Best Polynomial Approximation on the Unit Ball

Miguel Piñar¹ and Yuan Xu²

November 2, 2016

¹Universidad de Granada ²University of Oregon Introduction

Spherical harmonics

Orthogonal polynomials on the unit ball

Fourier orthogonal expansions and approximation

For Further Reading

Introduction

Introduction

- Our purpose is to study the best approximation by polynomials of degree at most n on the unit ball B^d in R^d.
- For

 $arpi_{\mu}(x) = (1 - \|x\|^2)^{\mu}, \qquad \mu > -1, \quad x \in \mathbb{B}^d,$

we let $\|\cdot\|_{\mu}$ be the norm of $L^2(arpi_{\mu}; \mathbb{B}^d)$, defined by

$$\|f\|_{\mu} := \left(b_{\mu} \int_{\mathbb{B}^d} |f(x)|^2 \varpi_{\mu}(x) dx\right)^{1/2}$$

where $b_{\mu}=1/\int_{\mathbb{B}^d} arpi_{\mu}(x) dx.$

- Let Π^d_n the space of polynomials of degree at most n in d variables.
- We consider the error, E_n(f)_μ, of best approximation by polynomials in Π^d_n in the space L²(∞_μ; B^d), defined by

$$E_n(f)_\mu := \inf_{p_n \in \Pi_n^d} \|f - p_n\|_\mu.$$

For d = 1 and f' ∈ L²(∞_{µ+1}; [-1, 1]) there exists a nice estimate

$$E_n(f)_{\mu}\leq \frac{c}{n}E_{n-1}(f')_{\mu+1}.$$

For d = 1 and f' ∈ L²(∞_{µ+1}; [-1, 1]) there exists a nice estimate

$$E_n(f)_{\mu}\leq \frac{c}{n}E_{n-1}(f')_{\mu+1}.$$

• Extending this well-known estimate to the unit ball with d > 1 is a difficult problem.

For d = 1 and f' ∈ L²(∞_{µ+1}; [-1, 1]) there exists a nice estimate

$$E_n(f)_{\mu}\leq \frac{c}{n}E_{n-1}(f')_{\mu+1}.$$

- Extending this well-known estimate to the unit ball with d > 1 is a difficult problem.
- For example, we can consider the obvious extension

$$E_n(f)_{\mu} \leq \frac{c}{n} \sum_{i=1}^d E_{n-1}(\partial_i f)_{\mu+1},$$

For d = 1 and f' ∈ L²(∞_{µ+1}; [-1, 1]) there exists a nice estimate

$$E_n(f)_{\mu}\leq \frac{c}{n}E_{n-1}(f')_{\mu+1}.$$

- Extending this well-known estimate to the unit ball with d > 1 is a difficult problem.
- For example, we can consider the obvious extension

$$E_n(f)_{\mu} \leq \frac{c}{n} \sum_{i=1}^d E_{n-1}(\partial_i f)_{\mu+1},$$

For $d \ge 2$, this inequality does not hold on the unit ball!.

Differential operators

- Let Δ denote the usual Laplace operator $\Delta = \partial_1^2 + \cdots + \partial_d^2$.
- In spherical-polar coordinates $x = r\xi$, $r \ge 0$ and $\xi \in \mathbb{S}^{d-1}$,

$$\Delta = \frac{d^2}{dr^2} + \frac{d-1}{r}\frac{d}{dr} + \frac{1}{r^2}\Delta_0.$$

 Δ_0 denotes the Laplace-Beltrami operator on the unit sphere \mathbb{S}^{d-1} of \mathbb{R}^d .

