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High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X );X ) = 0

where X = (X1, . . . ,Xd) are random variables.

Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f (u(X ))) =

∫
Rd

f (u(x))p(x)dx

Inverse problem: from (partial) observations of u, estimate the density of X

p(x)

Solving forward and inverse problems requires the evaluation of the model for many
instances of X .
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High-dimensional problems in uncertainty quantification

In practice, we rely on approximations of the solution map

x 7→ u(x)

which are used as surrogate models.

Strategies depend on the available information on the model : from equations to
simple evaluations.

Complexity issues:

• For complex models, only a few evaluations of the function are available.
• High-dimensional function

u(x1, . . . , xd)

Specific low-dimensional structures of functions have to be exploited (low effective
dimensionality, anisotropy, sparsity, low rank...)
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Tensor spaces of multivariate functions

Let Hν be a Hilbert space of functions defined on Xν .

The elementary tensor product v = v (1) ⊗ . . .⊗ v (d) of functions v (ν) ∈ Hν is a
multivariate function defined on X = X1 × . . .×Xd such that

v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

A Hilbert tensor space is then defined by

H1 ⊗ . . .⊗Hd = span{v (1) ⊗ . . .⊗ v (d)}

equipped with the canonical norm such that

‖v (1) ⊗ . . .⊗ v (d)‖ = ‖v (1)‖H1 . . . ‖v
(d)‖Hd

Consider Hν = L2
µν (Xν) where Xν is equipped with a probability measure µν , and the

Hilbert tensor space
L2
µ1

(X1)⊗ . . .⊗ L2
µd

(Xd) = L2
µ(X )

with µ = µ1 ⊗ . . .⊗ µd and where ‖ · ‖ is the natural norm on L2
µ(X ).
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Canonical rank

The canonical rank of a tensor v ∈ H1 ⊗ . . .⊗Hd is the minimal integer r such that

v =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd)

For d = 2, it is the unique notion of rank and

Rr = {v : rank(v) ≤ r}

is a proximinal set and a union of smooth manifolds of tensors with fixed rank.

An order-two tensor u in the Hilbert tensor space H1 ⊗H2 admits a singular value
decomposition

u(x1, x2) =
∑
k≥1

σkv
(1)
k (x1)v

(2)
k (x2)

An element of best approximation of u from Rr is given by the truncated singular value
decomposition where we retain the r largest singular values.
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Canonical rank

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.

Determining the rank of a given tensor is a NP-hard problem.

Rr is not closed. The consequence is that for most problems involving
approximation in canonical format Rr , there is no robust method when d > 2.

The set Rr is not an algebraic variety.

No notion of singular value decomposition.
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α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ H = H1 ⊗ . . .⊗Hd can be
identified with an order-two tensor

Mα(u) ∈ Hα ⊗Hαc ,

where Hα =
⊗

ν∈αHν , and αc = D \ α.

M{1}←−−−−
M{2}−−−−→

The α-rank of u is the rank of the order-two tensor Mα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .
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α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit
from the nice properties of the two dimensional case.

The set
T {α}rα = {v ∈ H : rankα(v) ≤ rα}

of tensors with α-rank bounded by rα is weakly closed (and therefore proximinal).

For a given tensor u, Mα(u) admits a singular value decomposition.

The determination of the α-rank of a tensor is feasible.

T {α}rα is a union of smooth manifolds of tensors with fixed α-rank.
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α-ranks and related low-rank formats

For T a collection of subsets of D, we define the T -rank of a tensor v , denoted
rankT (u), as the tuple

rankT (v) = {rankα(v)}α∈T .

The subset of tensors with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ H : rankT (v) ≤ r} =

⋂
α∈T

T {α}rα .
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Tree-based formats

Tree-based formats correspond to a tree-structured subset T of 2D :

Tucker format for T = {{1}, . . . , {d}}

Tensor Train format [Oseledets-Tyrtyshnikov’09] for
T = {{1}, {1, 2}, . . . , {1, . . . , d − 1}}

more general tree-based (or hierarchical) Tucker formats [Hackbusch-Kuhn’09]

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Tree-based Tucker
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Tree-based tensor formats

A tensor v in tree-based tensor format T T
r admits a representation

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

p(ν) ((ki )i∈Sν )

where parameter p(ν) is a tensor depending on summation variables (ki )i∈Sν .

Multilinear parametrization with storage complexity scaling as O(dR s) where
#Sν ≤ s, rν ≤ R.

As a finite intersection of subsets T {α}rα , T T
r inherits from nice geometrical and

topological properties:

• T T
r is a union of smooth manifolds of tensors with fixed T -rank.

