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@ Isogeometric Analysis (IgA) is a unifying framework for

@ Computed aided design (CAD)
@ Finite element analysis (FEA)

@ same functions (CAD primitives)

@ to describe the geometry of the domain
@ to define the approximation space

@ Includes standard FEA, but offers other possibilities:

@ Precise and efficient geometric modeling

@ Simplified mesh refinement

@ Smooth basis functions with compact support
@ Superior approximation properties per dofs

o ...

@ Applications

@ structural analysis
electromagnetism
fluids
shape optimization
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Outline

@ Generalized B-splines
@ GB-splines and Local refinements
@ Hierarchical GB-splines
@ Generalized splines over T-meshes

9 Generalized B-splines in simulation
@ GB-splines based IgA: Galerkin
@ GB-splines based IgA: Collocation

© Spectral Analysis of (G)B-spline IgA matrices
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B-splines

polynomial spline spaces
a:xo<x1<...<x,,+1:b

{5 S C’[a, b] D S|[xxie1) € ]P’p, i=0,..., n}

—2

Ppi=<1,x,...,xP7% xP7% xP >,

@ B-splines are a special form to represent any spline
function/curve/surface
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B-splines

polynomial spline spaces
a=x<x1<...<Xpy1=2>b
{se C'a,b] : s|jx,x1) €EPp, i =0,...,n}
 xPLxP >,

Ppi=<1,x,...,x°"

@ B-splines are a special form to represent any spline
function/curve/surface

@ Why are B-splines so popular?

o they are the best way to represent splines both from the
geometric and computational point of view

o there exist efficient and stable algorithms for their
evaluation/manipulation
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B-splines

Spectral Analysis

Local Refinements Hierarchical bases T-meshes

@ Given a set of knots

usually & = =651 < - < Epy1 = = Enipi1

={& <& < <nppar)
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B-splines
@ Given a set of knots == {& < & < -+ < &pipy1}
usually & =+ =€p41 <+ < €pp1 =" = Enpia

@ B-spline basis functions are defined recursively

B . ith B-spline, of degree p, with knots =

i=

they have minimum support

they are a basis for piecewise polynomials

they are all non negative and form a partition of unity
they are locally linearly independent

efficient refinement processes knot insertion/degree raising
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Beyond polynomials: constrained curves/surfaces

@ in CAGD curves/surfaces are often subjected to constraints
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Beyond polynomials: constrained curves/surfaces

@ in CAGD curves/surfaces are often subjected to constraints

e reproduction constraints
exact reproduction of main curves/surfaces (conic sections, ...)
e shape constraints
curvature orientation, torsion signs,...
e tolerance constraints
offset constraints,...
°

@ polynomials/ piecewise polynomials (B-splines) are not sufficient
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ConiC sections = NURBS Non Uniform Rational B-Splines

Given {BZ(t), i=1,--}, Wi={w; >0, i=1,--}, weights

1

R‘(,pz),w(t) =

@ NURBS: projective transformation of B-splines
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ConiC sections = NURBS Non Uniform Rational B-Splines

Given {BZ(t), i=1,--}, Wi={w; >0, i=1,--}, weights

(p)
w;B = (t
Rf(,pz),vv(t) = %
> wiBi=(t)
@ NURBS: projective transformation of B-splines
positivity

p. of unity

°
°
@ compact support
@ smoothness

°
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ConiC sections = NURBS Non Uniform Rational B-Splines

Given {BZ(t), i=1,--}, Wi={w; >0, i=1,--}, weights

(p)
w;B;Z(t
REw(t) = —_((p))
> j1 wiB=(t)
@ NURBS: projective transformation of B-splines

positivity
p. of unity

°
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@ compact support
@ smoothness

°

°

reproduce conic sections

@ DRAWBACKS Geometry

@ NURBS parametrization of conic sections does not correspond to natural

arc-length parametrization: unevenly spaced points
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ConiC sections = NURBS Non Uniform Rational B-Splines

Given {B2(t), i=1,---}, W:={w; >0, i=1,---}, weights

@ o wWiBZ()
Rizw(t) = )
> wiB=(t)
@ NURBS: projective transformation of B-splines
@ positivity
@ p. of unity
@ compact support
@ smoothness
o
]

reproduce conic sections

@ DRAWBACKS Geometry

@ NURBS parametrization of conic sections does not correspond to natural
arc-length parametrization: unevenly spaced points
@ the rational model cannot encompass transcendental curves: many of

them (helix, cycloid, ...) are of interest in applications
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Alternatives: reproducing conic sections, cycloids ....
GEOMETRY
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Alternatives: reproducing conic sections, cycloids ....

GEOMETRY
<1t tPT2 PP >
<1,t,..., P72 et et >
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ANALYSIS
d p—2 +p—1 4p pP—3 p—2 1p—1
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alternatives to the rational model retaining properties of B-splines?
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Alternatives: Polynomials vs Tchebycheff

° Pp:=<1,t,...,tP72 tP71 tP >
° P, — T, extended Tchebycheff (EC) space on [a, b]

@ any non trivial element has at most p zeros in [a, b] (counting multiplicity)
@ kernel of differential operators with real (constant) coefficients

@ T, C CP containing constants

@ T, possesses a Bernstein-like basis in any [c,d] C [a, b] iff {f' : f € Tp} is
an EC space in [a, b]

@ in T, all classical geometric design algorithms can be developed for the
Bernstein-like basis (blossoms)

@ = EC spaces are good for design

[Goodman, Mazure, JAT, 2001]
[Carnicer, Mainar, Pefia; CA 2004],

[Mazure, AiCM, 2004], [Mazure, CA, 2005], [Mazure, NM, 2011].

