)$$

Poisson equation

$$-\Delta s(u, v) = 2\sin(u)\sin(v) \text{ on } \Omega$$
$$s(u, v) = \sin(u)\sin(v) \text{ on } \partial \Omega$$

Poisson equation

$$-\Delta s(u, v) = 2\sin(u)\sin(v) \text{ on } \Omega$$
$$s(u, v) = \sin(u)\sin(v) \text{ on } \partial \Omega$$

Cahn–Hilliard on a circular disk

Model for phase separation

$$\begin{aligned} \frac{\partial c}{\partial t} &= \nabla . \left(c(1-c) \nabla (\mathbb{N}_2 \mu_c - \Delta c) \right) \quad \text{on } \Omega \times [0, T] ,\\ c(1-c) \nabla \mu_c . \boldsymbol{n} &= 0 \quad \text{on } \partial \Omega \times [0, T] ,\\ c(1-c) \nabla c . \boldsymbol{n} &= 0 \quad \text{on } \partial \Omega \times [0, T] ,\\ c(\boldsymbol{x}, 0) &= c_0 \quad \text{on } \Omega, \end{aligned}$$

where

$$\mu_c := \frac{1}{3} \log \left(\frac{c}{1-c} \right) + 1 - 2c$$

initial volume-fraction $\bar{c} = 0.3 + \text{noise}$, N₂: 753.08

Cahn-Hilliard on a circular disk

Cahn-Hilliard on a circular disk

1

Cahn-Hilliard on a circular disk

t = 0.021243

Cahn-Hilliard on a circular disk

Summary

- Smooth (piecewise-NURBS) splines of non-uniform degree
- A unified theoretical framework for construction of *C^k* polar splines with applications in both design and analysis
- Numerical results demonstrating:
 - applications in design
 - best possible approximation properties of the polar spline spaces
 - applications to higher order PDEs

Summary

- Smooth (piecewise-NURBS) splines of non-uniform degree
- A unified theoretical framework for construction of *C^k* polar splines with applications in both design and analysis
- Numerical results demonstrating:
 - applications in design
 - best possible approximation properties of the polar spline spaces
 - applications to higher order PDEs
- D. Toshniwal, H. Speleers, R.R. Hiemstra, T.J.R. Hughes: *Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis*, Comput. Methods Appl. Mech. Engrg., in press