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Total Variation in image processing

Let Q be an open subset of R? and U : Q — R an intensity image
(U(x, y) is the light intensity at point (x, y) of the plane).

If U € L} (), one can define the Total Variation of U by

TV(U):sup{—/ Udivg, ¢ € CZ(Q,R?),|¢(x, )| §1V(X,y)e§2}.
Q

If U € W'1(Q) this definition simplifies into

TV(U) = /Q [DU(x, y)| dxdy .
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Total Variation in image processing

Let Q be an open subset of R? and U : Q — R an intensity image
(U(x, y) is the light intensity at point (x, y) of the plane).

If U e L} .(Q2), one can define the Total Variation of U by

loc

TV(U):sup{—/ Udivg, ¢ € CZ(Q,R?),|¢(x,y)| <1 V(x,y)eQ}.
Q

If U € W'1(Q) this definition simplifies into
TV(U) :/ [DU(x, y)| dxdy .
Q
First proposed for image restoration by Rudin, Osher and Fatemi in

1992, TV is still a very popular choice for image regularization

The L' norm promotes sparsity, hence minimizing TV(U) tend to
produce images U with sparse gradients (“cartoon” images)

Applications: image deblurring, inpainting, spectrum extrapolation,
image decomposition, super-resolution, stereovision, etc.
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The discrete TV model

Definition (discrete total variation)

Let Q a bounded subset of Z?, and let u : Q — R a discrete
(grayscaled) image. The discrete total variation of u is defined by

V() = [Vulliz:= Y [Vu(x,y),
(x.y)eQ

where V denotes a finite differences scheme, typically

_( ulx+1,y) —u(x,y)
Vu(x,y) = ( u(x,y+ 1) — t(x.y) )

Such discretizations produce images that cannot be easily
interpolated
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Interpolating TV processed images

Given up compute a minimizer of E(u) := ||u — upl[3 + ATV(u).

(a) reference image bicubic resampling of (a) ecr

(b) TV processed bicubic resampling of (b) spectru f

()
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The discrete TV model

Definition (discrete total variation)

Aim of the present work: propose a new discretization of TV that
reconciliates Total Variation minimization with linear interpolation
(and in particular Shannon interpolation)
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Shannon sampling theory

The Shannon Sampling Theorem states that a band-limited function
can be exactly reconstructed from a discrete (but infinite) set of
samples.

Theorem (Shannon)
Consider an absolutely integrable function U : R — R whose Fourier
Transform

veeR?, U= | Ux)e " ax,

Rd

satisfies U(¢) = 0if £ & [—m, 7]°. Then we have

Vx e RY, Z U(k) sinc(x — k)
kezd
d
noting sinc((x1, ..., Xq)) = H S'"ﬁi’”f and setting 249 — 1.

j=1
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The 2D discrete Shannon interpolation (odd case)

Definition (Shannon interpolate of a 2D image)
Given a discrete domain 2 = {0,..., M -1} x {0,...,N—1},and a
signal u : Q — R, we define the discrete Shannon interpolation of u
as the (M, N)-periodic trigonometric polynomial U : R? — R,

; By

U(X’ y) MN Z U(Ol,

—Yaclt
7N<ﬁ<2

if M and N are odd integers.
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The 2D discrete Shannon interpolation

Definition (Shannon interpolate of a 2D image)

Given a discrete domain Q = {0,...,M—1} x {0,...,N—1},and a
signal u : Q2 — R, we define the discrete Shannon interpolation of u
as the (M, N)-periodic trigonometric polynomial U : R? — R,

ax By)

1 2im +
Ulx,y) = )u(a,B)e <M N
MN <a<
~N<p<

Nwzm\s
(SN

where ¢y, and ey are defined by

1 if|a] < M/2 B 1 iflal < N/2
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The 2D discrete Shannon interpolation

Definition (Shannon interpolate of a 2D image)

Given a discrete domain Q = {0,...,M—1} x {0,...,N—1},and a
signal u : Q2 — R, we define the discrete Shannon interpolation of u
as the (M, N)-periodic trigonometric polynomial U : R? — R,

ax By)

1 2im +
Ulx,y) = )u(a,B)e <M N
MN <a<
~N<p<

Nwzm\s
(SN

where ¢y, and ey are defined by
B 1 if|al < M/2 _ 1 if|a| < N/2
em(a) { 12 ifla] = Mj2  NO) { 1/2 it o] = N/2

This interpolation can be used to efficiently compute subpixellic
geometrical transforms (rotations, translations, zoom, etc.)
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The Shannon total variation

We call Shannon total variation of the discrete image u the exact
continuous total variation of U.