• T T
r is weakly closed.

Possible extensions of the notion of singular value decomposition for higher-order
tensors u.
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Singular value decomposition

Consider a subset of variables α and its complementary subset αc = D \ α.

A multivariate function u(x1, . . . , xd) is identified with a bivariate function u ∈ Hα ⊗Hαc

which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σkv
α
k (xα)vα

c

k (xαc )

The problem of best approximation of u by a function with α-rank rα,

min
rankα(v)≤rα

‖u − v‖2,

admits as a solution the truncated singular value decomposition urα of u

urα(xα, xαc ) =

rα∑
k=1

σiv
α
k (xα)vα

c

k (xαc )

where {vα1 , . . . , vαrα} are the rα α-principal components of u.
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α-principal components and associated projections

The subspace
Uα = span{vα1 , . . . , vαrα}

is such that
urα = PUαu

where PUα is the orthogonal projection onto Uα ⊗Hαc .

It is a solution of

min
dim(Uα)=rα

‖u − PUαu‖
2 = min

dim(Uα)=rα

∫
Xαc

‖u(·, xαc )− PUαu(·, xαc )‖2
Hαµαc (xαc )

The best approximation error ‖u − PUαu‖ measures how well the set

{u(·, xαc ) : xαc ∈ Xαc } ⊂ Hα

can be approximated by a rα dimensional space Uα. It quantifies the ideal performance
of a reduced basis method in a mean-square sense.
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Higher-order principal component analysis for tree-based formats

Let T be a dimension partition tree.

T =
L⋃
`=1

T`, T` = {α ∈ T : level(α) = `}

T1 (level 1)

T2 (level 2)

T3 (level 3)
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Higher-order principal component analysis for tree-based formats

Start with uL+1 = u.

At level `, for each α ∈ T`, we determine the subspace Uα of α-principal components of
uα, with

uα = u if S(α) = ∅, uα =
∏

β∈S(α)

PUβu if S(α) 6= ∅

Then we define

u` = P`u`+1, with P` =
∏
α∈T`

PUα the orthogonal projection on
⊗
α∈T`

Uα.

Finally, we obtain
u? = P1 . . .PLu ∈ T T

r
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Higher-order principal component analysis for tree-based formats

The approximation u? is such that

‖u? − u‖2 =
L∑
`=1

‖u` − u`+1‖2 =
L∑
`=1

‖
∏
α∈T`

PUαu
`+1 − u`+1‖2

=
L∑
`=1

∑
α∈T`

‖PUαu
`+1 − u`+1‖2 ≤

L∑
`=1

∑
α∈T`

‖PUαuα − uα‖2

Theorem

For a desired precision ε, if the α-ranks are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖u‖,

we obtain a controlled approximation u? such that

‖u? − u‖ ≤ ε‖u‖.

Anthony Nouy Ecole Centrale Nantes 17



Higher-order principal component analysis for tree-based formats

The subspace Uα of principal components of uα is such that

‖PUαuα − uα‖ = min
rankα(v)≤rα

‖v − uα‖ ≤ min
rankα(v)≤rα

‖v − u‖ ≤ min
v∈T T

r

‖v − u‖

Theorem

For a given T -rank, we obtain a quasi-optimal approximation u? ∈ T T
r such that

‖u? − u‖ ≤
√

#T min
v∈T T

r

‖v − u‖
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Interpolation

For a subspace Uα, we construct a unisolvent set of points ΓUα in Xα and an associated
interpolation operator IUα .

For α a leaf of the tree, we introduce an approximation space Vα and a
corresponding unisolvent set ΓVα , and construct

Uα ⊂ Vα and ΓUα ⊂ ΓVα

For α ∈ T with sons S(α) 6= ∅, we construct

Uα ⊂
⊗
β∈S(α)

Uβ and ΓUα ⊂ ×
β∈S(α)

ΓUβ

The algorithm becomes
u` = I`u`+1,

where I` is an interpolation operator onto
⊗

α∈T`
Uα with associated unisolvent

tensorized grid ×α∈T` ΓUα , and we finally obtain an approximation

u? = I1 . . . ILu = ILu.
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Statistical estimation of principal components

For α ∈ T , consider uα = IVαu for α a leaf of T , and uα =
∏
β∈S(α) IUβu otherwise.

The function uα(xα, xαc ) is interpreted as a random variable

xαc ∈ Xαc 7→ uα(·, xαc ) ∈ Hα

The subspace Uα as a statistical estimation of the subspace of principal components of
uα, solution of

min
dim(Uα)=rα

1

Nα

Nα∑
k=1

‖uα(·, xk
αc )− PUαuα(·, xk

αc )‖2
Hα

where {xk
αc }Nαk=1 are i.i.d. samples of the group of variables xαc .