9/49



GB-splines GB-splines in simulation Spectral Analysis

Local Refinements Hierarchical bases T-meshes

Alternatives: Polynomials vs Generalized Polynomials

Ppi=<1,t,...,tP72 tP71 tP >



GB-splines GB-splines in simulation Spectral Analysis

Local Refinements Hierarchical bases T-meshes

Alternatives: Polynomials vs Generalized Polynomials

Ppi=<1,t,...,tP72 tP71 tP >
u,v
HDP
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Alternatives: Polynomials vs Generalized Polynomials
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Alternatives: Polynomials vs Generalized Polynomials

° Ppi=<1,t,...,tP72 tP71 tP >
Vo -2
° Povi=<1,t,...,tP7 % u(t),v(t) >, p>2 t€a b
° P> extended Tchebycheff space on [a, b]
@ trigonometric functions < 1,t,...,tP~2 cosat,sinat >
@ exponential functions < 1,¢t,...,tP72 et e~ ot >
° ...
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Local Refinements Hierarchical bases T-meshes

Alternatives: Polynomials vs Generalized Polynomials

P5¥ possesses a Bernstein-like basis

Ppi=<1,t,...,tP72 tP71 tP >
PoY =< 1,t,...,t7 2 u(t), v(t) >, p>2 te€lab]
P, extended Tchebycheff space on [a, b]

P
> Bi(t)
=0

&
dti
&
dti

By (0)

B (1)

1

0.9

0.8

07

06

05

0.4

03

0.2

0.1

By B3

Bi B>
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Alternatives: Polynomials vs Generalized Polynomials

° Ppi=<1,t,...,tP72 tP71 tP >
° PoY =< 1,t,...,t7 2 u(t), v(t) >, p>2 te€lab]
° P, extended Tchebycheff space on [a, b]
P5¥ possesses a Bernstein-like basis .
P .
DBy = 1 b\ Bo Bs
j=0 0.6
& Bk (0 0,;=0 k—1 . & =
o «(0) = J =Y., k=14, ::
i By (1 0, j=0 k—1 o2
g (1) = y J =Y., p—k— L -

[Goodman, Mazure, JAT, 2001]

[Mainar, Pefia, Sanchez-Reyes, J, CAGD 2001]
[Carnicer, Mainar, Pefia; CA 2004]
[Costantini, Lyche, Manni, NM, 2005]
[Mazure, CA, 2005]

10/49



GB-splines GB-splines in simulation Spectral Analysis

Local Refinements Hierarchical bases T-meshes
Alternatives to the rational model

@ rational model:

P, — B-splines — NURBS



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes
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Alternatives to the rational model

@ rational model: P, — B-splines — NURBS

@ alternative: P, :=<1t,... ,fp_27 A
Pov :=<1,t,...,tP7% u(t), v(t) >

@ construct/analyse spline spaces with sections in PoY with suitable

bases (analogous to B-splines) ‘ Generalized B-splines‘
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Alternatives to the rational model

@ rational model: P, — B-splines — NURBS

@ alternative: Ppi=<1,t,...,tP72 tP71 tP >
Pov :=<1,t,...,tP7% u(t), v(t) >

@ construct/analyse spline spaces with sections in PoY with suitable

bases (analogous to B-splines) ‘ Generalized B-splines‘

[Schumaker, 1966],

[Jerome, Schumaker, JAT 1976],

[Lyche, CA 1985],

[Koch, Lyche, Computing 1993],

[Marusic, Rogina, JCAM 1995],

[Kvasov, Sattayatham, JCAM 1999],

[Costantini, CAGD 2000],

[Wang, Fang; JCAM 2008],

[Kavcic, Rogina, Bosner, Math. Comput. in Simulation, 2010], ...
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Generalized B-splines

Local Refinements Hierarchical bases T-meshes

@ Given a set of knots =:={£1 < & < -+ < &pipy1)
P .

PoYi =< 1,t, ..., tP=2 0 (t), vi(t) >,
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Generalized B-splines

@ Given a set of knots =:={£1 < & < -+ < &pipy1)
IP’:"’V" =< 1ty ..., tPT2 u(t), vi(t) >,

@ Generalized B-spline basis functions are defined recursively

B . i-th Generalized B-spline, of degree p, with knots =

i=
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Generalized B-splines

Local Refinements Hierarchical bases T-meshes

T ={&a <& < <Engpr1h
Dp_lvl'(gl') = 07

{o Ui Vi, by, <1t P72 u(t), vi(t) >, < DP~1u;, DP=1v; > E. Tchebychef
DP~lvi(&iy1) > 0,

DP~1ui(€) > 0,

DP1u;(gi1) =0,
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Generalized B-splines

Local Refinements Hierarchical bases T-meshes

Z={a <& < S nppith,
{o Ui Vi, by, <1t P72 u(t), vi(t) >, < DP~1u;, DP=1v; > E. Tchebychef

DP=Lvi(&) =0, DP~1vi(&i41) >0, DP=Lui(&) >0, DP~lui(€i1) =0,
DP~1yi(t) e
BW Dppill"i(ﬁia(d)) t €& &)
Z2(t) = DP™ " u; t
i2(t) rTan.y ¢ €& &)
0 elsewhere

1 1 —1 1
= [* 0 VBE (s)ds — [* 3P UBY D(s)ds

3 .