Definition (Shannon total variation)

STV (u) :=TV(U) = / IDU(x, y)| dxdy .
[0,M]x[0,N]
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The Shannon total variation

We call Shannon total variation of the discrete image u the exact
continuous total variation of U.

Definition (Shannon total variation)

STV (u) :=TV(U) = / IDU(x, y)| dxdy .
[0,M]x[0,N]

For practical implementation, we can approximate STV (u) using a
Riemann sum (in practice we use an oversampling factor n = 2 or 3).
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The Shannon total variation

We call Shannon total variation of the discrete image u the exact
continuous total variation of U.

Definition (Shannon total variation)
STV (u) :=TV(U) = / IDU(x, y)| dxdy .
[0,M]x[0,N]

For practical implementation, we can approximate STV (u) using a
Riemann sum (in practice we use an oversampling factor n = 2 or 3).

Definition (STV,)
For any integer n > 1, set

STvn(u):nl > |DU(n,n)|:% > IDauk, 1),

(k. EQn (k,)EQn

where Dyu(k,)=DU(, 1), and Q,={0, ...,nM—1} x {0, ...,nN—1}.
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Numerical computation of STV ,(u)

The following proposition shows how D,u can be efficiently computed
in the Fourier domain.
Proposition (fast computation of D,u)

Letn > 1and Q, := [~ M), [_oM 1M A 72 denote the
frequency domain associated to Q,,. For any («, 8) € Q,, we have

Du(a, ) = P em(a)en(8) Zal(ev, B) 2ir <(§%> :
where

Zyi(a, B) = { ﬁ(Ogﬂ) if o] < ¥ and | < ¥

otherwise.
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Numerical computation of STV ,(u)

The following proposition shows how D,u can be efficiently computed
in the Fourier domain.
Proposition (fast computation of D,u)

Letn>1and Q,:= [ M) » [—oM M) 72 denote the

frequency domain associated to Q,. For any («, 8) € Q,, we have

Bati(a, B) = P em(@)en(B) Zol(a, B) 2ir <%§%’ > 7

where

Zyi(, B) = { B(e ) o] < ¥, end 5] < §

otherwise.

Besides, we have the upper bound |||Dy||| < 7nv2.
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Numerical computation of STV ,(u)
We set div, = —Dj},, by analogy with the continuous setting.

Proposition (fast computation of div,(p))
Forany n>1and any p = (px,py) : QO — R2, we have
Y(e, B) € Q, diva(p)(a, B) = 2ir (M 5. (c, B) + f/hpy( /3)) ,

where

Px(a, B) iflo] < ¥, 8] < §

3 (Px(, B) = Px(—a, B)) =4, |8 <3
hg,(c, B) = %(A( ,B) +Bx(e,—B)) iflof <Y, p=—4
1Y sip(sia, sB)  if (o, 8) = (-4, - %)

sy=%1
sp=+1

and a similar definition stands for hg (c, 3).
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Dual formulation

As in the discrete setting, a dual formulation of STV, can be easily
derived.

Proposition (dual formulation of STV,,)

STV, (u) = max (%Dntl, p) — 6. (P)

p:Qp—R:
where

(va)EQﬂ
+o0o otherwise.

0 if max |p(x,y)| <1,
6m.(P) =

Sketch of proof.

1. The Legendre-Fenchel transform of || - [[12is || - [T 2 = d. ,
2. thus STV, (u) = || sDplll12 = \|,,2D,,u||1 5y = 5@*(%Dnu),
3. besides, the supremum involved in 67, is a maximum.
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Image denoising

Given a noisy image ug, we consider the STV, variant of the ROF
model

argmin ||u — up||3 + ASTV,(u),

u:Q—R

with primal-dual reformulation

argmin max lu— wll3 + (Dnu, p) — 6. (P)
u:Q—R P2

for which a solution can be numerically computed using the
Chambolle-Pock algorithm?.

