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High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X); X)=0

where X = (Xi,..., X4) are random variables.
@ Forward problem: evaluation of statistics, probability of events, sensitivity indices...
uX)) = [ FuG0)plx)ds
@ Inverse problem: from (partial) observations of u, estimate the density of X

p(x)

@ Solving forward and inverse problems requires the evaluation of the model for many
instances of X.
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High-dimensional problems in uncertainty quantification

In practice, we rely on approximations of the solution map
x — u(x)
which are used as surrogate models.

Strategies depend on the available information on the model : from equations to
simple evaluations.

o Complexity issues:
e For complex models, only a few evaluations of the function are available.
e High-dimensional function
u(xi, ..., xd)

Specific low-dimensional structures of functions have to be exploited (low effective
dimensionality, anisotropy, sparsity, low rank...)
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@ Rank-structured approximation
© Principal component analysis for tree-based formats
e Adaptive sampling algorithm based on principal component analysis
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Tensor spaces of multivariate functions

Let H, be a Hilbert space of functions defined on X,,.

The elementary tensor product v = v R...RQ V(@) of functions v(*) ¢ H, is a
multivariate function defined on X = X} x ... X Xy such that

(1)(

v(xt, ..., xq) = v (x)... V(d)(Xd)

A Hilbert tensor space is then defined by
Hi®...0Hy=span{vV @...@ v
equipped with the canonical norm such that
VO & & VO = VD gy . VD g,

Consider H,, = L2, (X.) where X, is equipped with a probability measure p,, and the
Hilbert tensor space
L2,(0) ®... 0 L2, (X) = 5(X)

with u = p1 ® ... ® pg and where || - || is the natural norm on L2,(X).
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Canonical rank

The canonical rank of a tensor v € H1 ® ... ® Hgq is the minimal integer r such that

r
v = Z vlsl)(xl) . V,Sd)(Xd)
k=1

For d = 2, it is the unique notion of rank and
Rr={v:rank(v) <r}
is a proximinal set and a union of smooth manifolds of tensors with fixed rank.

An order-two tensor u in the Hilbert tensor space Hi ® H2 admits a singular value
decomposition

U(Xl,Xz) = ZUkV,El)(Xl)VIE2)(X2)

k>1

An element of best approximation of u from R, is given by the truncated singular value
decomposition where we retain the r largest singular values.
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Canonical rank

For d > 3, the set R, looses many of the favorable properties of the case d = 2.
@ Determining the rank of a given tensor is a NP-hard problem.

@ R, is not closed. The consequence is that for most problems involving
approximation in canonical format R,, there is no robust method when d > 2.

@ The set R, is not an algebraic variety.

@ No notion of singular value decomposition.
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a-rank

For a non-empty subset « of D ={1,...,d}, atensor u ¢ H=H1® ... ® Hgq can be
identified with an order-two tensor

Ma(u) € Ha ®Hac7

where Ho = @ Ho, and o =D\ a.

vEa

[T T A

My M2y

The a-rank of u is the rank of the order-two tensor M (u),
rankq (u) = rank(Maq (u)),

which is the minimal integer r, such that

roo

u(x) = > v (xa)Wi (xac)
k=1
for some functions v (x.) and wg (xac) of groups of variables

Xa = {Xv}rea and xac = {x }rcac.
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a-rank

The motivation behind the definition of tensor formats based on a-ranks is to benefit
from the nice properties of the two dimensional case.

@ The set
T,ia} ={v € H :rankq(v) < ro}
of tensors with a-rank bounded by r, is weakly closed (and therefore proximinal).
@ For a given tensor u, Mq(u) admits a singular value decomposition.

@ The determination of the a-rank of a tensor is feasible.

° 'T,ia} is a union of smooth manifolds of tensors with fixed a-rank.
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a-ranks and related low-rank formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted
rankrt(u), as the tuple

rankr(v) = {ranka(v)}aer.