• We will also use the angular derivatives, $D_{i,j}$, defined by

$$D_{i,j} := x_i \partial_j - x_j \partial_i, \qquad 1 \le i < j \le d.$$

 The angular derivatives D_{i,j} and the Laplace-Beltrami operator Δ₀ are related by

$$\Delta_0 = \sum_{1 \le i < j \le d} D_{i,j}^2.$$

Spherical harmonics

- \mathcal{P}_n^d denote the space of homogeneous polynomials of degree n.
- Harmonic polynomials of *d*-variables are homogeneous polynomials in \mathcal{P}_n^d that satisfy the Laplace equation $\Delta Y = 0$
- \mathcal{H}_n^d denotes the space of harmonic polynomials of degree *n*.
- We will denote

$$a_n^d := \dim \mathcal{H}_n^d = \binom{n+d-1}{n} - \binom{n+d-3}{n}.$$

Spherical harmonics

- Spherical harmonics are the restriction of harmonic polynomials on the unit sphere.
- They are eigenfunctions of the Laplace-Beltrami operator,

 $\Delta_0 Y(\xi) = -n(n+d-2)Y(\xi), \quad \forall Y \in \mathcal{H}_n^d, \quad \xi \in \mathbb{S}^{d-1}.$

• Spherical harmonics of different degrees are orthogonal with respect to the inner product

$$\langle f,g
angle_{\mathbb{S}^{d-1}} := rac{1}{\sigma_{d-1}} \int_{\mathbb{S}^{d-1}} f(\xi) g(\xi) d\sigma(\xi).$$

where $d\sigma$ denote the surface measure and σ_{d-1} denote the surface area,

$$\sigma_{d-1} := \int_{\mathbb{S}^{d-1}} d\sigma = \frac{2 \pi^{d/2}}{\Gamma(d/2)}.$$

A basis of spherical harmonics

Let $T_n(t)$ and $U_n(t)$ denote the Chebyshev polynomials of the first and the second kind, respectively. Define

$$g_{0,n}(x_1, x_2) = (x_1^2 + x_2^2)^{n/2} T_n \left(x_2 (x_1^2 + x_2^2)^{-1/2} \right),$$

$$g_{1,n-1}(x_1, x_2) = x_1 (x_1^2 + x_2^2)^{(n-1)/2} U_{n-1} \left(x_2 (x_1^2 + x_2^2)^{-1/2} \right).$$

For $d > 2$ and $\mathbf{n} = (n_1, n_2, \dots, n_d) \in \mathbb{N}_0^d$ with $n_1 = 0$ or 1, define

$$Y_{\mathbf{n}}(x) = g_{n_1,n_2}(x_1, x_2) \prod_{j=3}^d (x_1^2 + \dots + x_j^2)^{n_j/2} C_{n_j}^{\lambda_j} \left(x_j (x_1^2 + \dots + x_j^2)^{-1/2} \right),$$

where
$$\lambda_j = \lambda_j(n_1, \ldots, n_{j-1}) := \sum_{i=1}^{j-1} n_i + rac{j-2}{2}.$$

Proposition

 $\{Y_{\mathbf{n}}; |\mathbf{n}| = n \text{ with } n_1 = 0 \text{ or } 1\}$ is a mutually orthogonal basis of \mathcal{H}_n^d .

A basis of spherical harmonics

We need information on two operations on this basis,

- partial derivatives ∂_i
- multiplication by x_i.

They are related by the orthogonal projection operator

 $\operatorname{proj}_{n,\mathbb{S}}^d : \mathcal{P}_n^d \mapsto \mathcal{H}_n^d$

It is known that

$$\operatorname{proj}_{n,\mathbb{S}}^{d} P = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{4^{j} j! (-n+2-d/2)_{j}} \|x\|^{2j} \Delta^{j} P,$$

which implies, for a spherical harmonic $Y_n \in \mathcal{H}_n^d$,

$$\operatorname{proj}_{n+1,\mathbb{S}}^{d}(x_{i}Y_{n}(x)) = x_{i}Y_{n}(x) - \frac{1}{2n+d-2} \|x\|^{2} \partial_{i}Y_{n}(x).$$

A basis of spherical harmonics

The basis satisfies the following property

Theorem

Let $\mathbf{n} = (n_1, n_2, \dots, n_d) \in \mathbb{N}_0^d$ with $n_1 = 0$ or 1 and $|\mathbf{n}| = n$. Then

1. $\partial_i Y_n(x)$ is an spherical harmonic of degree n-1 and

$$\langle \partial_i Y_{\mathbf{n}}, Y_{\mathbf{m}} \rangle_{\mathbb{S}^{d-1}} \neq 0, \qquad |\mathbf{m}| = n-1$$

for at most 2^{d-2} many $\mathbf{m} \in \mathbb{N}_0^d$ with $m_1 = 0$ or 1.

