Statistical methods for high-dimensional function approximation in tree-based tensor formats

Anthony Nouy

Ecole Centrale Nantes

Supported by the ANR (CHORUS project)

Parameter-dependent models

$$\mathcal{M}(u(X); X) = 0$$

where $X = (X_1, \dots, X_d)$ are random variables.

• Forward problem: evaluation of statistics, probability of events, sensitivity indices...

$$\mathbb{E}(f(u(X))) = \int_{\mathbb{R}^d} f(u(x)) p(x) dx$$

• Inverse problem: from (partial) observations of u, estimate the density of X

p(x)

 Solving forward and inverse problems requires the evaluation of the model for many instances of X. • In practice, we rely on approximations of the solution map

 $x \mapsto u(x)$

which are used as surrogate models.

- Strategies depend on the available information on the model : from equations to simple evaluations.
- Complexity issues:
 - For complex models, only a few evaluations of the function are available.
 - High-dimensional function

$$u(x_1,\ldots,x_d)$$

• Specific low-dimensional structures of functions have to be exploited (low effective dimensionality, anisotropy, sparsity, low rank...)

Outline

- 1 Rank-structured approximation
- Principal component analysis for tree-based formats
- 3 Adaptive sampling algorithm based on principal component analysis
- 4 A word about statistical learning methods

Outline

1 Rank-structured approximation

- Principal component analysis for tree-based formats
- 3 Adaptive sampling algorithm based on principal component analysis
- 4 A word about statistical learning methods

Tensor spaces of multivariate functions

Let \mathcal{H}_{ν} be a Hilbert space of functions defined on \mathcal{X}_{ν} .

The elementary tensor product $v = v^{(1)} \otimes \ldots \otimes v^{(d)}$ of functions $v^{(\nu)} \in \mathcal{H}_{\nu}$ is a multivariate function defined on $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_d$ such that

$$v(x_1,...,x_d) = v^{(1)}(x_1)...v^{(d)}(x_d)$$

A Hilbert tensor space is then defined by

$$\mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_d = \overline{\mathsf{span}} \{ v^{(1)} \otimes \ldots \otimes v^{(d)} \}$$

equipped with the canonical norm such that

$$\|v^{(1)} \otimes \ldots \otimes v^{(d)}\| = \|v^{(1)}\|_{\mathcal{H}_1} \dots \|v^{(d)}\|_{\mathcal{H}_d}$$

Consider $\mathcal{H}_{\nu} = L^2_{\mu_{\nu}}(\mathcal{X}_{\nu})$ where \mathcal{X}_{ν} is equipped with a probability measure μ_{ν} , and the Hilbert tensor space

$$L^2_{\mu_1}(\mathcal{X}_1)\otimes\ldots\otimes L^2_{\mu_d}(\mathcal{X}_d)=L^2_{\mu}(\mathcal{X})$$

with $\mu = \mu_1 \otimes \ldots \otimes \mu_d$ and where $\|\cdot\|$ is the natural norm on $L^2_{\mu}(\mathcal{X})$.

Canonical rank

The canonical rank of a tensor $v \in \mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_d$ is the minimal integer r such that

$$v = \sum_{k=1}^{r} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d)$$

For d = 2, it is the unique notion of rank and

$$\mathcal{R}_r = \{v : \mathsf{rank}(v) \leq r\}$$

is a proximinal set and a union of smooth manifolds of tensors with fixed rank.

An order-two tensor u in the Hilbert tensor space $\mathcal{H}_1 \otimes \mathcal{H}_2$ admits a singular value decomposition

$$u(x_1, x_2) = \sum_{k \ge 1} \sigma_k v_k^{(1)}(x_1) v_k^{(2)}(x_2)$$

An element of best approximation of u from \mathcal{R}_r is given by the truncated singular value decomposition where we retain the r largest singular values.

For $d \geq 3$, the set \mathcal{R}_r looses many of the favorable properties of the case d = 2.

