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Total Variation in image processing
Let Ω be an open subset of R2 and U : Ω→ R an intensity image
(U(x , y) is the light intensity at point (x , y) of the plane).

If U ∈ L1
loc(Ω), one can define the Total Variation of U by

TV(U) = sup
{
−
∫

Ω

U divφ, φ ∈ C∞c (Ω,R2), |φ(x , y)| ≤ 1 ∀(x , y) ∈ Ω

}
.

If U ∈W1,1(Ω) this definition simplifies into

TV(U) =

∫
Ω

|DU(x , y)|dxdy .

First proposed for image restoration by Rudin, Osher and Fatemi in
1992, TV is still a very popular choice for image regularization

The L1 norm promotes sparsity, hence minimizing TV (U) tend to
produce images U with sparse gradients (“cartoon” images)

Applications: image deblurring, inpainting, spectrum extrapolation,
image decomposition, super-resolution, stereovision, etc.
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The discrete TV model

Definition (discrete total variation)
Let Ω a bounded subset of Z2, and let u : Ω→ R a discrete
(grayscaled) image. The discrete total variation of u is defined by

TVd(u) = ‖∇u‖1,2 :=
∑

(x,y)∈Ω

|∇u(x , y)| ,

where ∇ denotes a finite differences scheme, typically

∇u(x , y) =

(
u(x + 1, y)− u(x , y)
u(x , y + 1)− u(x , y)

)
.

Such discretizations produce images that cannot be easily
interpolated

Aim of the present work: propose a new discretization of TV that
reconciliates Total Variation minimization with linear interpolation (and
in particular Shannon interpolation)
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Interpolating TVd processed images

Given u0 compute a minimizer of E(u) := ‖u − u0‖2
2 + λTVd(u).

(a) reference image bicubic resampling of (a) spectrum of (a)

(b) TVd processed bicubic resampling of (b) spectrum of (b)
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Shannon sampling theory

The Shannon Sampling Theorem states that a band-limited function
can be exactly reconstructed from a discrete (but infinite) set of
samples.

Theorem (Shannon)
Consider an absolutely integrable function U : Rd → R whose Fourier
Transform

∀ξ ∈ Rd , Û(ξ) =

∫
Rd

U(x)e−i〈ξ,x〉 dx ,

satisfies Û(ξ) = 0 if ξ 6∈ [−π, π]d . Then we have

∀x ∈ Rd , U(x) =
∑
k∈Zd

U(k) sinc(x − k)

noting sinc((x1, . . . , xd )) =
d∏

j=1

sin (πxj )
πxj

, and setting sinc(0)
0 = 1.

The Shannon Total Variation workshop SIGMA’2016, Luminy 6 / 32



The 2D discrete Shannon interpolation (odd case)

Definition (Shannon interpolate of a 2D image)
Given a discrete domain Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}, and a
signal u : Ω→ R, we define the discrete Shannon interpolation of u
as the (M,N)-periodic trigonometric polynomial U : R2 → R,

U(x , y) =
1

MN

∑
−M

2 <α<
M
2

− N
2 <β<

N
2

û(α, β) e
2iπ
(
αx
M +

βy
N

)

if M and N are odd integers.
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The 2D discrete Shannon interpolation

Definition (Shannon interpolate of a 2D image)
Given a discrete domain Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}, and a
signal u : Ω→ R, we define the discrete Shannon interpolation of u
as the (M,N)-periodic trigonometric polynomial U : R2 → R,

U(x , y) =
1

MN

∑
−M

2 ≤α≤
M
2

− N
2≤β≤

N
2

εM(α)εN(β) û(α, β) e
2iπ
(
αx
M +

βy
N

)

where εM and εN are defined by

εM(α) =

{
1 if |α| < M/2

1/2 if |α| = M/2 εN(β) =

{
1 if |α| < N/2

1/2 if |α| = N/2

This interpolation can be used to efficiently compute subpixellic
geometrical transforms (rotations, translations, zoom, etc.)
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The Shannon total variation

We call Shannon total variation of the discrete image u the exact
continuous total variation of U.

Definition (Shannon total variation)

STV∞(u) := TV(U) =

∫
[0,M]×[0,N]

|DU(x , y)|dxdy .

For practical implementation, we can approximate STV∞(u) using a
Riemann sum (in practice we use an oversampling factor n = 2 or 3).

Definition (STVn)
For any integer n ≥ 1, set

STVn(u) =
1
n2

∑
(k,l)∈Ωn

∣∣DU
( k

n ,
l
n

)∣∣ =
1
n2

∑
(k,l)∈Ωn

|Dnu(k , l)| ,

where Dnu(k , l)=DU
( k

n ,
l
n

)
, and Ωn ={0, ... , nM−1}×{0, ... , nN−1}.
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Numerical computation of STVn(u)

The following proposition shows how Dnu can be efficiently computed
in the Fourier domain.