2. $\operatorname{proj}_{n+1,\mathbb{S}}^{d}(x_{i}Y_{n})$ is an spherical harmonic of degree n+1 and

 $\langle \operatorname{proj}_{n+1,\mathbb{S}}^{d}(x_{i}Y_{n}), Y_{m} \rangle_{\mathbb{S}^{d-1}} \neq 0, \qquad |\mathbf{m}| = n+1,$

for at most 2^{d-2} many $\mathbf{m} \in \mathbb{N}_0^d$ with $m_1 = 0$ or 1.

Orthogonal polynomials on the unit ball

Orthogonal polynomials on the unit ball

Theorem (Dunkl, Xu)

For $n \in \mathbb{N}_0$ and $0 \le j \le n/2$, let $\{Y_{\nu}^{n-2j} : 1 \le \nu \le a_{n-2j}^d\}$ denote an orthonormal basis for \mathcal{H}_{n-2j}^d . For $\mu > -1$, define

$${\mathcal P}^{n,\mu}_{j,
u}(x):={\mathcal P}^{(\mu,n-2j+rac{d-2}{2})}_j(2\,\|x\|^2-1)\,Y^{n-2j}_
u(x).$$

Then the set $\{P_{j,\nu}^{n,\mu}: 1 \le j \le n/2, 1 \le \nu \le a_{n-2j}^d\}$ consists of a mutually orthogonal basis of $\mathcal{V}_n^d(\varpi_\mu)$; more precisely,

$$\langle P_{j,\nu}^{n,\mu}, P_{k,\eta}^{m,\mu} \rangle_{\mu} = h_{j,n}^{\mu} \delta_{n,m} \, \delta_{j,k} \, \delta_{\nu,\eta}$$

where $h_{j,n}^{\mu}$ is given by

$$h_{j,n}^{\mu} := rac{(\mu+1)_j(rac{d}{2})_{n-j}(n-j+\mu+rac{d}{2})}{j!(\mu+rac{d+2}{2})_{n-j}(n+\mu+rac{d}{2})}.$$

The orthogonal basis $\{P_{j,\nu}^{n,\mu}\}$ satisfies two other orthogonal relations in the Sobolev space.

Lemma

Let
$$\mu > -1$$
. Then the basis $\{P_{j,\nu}^{n,\mu}\}$ satisfies

$$b_{\mu}\int_{\mathbb{B}^d} \nabla P_{j,\nu}^{n,\mu}(x) \cdot \nabla P_{j',\nu'}^{m,\mu}(x) \varpi_{\mu+1}(x) dx = h_{j,n}^{\mu}(\nabla) \delta_{\nu,\nu'} \delta_{j,j'} \delta_{n,m},$$

where $h_{j,n}^{\mu}(\nabla) = (4j(n-j+\mu+d/2)+2(n-2j)(\mu+1))h_{j,n}^{\mu}$.

For the angular derivatives we have

Lemma

Let $\mu > -1$. Then the basis $\{P_{j,\nu}^{n,\mu}\}$ satisfies

$$b_{\mu} \int_{\mathbb{B}^d} \sum_{1 \leq i < j \leq d} D_{i,j} P_{\ell,\nu}^{n,\mu}(x) D_{i,j} P_{\ell',\nu'}^{m,\mu}(x) \varpi_{\mu}(x) dx = h_{\ell,n}^{\mu}(D) \delta_{\nu,\nu'} \delta_{\ell,\ell'} \delta_{n,m},$$

where $h_{\ell,n}^{\mu}(D) = (m - 2\ell)(m - 2\ell + d - 2)h_{\ell,n}^{\mu}$.