— 1
L= fjg §I.(pz)(s)ds
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1 1 —1 1
= [* 0 VBE (s)ds — [* 3P UBY D(s)ds

3 .

— 1
L= fjg §I.(pz)(s)ds
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Generalized B-splines
== {E S E S < §n+p+1}
{o Ui Vi, by <1t P72 u(t), y, (t) >, < DP~1y;, DP~1y; > E. Tchebychef
DP=1vi(&) =0, DP7lvi(&41) > “lui(¢) >0, DPui(§41) =0,
Dpflv,' —&;

- W’.(;’?ﬂ t €& &iv1) o #ﬁ'& t €&, &iv1)
v = pP—1y; - — Eipa—t . .
Bi=(t): W:(g?l) t € [6i41,€iv2) Bi=(t) = 5f+2+i§r'+l t€ Gt 8iv)

0 elsewhere 0 elsewhere
p sP-Up P 1) t S(p—1) p(p—1)
E f_ ,,: B;= (s)ds — f_oo 5i+1,: B,+1,:( s)ds
L P
PR B (s)ds
B-splines
(p) t <(p—1) p(p—1) t (p=1) p(p-1)
Bl,_( ) - f—oo 5i,5 B/,E (S)dS - f— 5/—0—1 = B/+1 = (S)ds
5P .— 1
h= f'_"z B}f&vyz(s)ds
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Generalized B-splines

={&a <6 << Enpra )y
{oy vy, o}, <1yt tP72 u(t), vi(t) >, < DP~tu;, DP~1y; > E. Tchebychef
DP=1vi(&) =0, DP~lvi(&i41) >0, DP=1ui(&) >0, DPlui(&i41) =0,

B B

= =

@ All Tchebycheffian spline spaces good for design can be built by means of
integral recurrence relations, [Mazure M.L., NM 2011]
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Local Refinements Hierarchical bases T-meshes

@ Given a set of knots =:={§1 < & < -+ < &pipr1)
P N

Py =< 1,t, ..., tP2 0 (t), vi(t) >,
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Generalized B-splines

@ Given a set of knots =:={§1 < & < -+ < &pipr1)
P =< 1,t, ..., tP72, ui(t), vi(t) >,

@ Generalized B-spline basis functions are defined recursively

é,.(f;) . i-th GB-spline, of degree p, with knots =

14/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Generalized B-splines

@ Given a set of knots =:={§1 < & < -+ < &pipr1)
P =< 1,t, ..., tP72, ui(t), vi(t) >,

@ Generalized B-spline basis functions are defined recursively
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they have minimum support

they are a basis for piecewise P)""

they are all non negative and form a partition of unity
they have smoothness related to knot mutiplicity
they are locally linearly independent
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Generalized B-splines

@ Given a set of knots =:={§1 < & < -+ < &pipr1)
Py =< 1,8, ..., tP72, ui(t), vi(t) >,

@ Generalized B-spline basis functions are defined recursively

é,.(f;) . i-th GB-spline, of degree p, with knots =

they have minimum support

they are a basis for piecewise P)""

they are all non negative and form a partition of unity
they have smoothness related to knot mutiplicity
they are locally linearly independent

EXP3 =P3" :=<1,t,e* e" > a — 0: B-splines

b Yo b b
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Generalized B-splines

@ Given a set of knots =:={§1 < & < -+ < &pipr1)
P =< L, t, ..., tP72, ui(t), vi(t) >,

@ Generalized B-spline basis functions are defined recursively

é,.(f;) . i-th GB-spline, of degree p, with knots =

they have minimum support

they are a basis for piecewise P)""

they are all non negative and form a partition of unity
they have smoothness related to knot mutiplicity
they are locally linearly independent

TRIG, = Py" :=< 1,cosat,sinat >« — 0: B-splines
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@ knot insertion (refinement with positive coefficients)
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Generalized B-splines

@ knot insertion (refinement with positive coefficients)

@ trig/exp: same approximation properties as B-splines

< 1,t,cosat,sinat >, a = %w (light) and algebraic C? cubics (dark)
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@ multivariate setting: Tensor-product
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Tensor-product structures:DRAWBACKS

Local Refinements Hierarchical bases T-meshes

@ multivariate setting: Tensor-product

@ Otensor-product structure NO efficient local refinement
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Local Tensor-product structures

@ ®Otensor-product structure NO efficient local refinements
Alternatives local tensor-product structure (polynomial splines):
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Local Tensor-product structures

@ ®Otensor-product structure NO efficient local refinements
Alternatives local tensor-product structure (polynomial splines):

o T-splines/Analysis-Suitable T-splines
[Sederberg et al., ACMToG, 2003], [Bazilevs, et al. CMAME 2010],
[Beirdo da Veiga, et al. CMAME, 2012]...
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Local Tensor-product structures

@ ®Otensor-product structure NO efficient local refinements
Alternatives local tensor-product structure (polynomial splines):

o T-splines/Analysis-Suitable T-splines
[Sederberg et al., ACMToG, 2003], [Bazilevs, et al. CMAME 2010],
[Beirdo da Veiga, et al. CMAME, 2012]...