TA. Chambolle, T. Pock: “A first-order primal-dual algorithm for convex problems
with applications to imaging”, Journal of Mathematical Imaging and Vision, 2011
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Image denoising
Primal-dual saddle-point problem:

argmin_max_|[u — to3 + (DnU, p) — 02, (p)
u:Q—R P:p—R

Chambolle-Pock Algorithm

Initialization: Choose 7,0 > 0 such as 7o||| 3Dyl < 1, p° € R2I%|
and u® € R% (for instance p® = 0 and u° = ). Set &° = u°.

lterations: For k > 1, update p*, uk and &* as follows,

A -
P (x,y)+ %5 Dol (x,y)

K-+1
o pi(x,y) = -
max (1,’pk(x,y)+?Dnuk(x,y)D
K TA . K1
k1 U (xy)+ iz diva(p ) (x,y) 27 Uo (X, Y)
° ui(x,y) = e

o Ut (x,y) =2u(x,y) — uk(x,y)
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Image denoising

“details of (b) details of (c)
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Image denoising

(a) noisy image (o = 20)

- A - A
bicubic resampling of (b) bicubic resampling of (c)
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Image denoising

& A & ]
Shannon resampling of (b) Shannon resampling of (c)
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Inverse problems

We can also use STV, as a regularizer for inverse problem. Given a
linear operator A: R? — R¥, and up : w — R,

argmin ||Au — upl|3 + ASTV,(v),
UQDR e
f(Au)

with primal-dual reformulation (use f(Au) = f**(Au))

argmin max_ ((2Dnu, Au) . (p,q)) — (5@* (p)+ 112+ uo|§> :
u:Q—R p:Qn—%
qw—

and the Chambolle-Pock algorithm can be used again.
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Inverse problems

Chambolle-Pock Algorithm

Initialization: Choose 7,0 > 0 such as 7o (\H%Dnmz + HIAHIZ) <1,

(p°, @°) € R2I%l xR“ and u® € R? (for instance p° = 0, g° = 0 and
u® = up). Set w° = uO.

lterations: For k > 1, update p*, g* u* and T* as follows,

Ar -
o PFH(x,y) = P (x.y)+ %5 Dal (x,y)
y) =

max (1, p"(x,y)+%5\DnDk(x,y)D

2 ¢*(x,y)+20 (ATF—u
° gt(x,y) = )

o UktI(x,y) = Uuk(x,y) + Zdiva(p"*)(x,y) — TA* Q"1 (X, y)

o Ut (x,y) =2uF(x,y) — uk(x,y)
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Motion deblurring

Consider that Au = k  u is the convolution between u and a given
motion blur kernel k.

Z

_ah
Shannon resampling of (c)

_ah
details of (a) Shannon resampling of (b)

The Shannon Total Variation workshop SIGMA’2016, Luminy 20/32



Spectrum extrapolation
Now A is a frequency masking operator, of the type
(7ﬁ) (ozﬁ) if (a, B) € g,

otherwise .
a) input uo b) TV c) STV
spectrum of (a) ‘spectrum of (b) spectrum of (c)
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Spectrum extrapolation

Now A is a frequency masking operator, of the type

™ [ U, B) if (o, B) € W0,
Auler, ) = { 0 otherwise . i

AT

(a) input uy (b) TV? (resampled) (c) STV; (resampled)

e

spectrum of (a) épectrum of (b) spectrum of (c)
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Regularization with weighted frequencies

Given an input image up : Q — R and a weight mapping £ : Q — R,
we compute

argmin ||T — Gol|2 + ASTV,(u),
u:Q—R

where

lT—dolE= D" &(eB) - [Gler B) — Go(ev B2,

(o,8)€Q

is a weighted /2 square distance between u and vy, which makes the
regularization adaptative with respect to the frequency.
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Regularization with weighted frequencies

Given an input image up : Q — R and a weight mapping £ : Q — R,
we compute

argmin ||T — Gol|2 + ASTV,(u),

u:Q2—R

where

lT—dolE= D" &(eB) - [Gler B) — Go(ev B2,

(o,8)€Q

is a weighted /2 square distance between u and vy, which makes the
regularization adaptative with respect to the frequency.