The subset of tensors with T-rank bounded by r = (ra)acT is

T = {veH rankr(v)<r} = ﬂ Tria}'

acT
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Tree-based formats

Tree-based formats correspond to a tree-structured subset T of 2°:
o Tucker format for T = {{1},...,{d}}

@ Tensor Train format @[Oseledets—Tyrtyshnikov’09] for
T ={{1},{1,2},...,{1,...,d — 1}}

@ more general tree-based (or hierarchical) Tucker formats @[Hackbusch—Kuhn'OQ]

{1,2,3,4,5}

{1,2,3,4,5}

{1,2,3,4}
{1,2,3,4,5}

.%\. N N
{1,2}

{1y {2y {8y {4 {5

Tucker 2y {3}
e Tree-based Tucker
Tensor Train
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Tree-based tensor formats

@ A tensor v in tree-based tensor format 7,7 admits a representation
rn r d M
v(x, ..., xg) = Z s Z H P(U) (xv, (ki)ies, ) H P(U) ((ki)ies,
ki=1 ki =1v=1 v=d+1

where parameter p(") is a tensor depending on summation variables (ki)ies, .

@ Multilinear parametrization with storage complexity scaling as O(dR®) where
#S, <s,n <R

@ As a finite intersection of subsets T,ia}, T," inherits from nice geometrical and
topological properties:

e 7,7 is a union of smooth manifolds of tensors with fixed T-rank.
o 7,7 is weakly closed.

@ Possible extensions of the notion of singular value decomposition for higher-order
tensors u.
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Singular value decomposition

Consider a subset of variables o and its complementary subset a® = D \ .

A multivariate function u(x, ..., xq) is identified with a bivariate function v € Ho ® Hac
which admits a singular value decomposition

rankq (u)

U(Xay Xac) = Ok v,?‘(xot)v,ilc (Xac)
k=1

The problem of best approximation of u by a function with a-rank r,,

. 2
min_lu—v|?,
rankq (v)<rq
admits as a solution the truncated singular value decomposition u,, of u

Ur,, (Xa, Xac) E oV (xa)VE (Xac)

where {v{*,..., v } are the r, a-principal components of u.
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a-principal components and associated projections

The subspace
Uo = span{vi’,..., v, }

row

is such that
Ur, = PUU u

where Py, is the orthogonal projection onto U, ® Hac.

It is a solution of

. ) 2: . . ) . 2
amgrin_, M= Pugul”= | min /X l[u(s Xac) = Puq ul'; Xa< )[3¢q Hac (xac)

The best approximation error ||u — Py, u|| measures how well the set
{u(-,; Xac) : Xac € Xac} C Ha

can be approximated by a r, dimensional space U,. It quantifies the ideal performance
of a reduced basis method in a mean-square sense.
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Higher-order principal component analysis for tree-based formats

Let T be a dimension partition tree.

L
T = U Te, Te={aeT:level(a) = ¢}
=1

T1 (level 1)
T2 (level 2)
Ts (level 3)
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Higher-order principal component analysis for tree-based formats

Start with vt = u.

At level ¢, for each o € Ty, we determine the subspace U, of a-principal components of
Uq, With

uo = uif S(a) =0, Uo = H Puyuif S(a) £ 0

BES(x)

Then we define

ut =Pttt with P, = H Pu, the orthogonal projection on ® U..

a€ETy aETy

Finally, we obtain
V' =Pi...PlueT,
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Higher-order principal component analysis for tree-based formats

The approximation u* is such that

L L
lu* =l = llu’ =™ =
£=1 4

H ,PU(\, u[+1 _ ué+1|‘2

I
=1 a€cTy

L L
=2 D> Pud™ =P <D0 Y T Py e — wal?