Proposition (fast computation of Dnu)

Let n > 1 and Ω̂n :=
[
− nM

2 ,
nM
2

)
×
[
− nM

2 ,
nM
2

)
∩ Z2 denote the

frequency domain associated to Ωn. For any (α, β) ∈ Ω̂n, we have

D̂nu(α, β) = n2 εM(α)εN(β) Znû(α, β) 2iπ
(
α/M
β/N

)
,

where

Znû(α, β) =

{
û(α, β) if |α| ≤ M

2 ,and |β| ≤ N
2

0 otherwise.

Besides, we have the upper bound |||Dn||| ≤ πn
√

2 .
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Numerical computation of STVn(u)

We set divn = −D∗n , by analogy with the continuous setting.

Proposition (fast computation of divn(p))
For any n > 1 and any p = (px ,py ) : Ωn → R2, we have

∀(α, β) ∈ Ω̂, d̂ivn(p)(α, β) = 2iπ
(
α

M
hp̂x

(α, β) +
β

N
hp̂y

(α, β)

)
,

where

hp̂x
(α, β) =



p̂x (α, β) if |α| < M
2 , |β| <

N
2

1
2

(
p̂x (α, β)− p̂x (−α, β)

)
if α = −M

2 , |β| <
N
2

1
2

(
p̂x (α, β) + p̂x (α,−β)

)
if |α| < M

2 , β = −N
2

1
4

∑
s1=±1
s2=±1

s1 p̂x (s1α, s2β) if (α, β) = (−M
2 ,−

N
2 )

and a similar definition stands for hp̂y
(α, β).
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Dual formulation

As in the discrete setting, a dual formulation of STVn can be easily
derived.

Proposition (dual formulation of STVn)

STVn(u) = max
p:Ωn→R2

〈 1
n2 Dnu,p〉 − δB∗(p)

where

δB∗(p) =

 0 if max
(x,y)∈Ωn

|p(x , y)| ≤ 1 ,

+∞ otherwise .

Sketch of proof.

1. The Legendre-Fenchel transform of ‖ · ‖1,2 is ‖ · ‖?1,2 = δB∗ ,

2. thus STVn(u) = ‖ 1
n2 Dnu‖1,2 = ‖ 1

n2 Dnu‖??1,2 = δ?B∗
( 1

n2 Dnu) ,

3. besides, the supremum involved in δ?B∗
is a maximum.
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Image denoising

Given a noisy image u0, we consider the STVn variant of the ROF
model

argmin
u:Ω→R

‖u − u0‖2
2 + λSTVn(u) ,

with primal-dual reformulation

argmin
u:Ω→R

max
p:Ωn→R2

‖u − u0‖2
2 + 〈 λn2 Dnu,p〉 − δB∗(p) ,

for which a solution can be numerically computed using the
Chambolle-Pock algorithm1.

1A. Chambolle, T. Pock: “A first-order primal-dual algorithm for convex problems
with applications to imaging”, Journal of Mathematical Imaging and Vision, 2011
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Image denoising

Primal-dual saddle-point problem:

argmin
u:Ω→R

max
p:Ωn→R2

‖u − u0‖2
2 + 〈 λn2 Dnu,p〉 − δB∗(p) ,

Chambolle-Pock Algorithm

Initialization: Choose τ, σ > 0 such as τσ||| λn2 Dn|||2 < 1, p0 ∈ R2|Ωn|

and u0 ∈ RΩ (for instance p0 = 0 and u0 = u0). Set ū0 = u0.

Iterations: For k ≥ 1, update pk , uk and ūk as follows,

pk+1(x , y) =
pk (x,y)+

σλ
n2 Dnūk (x,y)

max
(

1,
∣∣∣∣pk (x,y)+

σλ
n2 Dnūk (x,y)

∣∣∣∣)

uk+1(x , y) =
uk (x,y)+

τλ
n2 divn(pk+1)(x,y)+2τu0(x,y)

1+2τ

ūk+1(x , y) = 2 uk+1(x , y)− uk (x , y)
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Image denoising

(a) noisy image (σ = 20) (b) TVd (c) STV3

details of (b) details of (c)
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Image denoising

(a) noisy image (σ = 20) (b) TVd (c) STV3

bicubic resampling of (b) bicubic resampling of (c)
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Image denoising

(a) noisy image (σ = 20) (b) TVd (c) STV3

Shannon resampling of (b) Shannon resampling of (c)
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Inverse problems

We can also use STVn as a regularizer for inverse problem. Given a
linear operator A : RΩ → Rω, and u0 : ω → R,

argmin
u:Ω→R

‖Au − u0‖2
2︸ ︷︷ ︸

f (Au)

+ λSTVn(u) ,

with primal-dual reformulation (use f (Au) = f ??(Au))

argmin
u:Ω→R

max
p:Ωn→R2

q:ω→R

〈(
λ
n2 Dnu,Au

)
, (p,q)

〉
−
(
δB∗(p) + ‖ q

2 + u0‖2
2

)
.

and the Chambolle-Pock algorithm can be used again.
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Inverse problems

Chambolle-Pock Algorithm

Initialization: Choose τ, σ > 0 such as τσ
(
||| λn2 Dn|||

2
+ |||A|||2

)
< 1,

(p0,q0) ∈ R2|Ωn|×Rω and u0 ∈ RΩ (for instance p0 = 0, q0 = 0 and
u0 = u0). Set ū0 = u0.