- Determining the rank of a given tensor is a NP-hard problem.
- \mathcal{R}_r is not closed. The consequence is that for most problems involving approximation in canonical format \mathcal{R}_r , there is no robust method when d > 2.
- The set \mathcal{R}_r is not an algebraic variety.
- No notion of singular value decomposition.

α -rank

For a non-empty subset α of $D = \{1, \ldots, d\}$, a tensor $u \in \mathcal{H} = \mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_d$ can be identified with an order-two tensor

$$\mathcal{M}_{\alpha}(u) \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^{c}},$$

where $\mathcal{H}_{\alpha} = \bigotimes_{\nu \in \alpha} \mathcal{H}_{\nu}$, and $\alpha^{c} = D \setminus \alpha$.

The α -rank of u is the rank of the order-two tensor $\mathcal{M}_{\alpha}(u)$,

$$\mathsf{rank}_lpha(u) = \mathsf{rank}(\mathcal{M}_lpha(u)),$$

which is the minimal integer r_{α} such that

$$u(x) = \sum_{k=1}^{r_{\alpha}} v_k^{\alpha}(x_{\alpha}) w_k^{\alpha^c}(x_{\alpha^c})$$

for some functions $v_k^{lpha}(x_{lpha})$ and $w_k^{lpha^c}(x_{lpha^c})$ of groups of variables

$$x_{\alpha} = \{x_{\nu}\}_{\nu \in \alpha}$$
 and $x_{\alpha^{c}} = \{x_{\nu}\}_{\nu \in \alpha^{c}}$

The motivation behind the definition of tensor formats based on α -ranks is to benefit from the nice properties of the two dimensional case.

• The set

$$\mathcal{T}_{r_{\alpha}}^{\{\alpha\}} = \{ v \in \mathcal{H} : \mathsf{rank}_{\alpha}(v) \leq r_{\alpha} \}$$

of tensors with α -rank bounded by r_{α} is weakly closed (and therefore proximinal).

- For a given tensor u, $\mathcal{M}_{\alpha}(u)$ admits a singular value decomposition.
- The determination of the α -rank of a tensor is feasible.
- $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ is a union of smooth manifolds of tensors with fixed α -rank.

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted $\operatorname{rank}_T(u)$, as the tuple

$$\mathsf{rank}_{\mathcal{T}}(v) = \{\mathsf{rank}_{\alpha}(v)\}_{\alpha \in \mathcal{T}}.$$

The subset of tensors with *T*-rank bounded by $r = (r_{\alpha})_{\alpha \in T}$ is

$$\mathcal{T}_r^T = \{ v \in \mathcal{H} : \mathsf{rank}_T(v) \leq r \} = \bigcap_{\alpha \in T} \mathcal{T}_{r_\alpha}^{\{\alpha\}}.$$

Tree-based formats

Tree-based formats correspond to a tree-structured subset T of 2^D :

- Tucker format for $T = \{\{1\}, \dots, \{d\}\}$
- Tensor Train format [Oseledets-Tyrtyshnikov'09] for $T = \{\{1\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\}$
- more general tree-based (or hierarchical) Tucker formats 📓 [Hackbusch-Kuhn'09]

Tree-based tensor formats

• A tensor v in tree-based tensor format \mathcal{T}_r^T admits a representation

$$v(x_1,\ldots,x_d) = \sum_{k_1=1}^{r_1} \ldots \sum_{k_L=1}^{r_L} \prod_{\nu=1}^d p^{(\nu)}(x_{\nu},(k_i)_{i\in S_{\nu}}) \prod_{\nu=d+1}^M p^{(\nu)}((k_i)_{i\in S_{\nu}})$$

where parameter $p^{(\nu)}$ is a tensor depending on summation variables $(k_i)_{i \in S_{\nu}}$.