(=1 acT, =1 a€T,

Theorem
For a desired precision €, if the c-ranks are determined such that
€

7zl

we obtain a controlled approximation u* such that

[Puq e — ta|| <

[lu™ = ull < eflull.
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Higher-order principal component analysis for tree-based formats

The subspace U, of principal components of u, is such that

|Pu, e —uall = min  |lv—ua] < min _ [lv—u|| < min [Jv—ul
ranke () <ra ranke (V)< o verr

Theorem

For a given T-rank, we obtain a quasi-optimal approximation u* € 7,7 such that

lu* = ull < VAT min v — ul
VGT,T
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Interpolation

For a subspace U., we construct a unisolvent set of points Iy, in X, and an associated
interpolation operator Zy,, .

@ For « a leaf of the tree, we introduce an approximation space V, and a
corresponding unisolvent set [y, , and construct

U, C Vo, and ru() C r\/a

@ For a € T with sons S(a) # 0, we construct

Us C ® Uz and rua Cc X rU’3
BeS(a) BES(a)

The algorithm becomes
ot = Tt

where 7, is an interpolation operator onto ®aeT[ U, with associated unisolvent
tensorized grid X .7, [v,, and we finally obtain an approximation

u* :Il...ILu:ILu.
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Statistical estimation of principal components

For a € T, consider u, = Zy, u for « a leaf of T, and u, = HﬂeS(c«)IUSU otherwise.

The function ua(Xa, Xac) is interpreted as a random variable
Xae € Xae > Ua(y Xac) € Ha

The subspace U, as a statistical estimation of the subspace of principal components of
Uq, solution of

min Z lua (- x6e) = P, ta (-, x5 152,

dim(Uq )=ro

where {xéc}ﬁ’;l are i.i.d. samples of the group of variables xc.
This is equivalent to computing the r, principal components of
{ua(-,xic), ey uals, Xgé")} € Ho @ RV
which requires a number of evaluations of u equal to No X (X ges(a) r8) if S(a) # @, and

No x dim(V,) otherwise.
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PCA-based algorithm using sampling

Theorem (Fixed precision)
For a desired precision ¢, if the subspaces U, are determined such that

[[ull

€

V#T

holds with probability higher than 1 — 1), then we obtain an approximation u* such that

Pq e — ta|| <

[ = ull < yellul

holds with probability higher than 1 — n# T, with ~y depending on the properties of the
interpolation operators Iy, .
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PCA-based algorithm using sampling

Theorem (Prescribed rank)

For a given T-rank, if the subspaces U, are such that

1Po,te = uall S € min_flv = u

holds with probability higher than 1 — 1), then we obtain an approximation u* such that
lu* — ull < Cy/FET min v - u]
vET,T NV

holds with probability higher than 1 — n# T, with v depending on the properties of the
interpolation operators.
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Illustrations

Approximation in tensor-train Tucker format:

{1,2,3,4,5}

{1,2,3,4}

{1,2,3} {5}
T:{{l}a7{d}7{172}17{1a1d_1}} (1.2}

{1} {2}
rg 2 o o,
@ (1,2) ~(1,2,3) a,...,
- Z Z Z Z (X1 Vig (Xd) i1z, k2 Ckzvi3,k3 T de—l id
=1 iy=lky=1 kg_p=1

Number of parameters storage(u*) < (g + 1)dR + (d — 1)R®, with R = max, ra
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lllustration : Henon-Heiles potential

1<, d—1 Lo02dt
u(x) = 5 Zx,- +0.2 Z(X{X,‘+1 —-x7)+ 16 Z(X,- +xiy1), xi~ U(—1,1),
i=1 i=1

i=1

We run the algorithm with
@ polynomial degree g = 3,
@ prescribed T-rank (3,...,3),
@ a number of samples N, = r, for the estimation of a-principal components, so that
the required number of evaluations N of the function is equal to storage(u™).

d N test error
10 | 345 | 3.4e—15
20| 735 | 1.9e — 14
40 | 1515 | 33e— 14
80 | 3075 | 8.7e — 14