o LR splines
[ Dokken, Lyche, Pettersen, CAGD 2013],

e Hierarchical splines
[Forsey, Bartels, CG 1988] [Kraft, 1997] [Giannelli, Juttler, Speleers,
CAGD 2012], ...
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Local Tensor-product structures

@ ®Otensor-product structure NO efficient local refinements
Alternatives local tensor-product structure (polynomial splines):

o T-splines/Analysis-Suitable T-splines
[Sederberg et al., ACMToG, 2003], [Bazilevs, et al. CMAME 2010],
[Beirdo da Veiga, et al. CMAME, 2012]...

o LR splines
[ Dokken, Lyche, Pettersen, CAGD 2013],

e Hierarchical splines
[Forsey, Bartels, CG 1988] [Kraft, 1997] [Giannelli, Juttler, Speleers,
CAGD 2012], ...

e Splines over T-meshes
[Deng, Chen, Feng, JCAM 2006], [Schumaker, Wang, NM 2011],
[Schumaker, Wang, CAGD 2012]
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Local Tensor-product structures: Generalized splines

@ Otensor-product Generalized B-splines NO efficient local refinements
Alternatives:
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Local Tensor-product structures: Generalized splines

@ Otensor-product Generalized B-splines NO efficient local refinements
Alternatives:

o Generalized T-splines
[Bracco et al. CMAME 2014] [Bracco and Cho, CMAME 2014]
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Local Tensor-product structures: Generalized splines

@ Otensor-product Generalized B-splines NO efficient local refinements
Alternatives:

o Generalized T-splines
[Bracco et al. CMAME 2014] [Bracco and Cho, CMAME 2014]

o LR Generalized B-splines
[Bracco, Lyche, Manni, Roman, Speleers, AMC 2015]
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Local Tensor-product structures: Generalized splines

@ Otensor-product Generalized B-splines NO efficient local refinements
Alternatives:

o Generalized T-splines
[Bracco et al. CMAME 2014] [Bracco and Cho, CMAME 2014]

o LR Generalized B-splines
[Bracco, Lyche, Manni, Roman, Speleers, AMC 2015]

e Hierarchical Generalized B-splines
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Local Tensor-product structures: Generalized splines

@ Otensor-product Generalized B-splines NO efficient local refinements
Alternatives:

o Generalized T-splines
[Bracco et al. CMAME 2014] [Bracco and Cho, CMAME 2014]

o LR Generalized B-splines
[Bracco, Lyche, Manni, Roman, Speleers, AMC 2015]

e Hierarchical Generalized B-splines

o Generalized Splines over T-meshes
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LR /Hierarchical B-splines/GB-splines

@ perspective: consider a set of functions and study their properties

e positivity, partition of unity
e linear independence
e spanned space
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Hierarchical Generalized B-spline model

Hierarchical B-splines/Generalized B-splines: same construction

@ 1D Example: < 1,t,exp®t exp~ %t >, a; = 50

1 T T T T T T T T

0.5[)

y

o8 b b B~ B~ B A~
%’ 01 0.2 03 04 05 06 0.7 08 0.9 ‘?
1 T T T T T T T T
0.5H)
{ X X X
e T
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[Manni, Pelosi, Speleers, LNCS 2014]
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Hierarchical Generalized B-spline model

Hierarchical B-splines/Generalized B-splines: same construction & same
properties

@ Olinearly independence

O®nested spaces:

Opositivity

Opartition of unity by using truncated bases
[Giannelli, Jiittler, Speleers, CAGD 2012]
[Giannelli, Jiittler, Speleers, AiCM 2013]
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Hierarchical Generalized B-spline model

Hierarchical B-splines/Generalized B-splines: same construction & same
properties

@ Olinearly independence

O®nested spaces:

Opositivity

Opartition of unity by using truncated bases
[Giannelli, Jiittler, Speleers, CAGD 2012]
[Giannelli, Jiittler, Speleers, AiCM 2013]

e ©®good quasi-interpolants for free from good quasi-interpolants

in building block spaces
[Speleers, Manni, NM 2015]
[Speleers, AiCM 2016]
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Generalized Spline spaces over T-meshes

@ T-mesh T partition of a domain by axis-aligned rectangles

22/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Generalized Spline spaces over T-meshes

@ T-mesh T partition of a domain by axis-aligned rectangles

SI(T) == {s(x,y) € C", s(x,y)},, € PUY x P22 7, € T},

Pov =< 1,t,...,tP72 u(t), v(t) >

@ suitable spaces : exponential, trigonometric
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@ suitable spaces : exponential, trigonometric

@ smoothness cond.: Bernstein like representation
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Generalized Spline spaces over T-meshes

@ T-mesh T partition of a domain by axis-aligned rectangles

Sp(T) == {s(x,y) € C", s(x,y)jr, € Pt x P22, 7€ T,

Pov =< 1,t,...,tP72 u(t), v(t) >

@ suitable spaces : exponential, trigonometric
@ smoothness cond.: Bernstein like representation
@ construction and properties: as for polynomial splines

22/49
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Generalized Spline spaces over T-meshes
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Generalized Spline spaces over T-meshes

C! bi-cubics
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Generalized Spline spaces over T-meshes

@ T-mesh 7T partition of a domain by axis-aligned rectangles

g{,(T) = {s(x,y) € C", s(x,y),, €P" xP2*2, 7, €T},

PpYi=<1,t,..., tP=2 u(t), v(t) >

25/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Generalized Spline spaces over T-meshes