Iterations: For k ≥ 1, update pk , qk uk and ūk as follows,

pk+1(x , y) =
pk (x,y)+

σλ
n2 Dnūk (x,y)

max
(

1,
∣∣∣∣pk (x,y)+

σλ
n2 Dnūk (x,y)

∣∣∣∣)

qk+1(x , y) =
2 qk (x,y)+2σ (Aūk−u0)

2+σ

uk+1(x , y) = uk (x , y) + τλ
n2 divn(pk+1)(x , y)− τA∗qk+1(x , y)

ūk+1(x , y) = 2 uk+1(x , y)− uk (x , y)
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Motion deblurring
Consider that Au = k ∗ u is the convolution between u and a given
motion blur kernel k .

(a) blurry and noisy (σ = 2) (b) discrete TV (TVd) (c) Shannon TV (STV3)

details of (a) Shannon resampling of (b) Shannon resampling of (c)

The Shannon Total Variation workshop SIGMA’2016, Luminy 20 / 32



Spectrum extrapolation
Now A is a frequency masking operator, of the type

Âu(α, β) =

{
û(α, β) if (α, β) ∈ ω̂0 ,

0 otherwise .

(a) input u0 (b) TVd (c) STV3

spectrum of (a) spectrum of (b) spectrum of (c)
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Spectrum extrapolation
Now A is a frequency masking operator, of the type

Âu(α, β) =

{
û(α, β) if (α, β) ∈ ω̂0 ,

0 otherwise .

(a) input u0 (b) TVd (resampled) (c) STV3 (resampled)

spectrum of (a) spectrum of (b) spectrum of (c)
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Regularization with weighted frequencies

Given an input image u0 : Ω→ R and a weight mapping ξ : Ω→ R+,
we compute

argmin
u:Ω→R

‖û − û0‖2
ξ + λSTVn(u) ,

where

‖û − û0‖2
ξ =

∑
(α,β)∈Ω̂

ξ(α, β) · |û(α, β)− û0(α, β)|2 ,

is a weighted `2 square distance between u and u0, which makes the
regularization adaptative with respect to the frequency.

An interesting choice of weighting:

∀(α, β) ∈ Ω̂, ξ(α, β) = e
−π2σ2

(
α2

M2 + β2

N2

)

for low frequencies, ξ(α, β) is high, it enforces û(α, β) ≈ û0(α, β);
for high frequencies, û(α, β) is driven by the regularity term STVn.
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is a weighted `2 square distance between u and u0, which makes the
regularization adaptative with respect to the frequency.

An interesting choice of weighting:

∀(α, β) ∈ Ω̂, ξ(α, β) = e
−π2σ2

(
α2

M2 + β2

N2

)

for low frequencies, ξ(α, β) is high, it enforces û(α, β) ≈ û0(α, β);
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Regularization with weighted frequencies

(a) initial image u0 details of (a) spectrum of (a)

(b) frequency attenuation details of (b) spectrum of (b)
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Regularization with weighted frequencies

(a) initial image u0 details of (a) spectrum of (a)

(c) restored with STV3 details of (c) spectrum of (c)
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Regularization with weighted frequencies

Shannon resamplings of the initial image

Shannon resamplings STV-processed image
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Regularization with weighted frequencies

(a) initial image spectrum of (a)
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Regularization with weighted frequencies

(b) restored with STV3 spectrum of (b)
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Regularization with weighted frequencies

(a) initial image details of (a) Shannon resampling of (a)

(b) restored with STV3 details of (b) Shannon resampling of (b)
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Denoising a rotationally invariant image

Use ROF to denoise a rotationally invariant image.
smoothsharp

sharpsmooth

(a) reference (b) discrete TV (c) Shannon TV

Control isotropy level by displaying the gray-levels as a function of the
distance from the center of the image.
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Improvement of the isotropy
We can force the isotropy of the frequency support by adding the
constraint Supp(û) ⊂ DΩ̂, where

DΩ̂ =

{
(α, β) ∈ Ω̂,

(
α

M/2

)2

+

(
β

N/2

)2

≤ 1

}
.

We consider the constrained problem

argmin
u:Ω→R

‖u − u0‖2
2 + λSTVn(u) subject to Supp(û) ⊂ DΩ̂ .
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constraint Supp(û) ⊂ DΩ̂, where

DΩ̂ =

{
(α, β) ∈ Ω̂,

(
α

M/2

)2

+

(
β

N/2

)2

≤ 1

}
.

We consider the constrained problem

argmin
u:Ω→R

‖u − u0‖2
2 + λSTVn(u) subject to Supp(û) ⊂ DΩ̂ .
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Conclusion

We studied a Fourier-based TV model called STV.

STV reconciliates TV regularization with Shannon interpolation.

STV-based minimization problems can be handled using
classical duality tools.

The STV model comes at the expense of a few Fourier
Transforms at each iteration of the optimization process, which is
an affordable cost considering the strong benefits in terms of
image quality.

Preliminary results indicate an excellent level of isotropy offered
by the STV model.

A new STV-based frequency restoration filter achieves
interesting results in terms of aliasing removal.

Thank you!
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