Figure: Number fo samples and test error for different d
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Illustration : Borehole function

The Borehole function models water flow through a borehole:

27 Tu(Hu — H,
u(X) = L — ) —0 X = (rwslog(r), Tuy Huy iy Hiy L, Ku)
In(r/rw) (1 T nmz ke T ?7)

w radius of borehole (m) N(n =0.10,0 = 0.0161812)
r radius of influence (m) LN(p =7.71,0 = 1.0056)
T,  transmissivity of upper aquifer (m?2/yr) U(63070, 115600)

H,  potentiometric head of upper aquifer (m)  U(990,1110)

T,  transmissivity of lower aquifer (m?/yr) U(63.1,116)

H, potentiometric head of lower aquifer (m)  U(700,820)

L length of borehole (m) U(1120, 1680)

Ky  hydraulic conductivity of borehole (m/yr)  U(9855, 12045)
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Approximation with given T-rank

o Prescribed T-rank (r,...,r),
@ Polynomial approximation with degree g = 15,

@ N, = 7yr, samples for the estimation of U,, so that the total number N of

evaluations of the function is | N = ~ storage(u™) |,

102 =
N
10% ¥
11
10 .
¥
¥
10 ]
¥
H N
M M
10 z H
107 4
-8 L
107y 2 3 4 5 6

Figure: Test error with respect to rank r for vy =1
(blue), v =100 (red)

Anthony Nouy

T-rank | N/vy
(1...1)] 135
(2...2) | 308
(3...3) | 55
(4. 4) | 912
(5...5) | 1415
(6 ...6) | 2100

Figure: N/~ for different values of

the rank.
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Approximation with prescribed precision

For the estimation of principal components, we use No = [ ranka(Ua).

10 T
102 . *
Y |
" | € N
Ml T “ le — 1 | 2055
- 3 ] le—3 | 2118
o le—5 | 2204
=0t i L 1 le—7 | 2803
. | le—9 | 2967
g 1 le — 11 [ 4720
1072 S l .
Table: Number of required

o . . ‘ ‘ . .
-14 -12 -10 -8 -6 -4 -2 0 . .
1o 10 10 10 10 10 o 10 evaluations N for different

prescribed error o
precisions ¢, for 5 =1

Figure: True error with respect to prescribed error € for
B =1 (blue), 8 =100 (red)
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Conclusions

The proposed algorithm
@ provides an approximation of a function in tree-based format using point evaluations
of the function on a structured sample set,
@ provides a stable approximation with prescribed rank with a number of samples N
equal to (or of the order of) the number of parameters.

@ provides an approximation with almost the desired precision.
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Still to be done to further reduce the number required samples...
@ Underlying bases adaptation
@ Adaptive sampling for estimating principal components

@ Exploit sparsity in tensor representations
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Conclusions

The proposed algorithm

@ provides an approximation of a function in tree-based format using point evaluations
of the function on a structured sample set,

@ provides a stable approximation with prescribed rank with a number of samples N
equal to (or of the order of) the number of parameters.

@ provides an approximation with almost the desired precision.

Still to be done to further reduce the number required samples...
@ Underlying bases adaptation
@ Adaptive sampling for estimating principal components

@ Exploit sparsity in tensor representations

Still to be done to obtain a certified control of the error...
@ Control norms of interpolation operators

@ Control statistical estimations
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}2_; on a training set {x*}¥_; (i.i.d. samples of X)
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}2_; on a training set {x*}¥_; (i.i.d. samples of X)

@ Approximation in subsets of rank-structured functions M, by minimization of an
empirical risk

RN( Zé(u ), v(x¥)

where £ is a certain loss function.
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}2_; on a training set {x*}¥_; (i.i.d. samples of X)

@ Approximation in subsets of rank-structured functions M, by minimization of an
empirical risk

RN( Zé(u ), v(x¥)

where £ is a certain loss function.