This is equivalent to computing the rα principal components of

{uα(·, x1
αc ), . . . , uα(·, xNα

αc )} ∈ Hα ⊗ RNα

which requires a number of evaluations of u equal to Nα × (×β∈S(α) rβ) if S(α) 6= ∅, and
Nα × dim(Vα) otherwise.
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PCA-based algorithm using sampling

Theorem (Fixed precision)

For a desired precision ε, if the subspaces Uα are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖u‖

holds with probability higher than 1− η, then we obtain an approximation u? such that

‖u? − u‖ ≤ γε‖u‖

holds with probability higher than 1− η#T , with γ depending on the properties of the
interpolation operators IUα .
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PCA-based algorithm using sampling

Theorem (Prescribed rank)

For a given T -rank, if the subspaces Uα are such that

‖PUαuα − uα‖ ≤ C min
rankα(v)≤rα

‖v − uα‖

holds with probability higher than 1− η, then we obtain an approximation u? such that

‖u? − u‖ ≤ Cγ
√

#T min
v∈T T

r ∩V
‖v − u‖

holds with probability higher than 1− η#T , with γ depending on the properties of the
interpolation operators.
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Illustrations

Approximation in tensor-train Tucker format:

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d−1}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

u? =

r1∑
i1=1

. . .

rd∑
id=1

r1,2∑
k2=1

. . .

r1,...,d−1∑
kd−2=1

v
(1)
i1

(x1) . . . v
(d)
id

(xd)C
(1,2)
i1,i2,k2

C
(1,2,3)
k2,i3,k3

. . .C
(1,...,d−1)
kd−1,id

with polynomial functions v
(ν)
iν
∈ Vν = Pq.

Number of parameters storage(u?) ≤ (q + 1)dR + (d − 1)R3, with R = maxα rα.
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Illustration : Henon-Heiles potential

u(x) =
1

2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xixi+1 − x3
i ) +

0.22

16

d−1∑
i=1

(x2
i + x2

i+1), xi ∼ U(−1, 1),

We run the algorithm with

polynomial degree q = 3,

prescribed T -rank (3, . . . , 3),

a number of samples Nα = rα for the estimation of α-principal components, so that
the required number of evaluations N of the function is equal to storage(u?).

d N test error
10 345 3.4e − 15
20 735 1.9e − 14
40 1515 3.3e − 14
80 3075 8.7e − 14

Figure: Number fo samples and test error for different d
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Illustration : Borehole function

The Borehole function models water flow through a borehole:

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(

1 + 2LTu
ln(r/rw )r2

wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

rw radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
r radius of influence (m) LN(µ = 7.71, σ = 1.0056)
Tu transmissivity of upper aquifer (m2/yr) U(63070, 115600)
Hu potentiometric head of upper aquifer (m) U(990, 1110)
Tl transmissivity of lower aquifer (m2/yr) U(63.1, 116)
Hl potentiometric head of lower aquifer (m) U(700, 820)
L length of borehole (m) U(1120, 1680)
Kw hydraulic conductivity of borehole (m/yr) U(9855, 12045)
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Approximation with given T -rank

Prescribed T -rank (r , . . . , r),
Polynomial approximation with degree q = 15,
Nα = γrα samples for the estimation of Uα, so that the total number N of

evaluations of the function is N = γ storage(u?) ,

Figure: Test error with respect to rank r for γ = 1
(blue), γ = 100 (red)

T -rank N/γ
(1 . . . 1) 135
(2 . . . 2) 308
(3 . . . 3) 555
(4 . . . 4) 912
(5 . . . 5) 1415
(6 . . . 6) 2100

Figure: N/γ for different values of
the rank.
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Approximation with prescribed precision

For the estimation of principal components, we use Nα = β rankα(uα).

Figure: True error with respect to prescribed error ε for
β = 1 (blue), β = 100 (red)

ε N
1e − 1 2055
1e − 3 2118
1e − 5 2204
1e − 7 2803
1e − 9 2967

1e − 11 4720

Table: Number of required
evaluations N for different
precisions ε, for β = 1
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Conclusions

The proposed algorithm

provides an approximation of a function in tree-based format using point evaluations
of the function on a structured sample set,

provides a stable approximation with prescribed rank with a number of samples N
equal to (or of the order of) the number of parameters.

provides an approximation with almost the desired precision.

Still to be done to further reduce the number required samples...

Underlying bases adaptation

Adaptive sampling for estimating principal components

Exploit sparsity in tensor representations

Still to be done to obtain a certified control of the error...