@ T-mesh 7T partition of a domain by axis-aligned rectangles

St (T) == {s(x,y) € C", s(x,y)jr, € Pt x P22, 1, €T},
PpYi=<1,t,..., tP=2 u(t), v(t) >

@ space structure
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Generalized Spline spaces over T-meshes

@ T-mesh 7T partition of a domain by axis-aligned rectangles

St (T) == {s(x,y) € C", s(x,y)jr, € Pt x P22, 1, €T},
PpYi=<1,t,..., tP=2 u(t), v(t) >

@ space structure

@ dimension: homological techniques full Tchebycheffian splines
[Bracco, Lyche, Manni, Roman, Speleers, CAGD 2016]
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Dimension of the spline space g;(T): instability

© stable dimension: only depending on degree, smoothness, topology
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Dimension of the spline space §,’,(7’): instability

® NO stable dimension

p=(2,2), r=

te

(1,1)

ty P3

t3

P2

P4

ta

t1

to

So  S1 S S3

36 < dim(Sh(7)) < 37,

[Bracco, Lyche, Manni,Speleers, 2016]

54 S5 S6

V(1,u,v) ECT
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GB-splines in simulation:

GB-splines IgA Galerkin and Collocation methods
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The problem

@ Second order (elliptic) partial differential equation (PDE),

Cu— Lu= f, inQ
“TYTu= g ondQ 50
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The problem

@ Second order (elliptic) partial differential equation (PDE),

Eu:{ Lu= f, inQ

lu= g on GQ 89

@ weak formulation:
Find weV, suchthat a(u,v)=F(v), VveV

a:V xV — R bilinear form depending on L
F :V — R linear form depending on f and g.
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The problem

@ Second order (elliptic) partial differential equation (PDE),

Ly Lu= f, inQ
YTl ru= g on 0 90

@ weak formulation:
Find weV, suchthat a(u,v)=F(v), VveV

E le: —Au= f, inQ
xampie: u= 0 on 00

~ find v €V:=H}(RQ), such that

a(u,v) := / VuVv dxdy = / fvdxdy =: F(v), YveV
Q Q
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The problem

@ Second order (elliptic) partial differential equation (PDE),

Lu— Lu= f, inQ
v= [u= gonaﬂ o0

@ weak formulation:

Find wueV, suchthat a(u,v)=F(v), YveV

@ Galerkin approach: Vp: < ¢1,¢2,...,0,, >CV
Find up € Vy, such that a(up, viy) = F(vh), Yva € Vp
up =y 1", qip;i — linear system Aq=f
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GB-splines  GB-splines in simulation Spectral Analysis

The problem

@ Second order (elliptic) partial differential equation (PDE),

Lu— Lu= f, inQ
YT tu= g on 09 90

@ weak formulation:
Find wueV, suchthat a(u,v)=F(v), YveV
@ Galerkin approach: Vp: < ¢1,¢2,...,0,, >CV
Find up € Vp, such that a(up, vi) = F(vh), Yvy € Vy
up =y 1", qip;i — linear system Aq=f

o different choices of V}, = different methods (FEM,...)
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Generalized B-splines based IgA

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:

G(&) =Y Bi(é)ci, {Bi1,-++,By,}: basis

QO — Q

£ e X(f) €N
up(x) =31y Bio G (x)gi, x€Q,
————

basis functions ¢;
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Generalized B-splines based IgA

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
G(é-) = Z:ll Bi(f)cir {Bla Tty Bnh} . basis

Qo — Q

£eQ x(§) e Q
IgA Galerkin based on NURBS
‘ basis functions in Qg: tensor-product NURBS
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Generalized B-splines based IgA

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
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QO — Q
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Generalized B-splines based IgA

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
G(g) = 2721 Bi(f)cir {Bla Tty Bnh} . basis

QO — Q

£ € x(§) € Q
IgA Galerkin based on NURBS
‘basis functions in €g: tensor-product NURBS‘

IgA Galerkin based on GB-splines
‘ basis functions in Qq: tensor-product GB—spIines‘

‘NURBS and Generalized B-splines are plug-to-plug in IgA‘
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Generalized B-splines based IgA: Galerkin

|Section spaces to be selected with a problem-dependent strategy
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Generalized B-splines based IgA: Galerkin

’Section spaces to be selected with a problem-dependent strategy

strong gradients/thin layers = Exp.or Variable degree B-splines

u=20

lu=20

u=1

eAu+b-Vu=0, b=/ cos(d),sin(f)), e=10""°

[Manni, Pelosi, Sampoli, JCAM 2011]
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Generalized B-splines based IgA: Galerkin

[Manni, Pelosi, Sampoli, JCAM 2011]

strong gradients/thin layers = Exp.or Variable degree B-splines

CY% FEM P, three-directional mesh 40 x 40 C3 quintic VD mesh 40 x 40
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Sampoli, CMAME 2011], [Manni, Pelosi, Speleers, LNCS 2014]