- Multilinear parametrization with storage complexity scaling as $O(dR^s)$ where $\#S_{\nu} \leq s, r_{\nu} \leq R$.
- As a finite intersection of subsets $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$, $\mathcal{T}_{r}^{\mathcal{T}}$ inherits from nice geometrical and topological properties:
 - \mathcal{T}_r^T is a union of smooth manifolds of tensors with fixed T-rank.
 - \mathcal{T}_r^T is weakly closed.
- Possible extensions of the notion of singular value decomposition for higher-order tensors *u*.

- Rank-structured approximation
- Principal component analysis for tree-based formats
- 3 Adaptive sampling algorithm based on principal component analysis
- 4 A word about statistical learning methods

Singular value decomposition

Consider a subset of variables α and its complementary subset $\alpha^c = D \setminus \alpha$.

A multivariate function $u(x_1, \ldots, x_d)$ is identified with a bivariate function $u \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^c}$ which admits a singular value decomposition

$$u(x_{\alpha}, x_{\alpha^{c}}) = \sum_{k=1}^{\operatorname{rank}_{\alpha}(u)} \sigma_{k} v_{k}^{\alpha}(x_{\alpha}) v_{k}^{\alpha^{c}}(x_{\alpha^{c}})$$

The problem of best approximation of u by a function with α -rank r_{α} ,

r

$$\min_{ank_{\alpha}(v)\leq r_{\alpha}}\|u-v\|^{2},$$

admits as a solution the truncated singular value decomposition $u_{r_{\alpha}}$ of u

$$u_{r_{\alpha}}(x_{\alpha}, x_{\alpha^{c}}) = \sum_{k=1}^{r_{\alpha}} \sigma_{i} \mathbf{v}_{k}^{\alpha}(x_{\alpha}) \mathbf{v}_{k}^{\alpha^{c}}(x_{\alpha^{c}})$$

where $\{v_1^{\alpha}, \ldots, v_{r_{\alpha}}^{\alpha}\}$ are the r_{α} α -principal components of u.

α -principal components and associated projections

The subspace

$$U_{\alpha} = span\{\mathbf{v}_1^{\alpha}, \dots, \mathbf{v}_{r_{\alpha}}^{\alpha}\}$$

is such that

$$u_{r_{\alpha}} = \mathcal{P}_{U_{\alpha}} u$$

where $\mathcal{P}_{U_{\alpha}}$ is the orthogonal projection onto $U_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$. It is a solution of

$$\min_{\dim(U_{\alpha})=r_{\alpha}} \|u-\mathcal{P}_{U_{\alpha}}u\|^{2} = \min_{\dim(U_{\alpha})=r_{\alpha}} \int_{\mathcal{X}_{\alpha^{c}}} \|u(\cdot,x_{\alpha^{c}})-\mathcal{P}_{U_{\alpha}}u(\cdot,x_{\alpha^{c}})\|_{\mathcal{H}_{\alpha}}^{2}\mu_{\alpha^{c}}(x_{\alpha^{c}})$$

The best approximation error $||u - \mathcal{P}_{U_{\alpha}}u||$ measures how well the set

$$\{u(\cdot, x_{\alpha^c}): x_{\alpha^c} \in \mathcal{X}_{\alpha^c}\} \subset \mathcal{H}_{\alpha}$$

can be approximated by a r_{α} dimensional space U_{α} . It quantifies the ideal performance of a reduced basis method in a mean-square sense.

Let T be a dimension partition tree.

Higher-order principal component analysis for tree-based formats

Start with $u^{L+1} = u$.

At level ℓ , for each $\alpha \in T_{\ell}$, we determine the subspace U_{α} of α -principal components of u_{α} , with

$$u^{\ell} = \mathcal{P}_{\ell} u^{\ell+1}$$
, with $\mathcal{P}_{\ell} = \prod_{\alpha \in \mathcal{T}_{\ell}} \mathcal{P}_{U_{\alpha}}$ the orthogonal projection on $\bigotimes_{\alpha \in \mathcal{T}_{\ell}} \mathcal{U}_{\alpha}$.