Define $P_{j,\nu}^{n,\mu} = 0$ if j < 0. The polynomial $P_{j,\nu}^{n,\mu}$ enjoys a simple form under both Δ and Δ_0 .

Lemma

Let $\mu > -1$, for $P_{j,\nu}^{n,\mu}$ we have $\Delta P_{j,\nu}^{n,\mu}(x) = \kappa_{n-j}^{\mu} P_{j-1,\nu}^{n-2,\mu+2}(x)$ and $\Delta_0 P_{j,\nu}^{n,\mu}(x) = \lambda_{n-2j} P_{j,\nu}^{n,\mu}(x)$, where $\kappa_n^{\mu} := 4(n + \mu + \frac{d}{2})(n + \frac{d-2}{2})$ and $\lambda_n := -n(n + d - 2)$.

Lemma

For
$$1 \leq i \leq d$$
, let $\widehat{Y}_{\eta,i}^{m+1} := \operatorname{proj}_{m+1,\mathbb{S}}^{d}(x_{i}Y_{\eta}^{m})$. Let $\beta_{\ell} = m - 2\ell + \frac{d-2}{2}$. Then,

$$\partial_{i} P_{\ell,\eta}^{m,\mu}(x) = \frac{\beta_{\ell} + \ell}{\beta_{\ell}} P_{\ell}^{(\mu+1,\beta_{\ell}-1)} (2r^{2} - 1) \partial_{i} Y_{\eta}^{m-2\ell}(x) + 2(\ell + \mu + \beta_{\ell} + 1) P_{\ell-1}^{(\mu+1,\beta_{\ell}+1)} (2r^{2} - 1) \widehat{Y}_{\eta,i}^{m-2\ell+1}(x).$$

Derivatives of orthogonal polynomials on the unit ball

Up to this point, we assumed that the spherical harmonics Y_{ν}^{n-2j} in the basis $P_{j,\nu}^{n,\mu}$ form an orthonormal basis of \mathcal{H}_{n-2j}^d but did not specify this basis. In our next proposition, however, we need to specify this basis as the one previously defined.

Proposition

Let $P_{\ell,\nu}^{n,\mu}$ be an orthogonal polynomial with Y_{ν}^{n-2j} being the orthonormal basis previously defined. Let $\eta \in \mathbb{N}_0^d$ with $|\eta| = n - 2k$ and $\eta_1 = 0$ or 1. Then

- 1. for $1 \leq i \leq d$, $\langle \partial_i P_{\ell,\nu}^{n,\mu}, P_{k,\eta}^{n-1,\mu+1} \rangle_{\mu+1} \neq 0$ only if $k = \ell$ or $\ell 1$ and, in each case, for at most 2^{d-1} many $\nu \in \mathbb{N}_0^d$ with $\nu_1 = 0$ or 1;
- 2. for $1 \leq i < j \leq d$, $\langle D_{i,j} P_{\ell,\nu}^{n,\mu}, P_{k,\eta}^{n,\mu} \rangle_{\mu+1} \neq 0$ only if $k = \ell$ and for at most 2^{2d-1} many $\nu \in \mathbb{N}_0^d$ with $\nu_1 = 0$ or 1.

The Fourier orthogonal expansion of $f \in L^2(\varpi_\mu, \mathbb{B}^d)$ is defined by

$$f(x) = \sum_{n=0}^{\infty} \sum_{j=0}^{\lfloor \frac{n}{2}
floor} \sum_{
u} \widehat{f}^{n,\mu}_{j,
u} \mathcal{P}^{n,\mu}_{j,
u}(x), \quad ext{with} \quad \widehat{f}^{n,\mu}_{j,
u} := rac{1}{h^{\mu}_{j,n}} \langle f, \mathcal{P}^{n,\mu}_{j,
u}
angle_{\mu}.$$