@ Infinite plate with circular hole, uniform tension in x-direction

divo(u)=0 in Q

exact o

< —
- — =0
7 /M — symmetry
- \J/ L
< —
il L, oc-n=0

upy = 0

symmetry

@ exact geometry requires trigonometric GB-splines < 1, cos((5)t),sin((5)t) >
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

divo(u) =0

@ Infinite plate with circular hole, uniform tension in x-direction
in Q

dof = 96

approx o1

Dae
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

divo(u) =0

@ Infinite plate with circular hole, uniform tension in x-direction
in Q

dof = 230

approx o1

Dae
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

divo(u) =0

@ Infinite plate with circular hole, uniform tension in x-direction
in Q

dof = 574
approx o1

Dae
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

divo(u) =0

in Q

@ Infinite plate with circular hole, uniform tension in x-direction

dof = 1122

approx o1

Dae
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Galerkin  Collocation

Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

@ Infinite plate with circular hole, uniform tension in x-direction

divo(u) =0

in Q

Error (L2 norm)
15
T

—o— hier TRIG
—e— hier BSP
- e -unif TRIG
= © -unif BSP

2

10

3

10°
Degrees of freedom
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lgA: Galerkin vs Collocation

@ the efficiency of the Galerkin method deeply depends on the
numerical quadrature rules for the construction of the linear systems
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@ the efficiency of the Galerkin method deeply depends on the
numerical quadrature rules for the construction of the linear systems

@ in FEA elementwise Gauss quadrature is known to be optimal; not
the same for IgA

@ ®OGB-splines IgA Galerkin methods also suffer from the quadrature
issue

@ a minimum number of point evaluations per degree of freedom is
even more attractive in the context of GB-splines than for classical
polynomial B-splines/NURBS.
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strong form of (high order) PDEs
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lgA: Galerkin vs Collocation

@ the efficiency of the Galerkin method deeply depends on the
numerical quadrature rules for the construction of the linear systems
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@ a minimum number of point evaluations per degree of freedom is
even more attractive in the context of GB-splines than for classical
polynomial B-splines/NURBS.

@ Ohigh regularity of the basis functions = discretization of the
strong form of (high order) PDEs

@ OGB-splines present the same smoothness properties and can be
adjusted to any order (degree) as classical B-splines.

\ lgA NURBS /GB-splines Collocation

33/49



GB-splines  GB-splines in simulation Spectral Analysis Galerkin  Collocation

lgA Collocation

@ Second order (elliptic) partial differential equation (PDE),

Lu— Lu= f, inQ
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lgA Collocation

@ Second order (elliptic) partial differential equation (PDE),

Lu— Lu= f, inQ
YTl tu= g on 0N 9Q

@ Collocation:

e Collocation space: Vy : < ¢1, @2, .. -jﬁnh >CV
Collocation points: 71,72, ...,T,, €
o find wup €V, such that

{ Luh(T,'): f(T,')7 € Q
Cup(j) = g(r) 7€ 0Q

up =" qipi — linear system Aq=f
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lgA Collocation

@ Second order (elliptic) partial differential equation (PDE),

Lu— Lu= f, inQ
YTl tu= g on 0N 9Q

@ Collocation:

e Collocation space: Vy : < ¢1, @2, .. .Lqﬁ,,h >CV
Collocation points: 71,72, ...,T,, €
o find wup €V, such that

{ Lup(mi) = (7)), 7€ Q
Fup(mj) = &(7) 75 € 09
up =" qipi — linear system Aq=f

o different choices of V,, = different collocation methods
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lgA Collocation

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
G(é-) = 2:11 Bi(f)cir {Bla Ty Bnh} . basis

Q.. 17.7. —

7%'690
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lgA Collocation

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:

G(&) =Y Bi(é)ci, {B1,-++,By,,}: basis

973 N O I —

T € Qo
up(x) = 2721 B; o G_l(x)q,-, x € Q,
%’_/

basis functions ¢;
collocation points 7; = G(7;)
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lgA Collocation

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
G(f) = Z:il Bi(f)cir {Bla Ty Bnh} . basis

Q.. 17.7. —
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IgA collocation based on NURBS
basis functions in €y: tensor-product NURBS‘
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lgA Collocation

@ Qo :=[0,1]? : parametric domain, Q : physical domain

@ global geometry function G : Qy — Q:
G(é-) = 2721 B,'(E)C,’, {Bla Ty Bl‘lh} . basis

Q.. 17.7. —

T € Qo
IgA collocation based on NURBS
‘basis functions in €g: tensor-product NURBS‘

IgA collocation based on GB-splines
‘ basis functions in Qq: tensor-product GB—spIines‘
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IlgA Collocation: Pros/Cons

Galerkin  Collocation

@ Oextremely cheap: one degree of freedom for evaluation
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IlgA Collocation: Pros/Cons

Oextremely cheap: one degree of freedom for evaluation

©®extremely easily to implement

@ almost optimal approximation order

hP p : even, L
=1 p: odd 2

@ ®almost no theoretical understanding (partial results d = 1)

@ Collocation points? Usually Greville abscissae
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Example: Advection-Diffusion Prob.

[Manni, Reali, Speleers, CMA 2015]

—kAu+B-Vu=1, in Q:=(0,1) x (0,1)
u=20, on 012,

k=10"3 B=[1,0]", f=1
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Example: Advection-Diffusion Prob.

[Manni, Reali, Speleers, CMA 2015]

—kAu+B-Vu=1, in Q:
u=20, on 02

k=10"3 B=[1,0]", f=1

(0,1) x (0,1)

175075
2
s
s
2555505
407207 %00
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s
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Example: Advection-Diffusion Prob.