Finally, we obtain

$$u^{\star} = \mathcal{P}_1 \dots \mathcal{P}_L u \in \mathcal{T}_r^T$$

The approximation u^* is such that

$$\|u^{\star} - u\|^{2} = \sum_{\ell=1}^{L} \|u^{\ell} - u^{\ell+1}\|^{2} = \sum_{\ell=1}^{L} \|\prod_{\alpha \in T_{\ell}} \mathcal{P}_{U_{\alpha}} u^{\ell+1} - u^{\ell+1}\|^{2}$$
$$= \sum_{\ell=1}^{L} \sum_{\alpha \in T_{\ell}} \|\mathcal{P}_{U_{\alpha}} u^{\ell+1} - u^{\ell+1}\|^{2} \le \sum_{\ell=1}^{L} \sum_{\alpha \in T_{\ell}} \|\mathcal{P}_{U_{\alpha}} u_{\alpha} - u_{\alpha}\|^{2}$$

Theorem

For a desired precision ϵ , if the α -ranks are determined such that

$$\|\mathcal{P}_{\boldsymbol{U}_{\alpha}}\boldsymbol{u}_{\alpha}-\boldsymbol{u}_{\alpha}\|\leq\frac{\epsilon}{\sqrt{\#T}}\|\boldsymbol{u}\|,$$

we obtain a controlled approximation u^* such that

$$\|u^{\star}-u\|\leq\epsilon\|u\|.$$

The subspace U_{α} of principal components of u_{α} is such that

$$\|\mathcal{P}_{\boldsymbol{U}_{\alpha}}\boldsymbol{u}_{\alpha}-\boldsymbol{u}_{\alpha}\|=\min_{\operatorname{rank}_{\alpha}(\boldsymbol{v})\leq r_{\alpha}}\|\boldsymbol{v}-\boldsymbol{u}_{\alpha}\|\leq\min_{\operatorname{rank}_{\alpha}(\boldsymbol{v})\leq r_{\alpha}}\|\boldsymbol{v}-\boldsymbol{u}\|\leq\min_{\boldsymbol{v}\in\mathcal{T}_{r}^{T}}\|\boldsymbol{v}-\boldsymbol{u}\|$$

Theorem

For a given T-rank, we obtain a quasi-optimal approximation $u^* \in \mathcal{T}_r^T$ such that

$$\|u^{\star}-u\| \leq \sqrt{\#T} \min_{v \in \mathcal{T}_r^{\mathcal{T}}} \|v-u\|$$

- Rank-structured approximation
- Principal component analysis for tree-based formats
- 3 Adaptive sampling algorithm based on principal component analysis
- 4 A word about statistical learning methods

Interpolation

For a subspace U_{α} , we construct a unisolvent set of points $\Gamma_{U_{\alpha}}$ in \mathcal{X}_{α} and an associated interpolation operator $\mathcal{I}_{U_{\alpha}}$.

• For α a leaf of the tree, we introduce an approximation space V_{α} and a corresponding unisolvent set $\Gamma_{V_{\alpha}}$, and construct

$$U_{lpha} \subset V_{lpha}$$
 and $\Gamma_{U_{lpha}} \subset \Gamma_{V_{lpha}}$

• For $\alpha \in T$ with sons $S(\alpha) \neq \emptyset$, we construct

$$U_{lpha} \subset \bigotimes_{eta \in S(lpha)} U_{eta} \quad ext{and} \quad \Gamma_{U_{lpha}} \subset \bigotimes_{eta \in S(lpha)} \Gamma_{U_{eta}}$$

The algorithm becomes

$$u^{\ell} = \mathcal{I}_{\ell} u^{\ell+1},$$

where \mathcal{I}_{ℓ} is an interpolation operator onto $\bigotimes_{\alpha \in \mathcal{T}_{\ell}} \bigcup_{\alpha}$ with associated unisolvent tensorized grid $\times_{\alpha \in \mathcal{T}_{\ell}} \Gamma_{U_{\alpha}}$, and we finally obtain an approximation

$$u^{\star} = \mathcal{I}_1 \dots \mathcal{I}_L u = \mathcal{I}_L u.$$

Statistical estimation of principal components

For $\alpha \in T$, consider $u_{\alpha} = \mathcal{I}_{V_{\alpha}} u$ for α a leaf of T, and $u_{\alpha} = \prod_{\beta \in S(\alpha)} \mathcal{I}_{U_{\beta}} u$ otherwise.