Let $\operatorname{proj}_n^{\mu} : L^2(\varpi_{\mu}, \mathbb{B}^d) \mapsto \mathcal{V}_n^d(\varpi_{\mu})$ and $S_n^{\mu} : L^2(\varpi_{\mu}, \mathbb{B}^d) \mapsto \Pi_n^d$ denote the projection operator and the *n*-th partial sum operator, respectively. Then

$$S^{\mu}_n f(x) = \sum_{m=0}^n \operatorname{proj}_m^{\mu} f(x)$$
 and $\operatorname{proj}_m^{\mu} f(x) = \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \sum_{\nu} \widehat{f}^{m,\mu}_{j,\nu} P^{m,\mu}_{j,\nu}(x).$

By definition, $S_n^{\mu}f = f$ if $f \in \prod_n^d$ and $\langle f - S_n^{\mu}f, v \rangle_{\mu} = 0$ for all $v \in \prod_n^d$.

It turns out that the partial derivatives commute with the partial sum operators, a fact that plays an essential role.

Lemma

Let $\mu > -1$. Then

 $\partial_i S^{\mu}_n f = S^{\mu+1}_{n-1}(\partial_i f), \qquad 1 \le i \le d,$

and

 $D_{i,j}S_n^{\mu}f = S_n^{\mu}(D_{i,j}f), \qquad 1 \leq i < j \leq d.$

Obviously, it also holds

 $\Delta S^{\mu}_n f = S^{\mu+2}_{n-2}(\Delta f), \text{ and } \Delta_0 S^{\mu}_n f = S^{\mu}_n(\Delta_0 f)$

Theorem 1

Let
$$f \in W_2^2(\varpi_\mu, \mathbb{B}^d)$$
. Then, for $n \ge 2$,
 $E_n(f)_\mu \le \frac{c}{n^2} \left[E_{n-2}(\Delta f)_{\mu+2} + E_n(\Delta_0 f)_\mu \right]$.

It is easy to see that both terms in the right hand side are necessary.

- If f is a harmonic function, then $\Delta f = 0$ and we need $E_n(\Delta_0 f)_{\mu}$.
- If f is a radial function, f(x) = f₀(||x||), then Δ₀f = 0 and we need E_{n-2}(Δf)_{μ+2}.

Sketch of the proof of Theorem 1

1. Let $f \in W_2^2(\varpi_\mu, \mathbb{B}^d)$, from $\Delta P_{j,\nu}^{n,\mu}(x) = \kappa_{n-j}^{\mu} P_{j-1,\nu}^{n-2,\mu+2}(x)$ and $\Delta_0 P_{j,\nu}^{n,\mu}(x) = \lambda_{n-2j} P_{j,\nu}^{n,\mu}(x)$, and the commutativity of the operators, we deduce $\widehat{\Delta f}_{j,\nu}^{n-2,\mu+2} = \kappa_{n-j-1}^{\mu} \widehat{f}_{j+1,\nu}^{n,\mu}$ and $\widehat{\Delta_0 f}_{j,\nu}^{n,\mu} = \lambda_{n-2j} \widehat{f}_{j,\nu}^{n,\mu}$.

2. From Parseval's identity,

$$E_n(f)_{\mu}^2 = \|f - S_n^{\mu}f\|_{\mu}^2 = \sum_{m=n+1}^{\infty} \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \sum_{\nu} \left|\widehat{f}_{j,\nu}^{m,\mu}\right|^2 h_{j,m}^{\mu} = \Sigma_1 + \Sigma_2,$$

where we split the sum as

$$\Sigma_{1} = \sum_{m=n+1}^{\infty} \sum_{j=\lfloor\frac{m}{4}\rfloor}^{\lfloor\frac{m}{2}\rfloor} \sum_{\nu} \left| \widehat{f}_{j,\nu}^{m,\mu} \right|^{2} h_{j,m}^{\mu} \quad \Sigma_{2} = \sum_{m=n+1}^{\infty} \sum_{j=0}^{\lfloor\frac{m}{4}\rfloor-1} \sum_{\nu} \left| \widehat{f}_{j,\nu}^{m,\mu} \right|^{2} h_{j,\nu}^{\mu}$$
19