[Manni, Reali, Speleers, CMA 2015]

—kAu+B-Vu=f{, in Q:=(0,1) x (0,1)
u=20, on 012,

k=10"3 B=[1,0]", f=1

s

5
Gsssss

%
5%
oot
020,270,205 %%7,

A

@ hyperbolic GB-splines < 1, t,...,tP~2 cosh(at),sinh(at) >
@ collocation points: B-spline Greville abscissae
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Example: Advection-Diffusion Prob.

[Manni, Reali, Speleers, CMA 2015]

—kAu+B-Vu=f{, in Q:=(0,1) x (0,1)
u=20, on 012,

k=10"3 B=[1,0]", f=1

7%

22
5
00 520557
00000 0570700
o
s
s

@ hyperbolic GB-splines < 1, t,...,tP~2 cosh(at),sinh(at) >
@ collocation points: B-spline Greville abscissae

@ a=||B||/k = 10° : global Péclet number
37/49
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Galerkin  Collocation

Example: Advection-Diffusion Prob.

dof

polynomial B-splines p = 4

[ e
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hyperbolic GB a =103, p = 4
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Galerkin  Collocation

Example: Advection-Diffusion Prob.

dof polynomial B-splines p = 4
1
08
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>
04
K 02 04 06 08 1

300 x 300 o2

>

>

hyperbolic GB a =103, p = 4

1
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0.8
0.6 |
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0.2
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0 0.2 0.4

dof

10 x 10

50 x 50
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Spectral Analysis of matrices in IgA

| Linear PDE Lu =g |
U

‘ Linear Numerical Method A u, = g,

@ N, :=dim(A,) — oo asn— oo
o {A,}, sequence of matrices

@ {A,}, has an asymptotic spectral distribution described by a
spectral symbol f
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Spectral Analysis of matrices in IgA

| Linear PDE Lu =g |
U

‘ Linear Numerical Method A u, = g,

@ N, :=dim(A,) — oo asn— oo
o {A,}, sequence of matrices

@ {A,}, has an asymptotic spectral distribution described by a
spectral symbol

lim fZF(A (An)) = (D)/ F(f(y))dy VF e C/(C)

f:DCR'—=C, 0<p(D)< oo
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Spectral Analysis of matrices in IgA

‘ Linear PDE Lu = g‘
I

‘ Linear Numerical Method A,u, = g,

@ N, :=dim(A;) = o0 as n—
@ {A,}, sequence of matrices

@ {A,}, has an asymptotic spectral distribution described by a
spectral symbol f

@ Informal Meaning: the eigenvalues of A, are approximately a

uniform sampling of f
{An}n ~N f
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Symbol: WHY

@ analysis of the spectral properties of A, for large n

@ design of fast (iterative) solvers
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, CMAMEa 2015, CMAMEb
2015], [Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, SINUM 2016]
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Symbol: WHY

@ analysis of the spectral properties of A, for large n

@ design of fast (iterative) solvers
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, CMAMEa 2015, CMAMEb
2015], [Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, SINUM 2016]

@ theoretical tool to analyze whether the numerical method is
appropriate to approximate the spectrum of £
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Spectral analysis for B-spline IgA (Galerkin/Collocation)

@ Elliptic model problem

-V -KVu+pB-Vu+yu=H{, in Q,
u=0, on 0F),

where Q CRY, K: Q — R is SPD, B:Q — RY and v > 0
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@ Elliptic model problem

-V -KVu+pB-Vu+yu=H{, in Q,
u=0, on 0F),

where Q CRY, K: Q — R is SPD, B:Q — RY and v > 0

@ symbol based spectral analysis complete for B-spline IgA
(Galerkin/Collocation) = Au=f

[Garoni, Manni, Pelosi, Serra-Capizzano, Speleers, NM 2014]
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, MC 2016]
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Spectral analysis for B-spline IgA (Galerkin/Collocation)

@ Elliptic model problem

-V -KVu+pB-Vu+yu=H{, in Q,
u=0, on 012,

where Q CRY, K: Q — R is SPD, B:Q — RY and v > 0

@ symbol based spectral analysis complete for B-spline IgA
(Galerkin/Collocation) = Au=f

@ ill-conditioning at the low frequencies (6 = 0)
canonical: similar to FD/FE discretizations

@ ill-conditioning at the high frequencies for large p (6 = )
non-canonical

[Garoni, Manni, Pelosi, Serra-Capizzano, Speleers, NM 2014]
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, MC 2016]
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Spectral analysis for B-spline IgA (Galerkin/Collocation)

@ Elliptic model problem

-V -KVu+pB-Vu+yu=H{, in Q,
u=0, on 012,

where Q CRY, K: Q — R is SPD, B:Q — RY and v > 0

@ symbol based spectral analysis complete for B-spline IgA
(Galerkin/Collocation) = Au=f

@ ill-conditioning at the low frequencies (6 = 0)
canonical: similar to FD/FE discretizations

@ ill-conditioning at the high frequencies for large p (6 = )
non-canonical
= classical multigrid methods present problems for large p

[Garoni, Manni, Pelosi, Serra-Capizzano, Speleers, NM 2014]
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, MC 2016]

41/49



GB-splines  GB-splines in simulation Spectral Analysis

Constructing symbol: building block

Galerkin uniform grid

—u" =1, in Q=(0,1),
u=20, on 0,
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Constructing symbol: building block