The function $u_{\alpha}(x_{\alpha}, x_{\alpha^{c}})$ is interpreted as a random variable

$$x_{\alpha^{c}} \in \mathcal{X}_{\alpha^{c}} \mapsto u_{\alpha}(\cdot, x_{\alpha^{c}}) \in \mathcal{H}_{\alpha}$$

The subspace U_{α} as a statistical estimation of the subspace of principal components of u_{α} , solution of

$$\min_{\dim(\boldsymbol{U}_{\alpha})=r_{\alpha}}\frac{1}{N_{\alpha}}\sum_{k=1}^{N_{\alpha}}\|u_{\alpha}(\cdot, x_{\alpha^{c}}^{k})-\mathcal{P}_{\boldsymbol{U}_{\alpha}}u_{\alpha}(\cdot, x_{\alpha^{c}}^{k})\|_{\mathcal{H}_{\alpha}}^{2}$$

where $\{x_{\alpha^c}^k\}_{k=1}^{N_{\alpha}}$ are i.i.d. samples of the group of variables x_{α^c} .

This is equivalent to computing the r_{α} principal components of

$$\{u_{\alpha}(\cdot, x_{\alpha^{c}}^{1}), \ldots, u_{\alpha}(\cdot, x_{\alpha^{c}}^{N_{\alpha}})\} \in \mathcal{H}_{\alpha} \otimes \mathbb{R}^{N_{\alpha}}$$

which requires a number of evaluations of u equal to $N_{\alpha} \times (\times_{\beta \in S(\alpha)} r_{\beta})$ if $S(\alpha) \neq \emptyset$, and $N_{\alpha} \times \dim(V_{\alpha})$ otherwise.

Theorem (Fixed precision)

For a desired precision ϵ , if the subspaces U_{α} are determined such that

$$\|\mathcal{P}_{U_{\alpha}}u_{\alpha}-u_{\alpha}\|\leq\frac{\epsilon}{\sqrt{\#T}}\|u\|$$

holds with probability higher than $1 - \eta$, then we obtain an approximation u^* such that

$$\|\boldsymbol{u}^{\star} - \boldsymbol{u}\| \leq \gamma \epsilon \|\boldsymbol{u}\|$$

holds with probability higher than $1 - \eta \# T$, with γ depending on the properties of the interpolation operators $\mathcal{I}_{U_{\alpha}}$.

Theorem (Prescribed rank)

For a given *T*-rank, if the subspaces U_{α} are such that

$$\left\|\mathcal{P}_{U_{\alpha}}u_{\alpha}-u_{\alpha}\right\|\leq C\min_{\mathsf{rank}_{\alpha}(v)\leq r_{\alpha}}\left\|v-u_{\alpha}\right\|$$

holds with probability higher than $1 - \eta$, then we obtain an approximation u^* such that

$$\|u^{\star}-u\| \leq C\gamma\sqrt{\#T}\min_{v\in\mathcal{T}_{r}^{T}\cap V}\|v-u\|$$

holds with probability higher than $1 - \eta \# T$, with γ depending on the properties of the interpolation operators.

Illustrations

Approximation in tensor-train Tucker format:

$$T = \{\{1\}, \dots, \{d\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{3, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 2, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 4$$

$$u^{\star} = \sum_{i_{1}=1}^{r_{1}} \dots \sum_{i_{d}=1}^{r_{d}} \sum_{k_{2}=1}^{r_{1,2}} \dots \sum_{k_{d-2}=1}^{r_{1,\dots,d-1}} v_{i_{1}}^{(1)}(x_{1}) \dots v_{i_{d}}^{(d)}(x_{d}) C_{i_{1},i_{2},k_{2}}^{(1,2)} C_{k_{2},i_{3},k_{3}}^{(1,2,3)} \dots C_{k_{d-1},i_{d}}^{(1,\dots,d-1)}$$

with polynomial functions $v_{i_{
u}}^{(
u)} \in V_{
u} = \mathbb{P}_{q}.$

Number of parameters storage $(u^{\star}) \leq (q+1)dR + (d-1)R^3$, with $R = \max_{\alpha} r_{\alpha}$.