Sketch of the proof of Theorem 1

3. From the definition of $h_{j,m}^{\mu}$ we get

$$\frac{h_{j,m}^{\mu}}{h_{j-1,m-2}^{\mu+2}} = \frac{(\mu+1)_2(m-j-1+\frac{d}{2})(m-j+\mu+\frac{d}{2})}{(\mu+1+\frac{d}{2})_2j(\mu+j+1)},$$

which is bounded by a constant, independent of m, when $\lfloor \frac{m}{4} \rfloor \leq j \leq \lfloor \frac{m}{2} \rfloor$. Consequently, it follows that

$$egin{aligned} \Sigma_1 &\leq c \sum_{m=n+1}^\infty \sum_{j=\lfloorrac{m}{4}
floor}^{\lfloorrac{m}{2}
floor} \sum_
u m^{-4} \left|\widehat{\Delta f}_{j-1,
u}^{m-2,\mu+2}
ight|^2 h_{j-1,m-2}^{\mu+2} \ &\leq rac{c}{n^4} E_{n-2} (\Delta f)_{\mu+2}^2. \end{aligned}$$

4. We have

$$\left|\widehat{f}_{j,\nu}^{m,\mu}\right|^{2} = (\lambda_{m-2j})^{-2} \left|\widehat{\Delta_{0}f}_{j,\nu}^{m,\mu}\right|^{2} \sim m^{-4} \left|\widehat{\Delta_{0}f}_{j,\nu}^{m,\mu}\right|^{2}$$

for $0 \leq j \leq \lfloor \frac{m}{4} \rfloor$. Consequently, it follows that

$$\Sigma_2 \leq c \sum_{m=n+1}^{\infty} \sum_{j=0}^{\lfloor rac{m}{4}
floor -1} \sum_{
u} m^{-4} \left| \widehat{\Delta_0 f}_{j,
u}^{m,\mu}
ight|^2 h_{j,m}^{\mu} \ \leq rac{c}{n^4} E_n (\Delta_0 f)_{\mu}^2.$$

Theorem 2

Let $f \in W_2^1(\varpi_\mu, \mathbb{B}^d)$. Then, for $n \ge 1$,

$$E_n(f)_{\mu} \leq \frac{c}{n} \left[\sum_{i=1}^d E_{n-1}(\partial_i f)_{\mu+1} + \sum_{1 \leq i < j \leq d} E_n(D_{i,j}f)_{\mu} \right].$$

Theorem 3

Let
$$s \in \mathbb{N}$$
 and let $f \in W_2^{2s}(\varpi_\mu, \mathbb{B}^d)$. Then, for $n \geq 2s$,

$$E_n(f)_{\mu} \leq \frac{c}{n^{2s}} \left[E_{n-2s}(\Delta^s f)_{\mu+2s} + E_n(\Delta_0^s f)_{\mu} \right].$$

By its definition, $E_n(f)_{\mu} \leq ||f||_{\mu}$, which allows us to state the estimates in terms of norms of the derivatives.

Corollary

Let $s \in \mathbb{N}$ and let $f \in W_2^{2s}(\varpi_\mu, \mathbb{B}^d)$. Then, for $n \geq 2s$,

$$E_n(f)_{\mu} \leq \frac{c}{n^{2s}} \left(\|\Delta^s f\|_{\mu+2s} + \|\Delta_0^s f\|_{\mu} \right).$$

For Further Reading

嗪 F. Dai and Y. Xu,

Approximation theory and harmonic analysis on spheres and balls,

Springer Monographs in Mathematics, Springer, New York, 2013.

🛸 C. F. Dunkl and Y. Xu,

Orthogonal polynomials of several variables,

Encyclopedia of Mathematics and its Applications **115**, Cambridge University Press, 2014.

M. A. Piñar and Y. Xu,

Best Polynomial Approximation on the Unit Ball, arXiv:1609.05515 [math.CA] (2016).

Thank you!