" — | e
{ u f, in Q = (0,1), Galerkin uniform grid

u=0, on 01},

2
£(0) := —dppi1(P+1) =2 _ ppi1y(p+1— k) cos(kf) = (2 —2cos ) h,—1(6)

k=1
p—1
hp—1(0) == ppp_1)(p) +2 Z bpp—1)(P — k) cos(k0)
k=1
¢[p) cardinal B-spline of degree p
1
1 ol
“An} |
{n " n A'p [
0.6
0.4
0.2
C>3 2 -1 0 1 2 3

p=l ——— p=2 ——— p=3 = p=4 — p=5
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Symbol: general case

{—V'KVU—F,B'VU—F’}/U—f, in Q C RY,

u=20, on 0,

G:[0,19 - Q
—1(Kg o HO)1T + B¢ - Va +~(G)d = £(G), in (0,1)¢,
0=0, on 9((0,1)7),

Ko == (Jo) 'K(G)(Js) 7,

1(| det(Ja(X))| Ka(X) o Hp(0))17, %€ (0,1)4, 0 € [, 7]?

(®121 hp,) @ foy ® (®F_i1 ber) ifi=]
(Hp)j = (@11 he,) @& ® (&) is1 hor) ® 8y © (R 1 hpr), i i <
(R 1 he) © gy @ (®)fi1 o) @85 @ (®fjir bp)s i i >,
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Symbol: general case

{—V'KVU—F,B'VU—F’}/U—f, in Q C RY,

u=20, on 0,

G:[0,19 - Q
—1(Kg o HO)1T + B¢ - Va +~(G)d = £(G), in (0,1)¢,
0=0, on 9((0,1)7),

Ko == (Jo) 'K(G)(Js) 7,

1(| det(Ja(X))| Ka(X) o Hp(0))17, %€ (0,1)4, 0 € [, 7]?

(®=1hw.) @ oy @ (RF—i1 hp,) if i=],
(Hp)ij = (®’,;% hp,) ® gp; © (®jr;:'l+1 hp,) ® gp; ® (®‘r1:j+1 hp,), i i<,
(®jr;i hp,) ® 8p ® (®Ir;}+1 ho,) ® gp ® (®g:i+1 hp,), ifi> ],

HOW: GLT (Generalized Locally Toeplitz) sequences

[Serra-Capizzano, LAA 2003], [Serra-Capizzano, LAA 2006],
[Beckermann, Serra-Capizzano, SINUM 2007]....
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Example: symbol 1D

{ —k(x)u" 4+ Bu +yu =, in Q,
u

=0, on 052,

G:[0,1] - Q, x=G(8), £€[0,1]
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0.3142 0.1 0.3142 0.1
p=2n=m?>—p+2, m=10 p=3,n=m?>—p+2 m=10
o symbol samples * eigenvalues
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

[Roman, Manni, Speleers, NM 2016]
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

[Roman, Manni, Speleers, NM 2016]

@ nested trigonometric/hyperbolic GB splines
<1,t,...,tP72 cosat,sinat >, < 1,t,...,tP72 et e—t >
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

[Roman, Manni, Speleers, NM 2016]

@ nested trigonometric/hyperbolic GB splines
<1,t,...,tP72 cosat,sinat >, <1,t,..., tP72 ¥t e—ot >
same symbol as polynomial B-splines of the same degree

@ not nested trigonometric/hyperbolic GB splines
< 1,t,...,tP72 cosnat,sinnat >, < 1,t,...,tP=2 Mot e—nat >
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

[Roman, Manni, Speleers, NM 2016]

@ nested trigonometric/hyperbolic GB splines
<1,t,...,tP72 cosat,sinat >, <1,t,..., tP72 ¥t e—ot >
same symbol as polynomial B-splines of the same degree

@ not nested trigonometric/hyperbolic GB splines
< 1,t,...,tP72 cosnat,sinnat >, < 1,t,...,tP=2 Mot e—nat >
same structure and properties of the symbol as polynomial B-splines
with building blocks

Ta fHa

fos o
lim £ = lim £l =,
a—0 a—0
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

Ta _ 7 Ho —

e a=7% fp fp*, a=10
1 1
09 0.9
0.8 08
07 07
o 0s
0.5 05
0.4] 04
03 03
0.2 02
0.1 01

2 1 o 1 2 3 3 2 1 [ 1 2 3 3 2 1 o 1 2 3

p=2,3,45
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@ Bernstein/B-splines representations

o crucial for efficiency of NURBS based IgA
e not confined to (piecewise) polynomial spaces

@ GB-splines

@ enjoy the same properties of B-splines
e support local refinement based on local tensor-product
structure

@ Generalized (trigonometric/exponential...) B-splines behave
similarly to NURBS in IgA, with problem-dependent improvements

B-splines/GB-splines plug-to-plug compatible in IgA
Galerkin

Collocation

Spectral properties
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Concluding Message

@ Bernstein/B-splines representations

o crucial for efficiency of NURBS based IgA
e not confined to (piecewise) polynomial spaces

@ GB-splines

@ enjoy the same properties of B-splines
e support local refinement based on local tensor-product
structure

@ Generalized (trigonometric/exponential...) B-splines behave
similarly to NURBS in IgA, with problem-dependent improvements

B-splines/GB-splines plug-to-plug compatible in IgA
Galerkin

Collocation

Spectral properties

IgA BEMs
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Announcement

CIME Summer School

“Splines and PDEs: Recent Advances from Approximation
Theory to Structured Numerical Linear Algebra”
Organizers:

Tom Lyche, Carla Manni, Hendrik Speleers

Date:

July 2-8, 2017
Place:
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