Illustration : Henon-Heiles potential

$$u(x) = \frac{1}{2} \sum_{i=1}^{d} x_i^2 + 0.2 \sum_{i=1}^{d-1} (x_i x_{i+1} - x_i^3) + \frac{0.2^2}{16} \sum_{i=1}^{d-1} (x_i^2 + x_{i+1}^2), \quad x_i \sim U(-1, 1),$$

We run the algorithm with

- polynomial degree q = 3,
- prescribed T-rank $(3, \ldots, 3)$,
- a number of samples $N_{\alpha} = r_{\alpha}$ for the estimation of α -principal components, so that the required number of evaluations N of the function is equal to storage(u^*).

d	Ν	test error
10	345	3.4e - 15
20	735	1.9e - 14
40	1515	3.3e - 14
80	3075	8.7 <i>e</i> - 14

Figure: Number fo samples and test error for different d

The Borehole function models water flow through a borehole:

$$u(X) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l}\right)}, \quad X = (r_w, \log(r), T_u, H_u, T_l, H_l, L, K_w)$$

r _w	radius of borehole (m)	$N(\mu = 0.10, \sigma = 0.0161812)$
r	radius of influence (m)	$LN(\mu = 7.71, \sigma = 1.0056)$
Tu	transmissivity of upper aquifer (m ² /yr)	U(63070, 115600)
H_u	potentiometric head of upper aquifer (m)	U(990, 1110)
T_l	transmissivity of lower aquifer (m^2/yr)	U(63.1, 116)
H_l	potentiometric head of lower aquifer (m)	U(700, 820)
L	length of borehole (m)	U(1120, 1680)
K_w	hydraulic conductivity of borehole (m/yr)	U(9855, 12045)

Approximation with given T-rank

- Prescribed T-rank (r, \ldots, r) ,
- Polynomial approximation with degree q = 15,
- $N_{\alpha} = \gamma r_{\alpha}$ samples for the estimation of U_{α} , so that the total number N of evaluations of the function is $N = \gamma \operatorname{storage}(u^{\star})$,

Figure: N/γ for different values of the rank.

Anthony Nouy

Approximation with prescribed precision

For the estimation of principal components, we use $N_{\alpha} = \beta \operatorname{rank}_{\alpha}(u_{\alpha})$.

Figure: True error with respect to prescribed error ϵ for $\beta=1$ (blue), $\beta=100~({\rm red})$

ε	N
1e - 1	2055
1e - 3	2118
1e – 5	2204
1e - 7	2803
1e - 9	2967
1e - 11	4720

Table: Number of required evaluations N for different precisions ϵ , for $\beta = 1$

Conclusions

The proposed algorithm

- provides an approximation of a function in tree-based format using point evaluations of the function on a structured sample set,
- provides a stable approximation with prescribed rank with a number of samples *N* equal to (or of the order of) the number of parameters.
- provides an approximation with almost the desired precision.

Conclusions

The proposed algorithm

- provides an approximation of a function in tree-based format using point evaluations of the function on a structured sample set,
- provides a stable approximation with prescribed rank with a number of samples *N* equal to (or of the order of) the number of parameters.
- provides an approximation with almost the desired precision.

Still to be done to further reduce the number required samples...

- Underlying bases adaptation
- Adaptive sampling for estimating principal components
- Exploit sparsity in tensor representations

Conclusions

The proposed algorithm

- provides an approximation of a function in tree-based format using point evaluations of the function on a structured sample set,
- provides a stable approximation with prescribed rank with a number of samples N equal to (or of the order of) the number of parameters.
- provides an approximation with almost the desired precision.