@ For least-squares regression and noise-free observations

Ru(v) Z(u “) = v(x))? = En((u(X) = v(X))*)

but other loss functions could be used for different objectives than L?-approximation
(e.g. classification).
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Alternating minimization algorithm

@ Multilinear parametrization of tensor manifolds
M’:{V: F(p17"‘apL):p/ ERm/al SIS L}
so that N R
min Ry(v) = min Rn(F(p1,-..,pr))

veEM, Pls--+5PL
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Alternating minimization algorithm

@ Multilinear parametrization of tensor manifolds
M’:{V: F(p17"‘apL):p/ ERm/al SIS L}
so that N R
min Ry(v) = min Rn(F(p1,-..,pr))
veEM, Pls-eey PL
@ Alternating minimization algorithm: Successive minimization problems
min Ru(F(pr,- .-, p1 - - pL))
pIER™!
vi() " py

which are standard linear approximation problems

min % Zé(u(xk), ,(x*) p))
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Alternating minimization algorithm

@ Regularization

min > £u(), i) 1) + ()

with regularization functional 2, promoting
e smoothness (of univariate functions),
o sparsity (e.g. Q/(pr) = \i||pi]|1 for convex relaxation methods, or a

characteristic function for working set algorithms),
o ...

@ (x) is a standard regularized linear approximation problem.

o For square-loss and Q;(p1) = \/||pil]1, (%) is a LASSO problem.

@ Cross-validation methods for the selection of ;.
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Illustration : Borehole function

2rTu(Hy — H)

u(X) = | L ar, T )
n(r/rW) + In(r/rw)r2 Ku + T

X = (rW7 lOg(r)7 TLH HLH T/7 H/7 L7 KW)

@ Approximation in tensor-train format

fd—1

n
1 2 d
v(xi,...,Xq4) = Z . Z V1(,;)1 (Xl)vi(l,?'z()Q) . ViE,_)l,l(Xd)

=1 iy_1=1

Polynomial approximation of univariate functions with degree g = 8.

@ Sparse approximation of univariate functions using working set strategies and
cross-validation for the selection of polynomial bases.

@ Heuristic strategy for rank adaptation: sequence of approximations with increasing
T-rank (anisotropic increase of the ranks based on the a-singular values)
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Illustration : Borehole function

@ Training set of size N = 1000

iteration rank test error
0 (1111111) | 141072
1 (2222222) | 44107
2 (2223322) | 8110°°
3 (3334322) | 6210°°
4 (3334432) | 21107°
5 (3334433) 9610°°
6 (3444544) ] 1510°°

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r,r,...,r).
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Illustration : Borehole function

@ Training set of size N = 1000

iteration rank test error
0 (1111111) | 141072
1 (2222222) | 44107
2 (2223322) | 8110°°
3 (3334322) | 6210°°
4 (3334432) | 21107°
5 (3334433) 9610°°
6 (3444544) ] 1510°°

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r,r,...,r).

o Different sizes N of training set, selection of optimal ranks.

N rank test error
100 | (3443321) ] 7.110°°
1000 | (3334432) | 6210°°

10000 | (5667754) | 2410°°
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Concluding remarks on statistical learning methods

Statistical learning algorithms for tree-based format:

@ Multilinear parametrization allows the use of the machinery of statistical learning for
linear models.

@ Exploit low-rank and sparsity.

@ Error estimation and model selection using standard cross-validation methods.
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Concluding remarks on statistical learning methods

Statistical learning algorithms for tree-based format:

@ Multilinear parametrization allows the use of the machinery of statistical learning for
linear models.

@ Exploit low-rank and sparsity.

@ Error estimation and model selection using standard cross-validation methods.

Still to be done...
@ Global optimization algorithms in low-rank manifolds.
@ Robust strategies for rank and tree adaptation.

Convex relaxation of the constraints on the ranks.

@ Goal-oriented approximations.
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