An interesting choice of weighting:

V(e, B) €Q, &(a,B) = e’”z"z(f;*ﬁz)

e for low frequencies, ¢(a, ) is high, it enforces uU(a, 3) ~ Uy(a, B);
@ for high frequencies, u(a, 3) is driven by the regularity term STV,,.
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Regularization with weighted frequencies

] spetrum of (a)

r

details of (b)

frequency attenuation

()

spectrum of (b)
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Regularization with weighted frequencies

spectrum of (a)

restored |t STV;3

(c) details of (c) spectrum of (c)
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Regularization with weighted frequencies

>

Shannon resamplings of the initial image

YN

Shannon resamplings STV-processed image
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Regularization with weighted frequencies

(a) initial image spectrum of (a)
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Regularization with weighted frequencies

2

(b) restored with STV3 spetrm of (b)
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Regularization with weighted frequencies

(a) initial image

y

")
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Denoising a rotationally invariant image

Use ROF to denoise a rotationally invariant image.

sharp smooth

(a) reference (b) discrete TV (c) Shannon TV

Control isotropy level by displaying the gray-levels as a function of the
distance from the center of the image.

1 Teforence 1 : ! T relerence
discrete TV STVy
0.8 0.8
-
& 0.6 A
£ .
E 04f \
A
02 0.2 N
0 L L L L L 0 L L L L L
28 30 32 34 36 38 10 28 30 32 34 36 38 10
distance from center distance from center
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Improvement of the isotropy

We can force the isotropy of the frequency support by adding the
constraint Supp(u) C Dg, where

o= feen ()" () <1}

The Shannon Total Variation workshop SIGMA2016, Luminy

31/32



Improvement of the isotropy

We can force the isotropy of the frequency support by adding the
constraint Supp(u) C Dg, where

o= feen ()" () <1}

We consider the constrained problem

argmin ||u — uo|[3 + ASTV,(u) subjectto Supp(l) C Dg.
uQ—R
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Improvement of the isotropy

We can force the isotropy of the frequency support by adding the
constraint Supp(u) C Dg, where

o= feen ()" () <1}

We consider the constrained problem

argmin ||u — uo|[3 + ASTV,(u) subjectto Supp(l) C Dg.
uQ—R

T T : r :
1 — reference

STV;
0.8 | STV; (with disk)
2 06 b
g
£
E 04
02
0+
. . . : ‘
28 30 32 34 36 38 40

distance from center
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Improvement of the isotropy

We can force the isotropy of the frequency support by adding the
constraint Supp(u) C Dg, where

o= feen ()" () <1}

We consider the constrained problem

argmin ||u — uo|[3 + ASTV,(u) subjectto Supp(l) C Dg.
uQ—R

1 T 7 g Telerence 1 ! ' reference
STV STV; (with disk)
08 L STV; (with disk) 08 L
z 06 - z 0.6
= E
g g
g 04 g 04
0.2 + 0.2 +
0+ 0+
. . . . . . . . . .
28 30 32 34 36 38 40 28 30 32 34 36 38 40
distance from center distance from center
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Conclusion

We studied a Fourier-based TV model called STV.
@ STV reconciliates TV regularization with Shannon interpolation.

@ STV-based minimization problems can be handled using
classical duality tools.

@ The STV model comes at the expense of a few Fourier
Transforms at each iteration of the optimization process, which is
an affordable cost considering the strong benefits in terms of
image quality.

@ Preliminary results indicate an excellent level of isotropy offered
by the STV model.

@ A new STV-based frequency restoration filter achieves
interesting results in terms of aliasing removal.
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Conclusion

We studied a Fourier-based TV model called STV.
@ STV reconciliates TV regularization with Shannon interpolation.

@ STV-based minimization problems can be handled using
classical duality tools.

@ The STV model comes at the expense of a few Fourier
Transforms at each iteration of the optimization process, which is
an affordable cost considering the strong benefits in terms of
image quality.

@ Preliminary results indicate an excellent level of isotropy offered
by the STV model.

@ A new STV-based frequency restoration filter achieves
interesting results in terms of aliasing removal.

Thank you!
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