Still to be done to further reduce the number required samples...

- Underlying bases adaptation
- Adaptive sampling for estimating principal components
- Exploit sparsity in tensor representations

Still to be done to obtain a certified control of the error...

- Control norms of interpolation operators
- Control statistical estimations

- Rank-structured approximation
- Principal component analysis for tree-based formats
- 3 Adaptive sampling algorithm based on principal component analysis
- 4 A word about statistical learning methods

Statistical learning methods for tensor approximation

• Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^N$ on a training set $\{x^k\}_{k=1}^N$ (i.i.d. samples of X)

Statistical learning methods for tensor approximation

- Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^N$ on a training set $\{x^k\}_{k=1}^N$ (i.i.d. samples of X)
- Approximation in subsets of rank-structured functions \mathcal{M}_r by minimization of an empirical risk

$$\widehat{\mathcal{R}}_N(v) = \frac{1}{N} \sum_{k=1}^N \ell(u(x^k), v(x^k))$$

where ℓ is a certain loss function.

Statistical learning methods for tensor approximation

- Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^N$ on a training set $\{x^k\}_{k=1}^N$ (i.i.d. samples of X)
- Approximation in subsets of rank-structured functions \mathcal{M}_r by minimization of an empirical risk

$$\widehat{\mathcal{R}}_N(v) = \frac{1}{N} \sum_{k=1}^N \ell(u(x^k), v(x^k))$$

where ℓ is a certain loss function.

• For least-squares regression and noise-free observations

$$\widehat{\mathcal{R}}_N(v) = \frac{1}{N} \sum_{k=1}^N (u(x^k) - v(x^k))^2 = \widehat{\mathbb{E}}_N((u(X) - v(X))^2)$$

but other loss functions could be used for different objectives than L^2 -approximation (e.g. classification).

• Multilinear parametrization of tensor manifolds

$$\mathcal{M}_r = \{ v = F(p_1, \ldots, p_L) : p_l \in \mathbb{R}^{m_l}, 1 \leq l \leq L \}$$

so that

$$\min_{v\in\mathcal{M}_r}\widehat{\mathcal{R}}_N(v)=\min_{p_1,\ldots,p_L}\widehat{\mathcal{R}}_N(F(p_1,\ldots,p_L))$$

• Multilinear parametrization of tensor manifolds

$$\mathcal{M}_r = \{ v = F(p_1, \ldots, p_L) : p_l \in \mathbb{R}^{m_l}, 1 \leq l \leq L \}$$

so that

$$\min_{v\in\mathcal{M}_r}\widehat{\mathcal{R}}_N(v)=\min_{p_1,\ldots,p_L}\widehat{\mathcal{R}}_N(F(p_1,\ldots,p_L))$$

• Alternating minimization algorithm: Successive minimization problems

$$\min_{\boldsymbol{p}_l \in \mathbb{R}^{m_l}} \widehat{\mathcal{R}}_N(\underbrace{F(\boldsymbol{p}_1, \dots, \boldsymbol{p}_l, \dots, \boldsymbol{p}_L)}_{\Psi_l(\cdot)^T \boldsymbol{p}_l})$$

which are standard linear approximation problems

$$\min_{\boldsymbol{p}_l \in \mathbb{R}^{m_l}} \frac{1}{N} \sum_{k=1}^{N} \ell(\boldsymbol{u}(\boldsymbol{x}^k), \boldsymbol{\Psi}_l(\boldsymbol{x}^k)^T \boldsymbol{p}_l)$$

• Regularization

$$\min_{\boldsymbol{p}_l} \frac{1}{N} \sum_{k=1}^{N} \ell(\boldsymbol{u}(\boldsymbol{x}^k), \boldsymbol{\Psi}_l(\boldsymbol{x}^k)^T \boldsymbol{p}_l) + \Omega_l(\boldsymbol{p}_l) \tag{(\star)}$$

with regularization functional Ω_l promoting

- smoothness (of univariate functions),
- sparsity (e.g. $\Omega_l(p_l) = \lambda_l ||p_l||_1$ for convex relaxation methods, or a characteristic function for working set algorithms),
- ...
- (*) is a standard regularized linear approximation problem.
 - For square-loss and $\Omega_l(p_l) = \lambda_l \|p_l\|_1$, (*) is a LASSO problem.
- Cross-validation methods for the selection of Ω_l .