Control norms of interpolation operators

Control statistical estimations
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Statistical learning methods for tensor approximation

Approximation of a function u(X ) = u(X1, . . . ,Xd) from evaluations
{yk = u(xk)}Nk=1 on a training set {xk}Nk=1 (i.i.d. samples of X )

Approximation in subsets of rank-structured functions Mr by minimization of an
empirical risk

R̂N(v) =
1

N

N∑
k=1

`(u(xk), v(xk))

where ` is a certain loss function.

For least-squares regression and noise-free observations

R̂N(v) =
1

N

N∑
k=1

(u(xk)− v(xk))2 = ÊN((u(X )− v(X ))2)

but other loss functions could be used for different objectives than L2-approximation
(e.g. classification).

Anthony Nouy Ecole Centrale Nantes 29



Statistical learning methods for tensor approximation

Approximation of a function u(X ) = u(X1, . . . ,Xd) from evaluations
{yk = u(xk)}Nk=1 on a training set {xk}Nk=1 (i.i.d. samples of X )

Approximation in subsets of rank-structured functions Mr by minimization of an
empirical risk

R̂N(v) =
1

N

N∑
k=1

`(u(xk), v(xk))

where ` is a certain loss function.

For least-squares regression and noise-free observations

R̂N(v) =
1

N

N∑
k=1

(u(xk)− v(xk))2 = ÊN((u(X )− v(X ))2)
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Alternating minimization algorithm

Multilinear parametrization of tensor manifolds

Mr = {v = F (p1, . . . , pL) : pl ∈ Rml , 1 ≤ l ≤ L}

so that
min
v∈Mr

R̂N(v) = min
p1,...,pL

R̂N(F (p1, . . . , pL))

Alternating minimization algorithm: Successive minimization problems

min
pl∈Rml

R̂N(F (p1, . . . , pl , . . . , pL)︸ ︷︷ ︸
Ψl(·)Tpl

)

which are standard linear approximation problems

min
pl∈Rml

1

N

N∑
k=1

`(u(xk),Ψl(x
k)Tpl)
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Alternating minimization algorithm

Regularization

min
pl

1

N

N∑
k=1

`(u(xk),Ψl(x
k)Tpl) + Ωl(pl) (?)

with regularization functional Ωl promoting

• smoothness (of univariate functions),
• sparsity (e.g. Ωl(pl) = λl‖pl‖1 for convex relaxation methods, or a

characteristic function for working set algorithms),
• ...

(?) is a standard regularized linear approximation problem.

• For square-loss and Ωl(pl) = λl‖pl‖1, (?) is a LASSO problem.

Cross-validation methods for the selection of Ωl .
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Illustration : Borehole function

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(

1 + 2LTu
ln(r/rw )r2

wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

Approximation in tensor-train format

v(x1, . . . , xd) =

r1∑
i1=1

. . .

rd−1∑
id−1=1

v
(1)
1,i1

(x1)v
(2)
i1,i2

(x2) . . . v
(d)
id−1,1

(xd)

Polynomial approximation of univariate functions with degree q = 8.

Sparse approximation of univariate functions using working set strategies and
cross-validation for the selection of polynomial bases.

Heuristic strategy for rank adaptation: sequence of approximations with increasing
T -rank (anisotropic increase of the ranks based on the α-singular values)
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Illustration : Borehole function

Training set of size N = 1000

iteration rank test error

0 (1 1 1 1 1 1 1) 1.4 10−2

1 (2 2 2 2 2 2 2) 4.4 10−4

2 (2 2 2 3 3 2 2) 8.1 10−6

3 (3 3 3 4 3 2 2) 6.2 10−6

4 (3 3 3 4 4 3 2) 2.1 10−5

5 (3 3 3 4 4 3 3) 9.6 10−6

6 (3 4 4 4 5 4 4) 1.5 10−5

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r , r , . . . , r).

Different sizes N of training set, selection of optimal ranks.

N rank test error

100 (3 4 4 3 3 2 1) 7.1 10−4

1000 (3 3 3 4 4 3 2) 6.2 10−6

10000 (5 6 6 7 7 5 4) 2.4 10−8
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Concluding remarks on statistical learning methods

Statistical learning algorithms for tree-based format:

Multilinear parametrization allows the use of the machinery of statistical learning for
linear models.

Exploit low-rank and sparsity.

Error estimation and model selection using standard cross-validation methods.

Still to be done...

Global optimization algorithms in low-rank manifolds.

Robust strategies for rank and tree adaptation.

Convex relaxation of the constraints on the ranks.

Goal-oriented approximations.
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