$$u(X) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l}\right)}, \quad X = (r_w, \log(r), T_u, H_u, T_l, H_l, L, K_w)$$

• Approximation in tensor-train format

$$v(x_1,\ldots,x_d) = \sum_{i_1=1}^{r_1} \ldots \sum_{i_{d-1}=1}^{r_{d-1}} v_{1,i_1}^{(1)}(x_1) v_{i_1,i_2}^{(2)}(x_2) \ldots v_{i_{d-1},1}^{(d)}(x_d)$$

- Polynomial approximation of univariate functions with degree q = 8.
- Sparse approximation of univariate functions using working set strategies and cross-validation for the selection of polynomial bases.
- Heuristic strategy for rank adaptation: sequence of approximations with increasing *T*-rank (anisotropic increase of the ranks based on the α-singular values)

Illustration : Borehole function

• Training set of size N = 1000

iteration	rank	test error
0	$(1\ 1\ 1\ 1\ 1\ 1\ 1)$	1.410^{-2}
1	(2 2 2 2 2 2 2 2)	4.410^{-4}
2	(2 2 2 3 3 2 2)	8.110^{-6}
3	(3 3 3 4 3 2 2)	6.210^{-6}
4	(3 3 3 4 4 3 2)	2.110^{-5}
5	(3 3 3 4 4 3 3)	9.610^{-6}
6	(3 4 4 4 5 4 4)	1.510^{-5}

The selected rank is one order of magnitude better than the optimal "isotropic" rank (r, r, \ldots, r) .

Illustration : Borehole function

• Training set of size N = 1000

iteration rank		test error
0	$(1\ 1\ 1\ 1\ 1\ 1\ 1)$	1.410^{-2}
1	(2 2 2 2 2 2 2 2)	4.410^{-4}
2	(2 2 2 3 3 2 2)	8.110^{-6}
3	(3 3 3 4 3 2 2)	6.210^{-6}
4	(3 3 3 4 4 3 2)	2.110^{-5}
5	(3 3 3 4 4 3 3)	9.610^{-6}
6	(3 4 4 4 5 4 4)	1.510^{-5}

The selected rank is one order of magnitude better than the optimal "isotropic" rank (r, r, \ldots, r) .

• Different sizes N of training set, selection of optimal ranks.

N	rank	test error
100	(3 4 4 3 3 2 1)	7.110^{-4}
1000	(3 3 3 4 4 3 2)	6.210^{-6}
10000	(5667754)	2.410^{-8}

Statistical learning algorithms for tree-based format:

- Multilinear parametrization allows the use of the machinery of statistical learning for linear models.
- Exploit low-rank and sparsity.
- Error estimation and model selection using standard cross-validation methods.

Statistical learning algorithms for tree-based format:

- Multilinear parametrization allows the use of the machinery of statistical learning for linear models.
- Exploit low-rank and sparsity.
- Error estimation and model selection using standard cross-validation methods.

Still to be done ...

- Global optimization algorithms in low-rank manifolds.
- Robust strategies for rank and tree adaptation.
- Convex relaxation of the constraints on the ranks.
- Goal-oriented approximations.

References

A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction. In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

A. Falco, W. Hackbusch, and A. Nouy.

Geometric Structures in Tensor Representations (Final Release). ArXiv e-prints, May 2015.

M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai.

A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA Journal on Uncertainty Quantification, 3(1):897–921, 2015.

M. Chevreuil, L. Giraldi, A. Nouy, and P. Rai.

Learning algorithms for low-rank approximation of multivariate functions in tensor-train tensor format. Preprint available soon