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Isogeometric Analysis (IgA)

[Hughes, Cottrel, Bazilevs; CMAME 2005]

Isogeometric Analysis (IgA) is a unifying framework for
Computed aided design (CAD)
Finite element analysis (FEA)

same functions (CAD primitives)
to describe the geometry of the domain
to define the approximation space

Includes standard FEA, but offers other possibilities:
Precise and efficient geometric modeling
Simplified mesh refinement
Smooth basis functions with compact support
Superior approximation properties per dofs
...

Applications
structural analysis
electromagnetism
fluids
shape optimization
...
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Outline

1 Generalized B-splines
GB-splines and Local refinements
Hierarchical GB-splines
Generalized splines over T-meshes

2 Generalized B-splines in simulation
GB-splines based IgA: Galerkin
GB-splines based IgA: Collocation

3 Spectral Analysis of (G)B-spline IgA matrices
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B-splines

polynomial spline spaces

a = x0 < x1 < . . . < xn+1 = b

{s ∈ C r [a, b] : s|[xi ,xi+1) ∈ Pp, i = 0, . . . , n}
Pp :=< 1, x , . . . , xp−2, xp−1, xp >,

B-splines are a special form to represent any spline
function/curve/surface

Why are B-splines so popular?

they are the best way to represent splines both from the
geometric and computational point of view
there exist efficient and stable algorithms for their
evaluation/manipulation
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B-splines

Given a set of knots Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}
usually ξ1 = · · · = ξp+1 < · · · < ξn+1 = · · · = ξn+p+1

B-spline basis functions are defined recursively

B
(p)
i,Ξ : i-th B-spline, of degree p, with knots Ξ

they have minimum support
they are a basis for piecewise polynomials
they are all non negative and form a partition of unity
they are locally linearly independent
efficient refinement processes knot insertion/degree raising
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Beyond polynomials: constrained curves/surfaces

in CAGD curves/surfaces are often subjected to constraints

reproduction constraints
exact reproduction of main curves/surfaces (conic sections, ...)

shape constraints
curvature orientation, torsion signs,...

tolerance constraints
offset constraints,...

...

polynomials/ piecewise polynomials (B-splines) are not sufficient
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Conic sections ⇒ NURBS: Non Uniform Rational B-Splines

Given {B(p)
i,Ξ (t), i = 1, · · · }, W := {wi ≥ 0, i = 1, · · · }, weights

R
(p)
i,Ξ,W (t) :=

wiB
(p)
i,Ξ (t)∑n

j=1 wjB
(p)
j,Ξ (t)

NURBS: projective transformation of B-splines

positivity

p. of unity

compact support

smoothness

...
reproduce conic sections

DRAWBACKS Geometry

NURBS parametrization of conic sections does not correspond to natural

arc-length parametrization: unevenly spaced points

the rational model cannot encompass transcendental curves: many of

them (helix, cycloid, ...) are of interest in applications
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Alternatives: reproducing conic sections, cycloids ....

GEOMETRY
< 1, t, . . . , tp−2, tp−1, tp >

< 1, t, . . . , tp−2, eαt , e−αt >

< 1, t, . . . , tp−2, cosαt, sinαt >

ANALYSIS

d

dt
< 1, t, . . . , tp−2, tp−1, tp > = < 1, t, . . . , tp−3, tp−2, tp−1 >

d

dt
< 1, t, . . . , tp−2, eαt , e−αt > = < 1, t, . . . , tp−3, eαt , e−αt >

d

dt
< 1, t, . . . , tp−2, cosαt, sinαt > = < 1, t, . . . , tp−3, cosαt, sinαt >

NURBS

R
(p)
i,Ξ,W (t) :=

wiB
(p)
i,Ξ (t)∑

k wkB
(p)
k,Ξ(t)

, i = 1, . . .

d

dt
NURBS = ?

alternatives to the rational model retaining properties of B-splines?
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Alternatives: Polynomials vs Tchebycheff

Pp :=< 1, t, . . . , tp−2, tp−1, tp >

Pp → Tp extended Tchebycheff (EC) space on [a, b]

any non trivial element has at most p zeros in [a, b] (counting multiplicity)

kernel of differential operators with real (constant) coefficients

Tp ⊂ C p containing constants

Tp possesses a Bernstein-like basis in any [c, d ] ⊂ [a, b] iff {f ′ : f ∈ Tp} is
an EC space in [a, b]

in Tp all classical geometric design algorithms can be developed for the

Bernstein-like basis (blossoms)

⇒ EC spaces are good for design

[Goodman, Mazure, JAT, 2001]

[Carnicer, Mainar, Peña; CA 2004],

[Mazure, AiCM, 2004], [Mazure, CA, 2005], [Mazure, NM, 2011].
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Alternatives: Polynomials vs Generalized Polynomials

Pp :=< 1, t, . . . , tp−2, tp−1, tp >

Pu,v
p :=< 1, t, . . . , tp−2, u(t), v(t) >, p ≥ 2 t ∈ [a, b]

Pu,v
p extended Tchebycheff space on [a, b]

Pu,v
p possesses a Bernstein-like basis {B0, . . . ,Bp}

[Goodman, Mazure, JAT, 2001]
[Mainar, Peña, Sánchez-Reyes, J, CAGD 2001]
[Carnicer, Mainar, Peña; CA 2004]
[Costantini, Lyche, Manni, NM, 2005]
[Mazure, CA, 2005]
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j=0

Bj (t) = 1

dj
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Bk (0) = 0, j = 0, . . . , k − 1,

dj
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Bk (1) = 0, j = 0, . . . , p − k − 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B0

B1 B2

B3

[Goodman, Mazure, JAT, 2001]
[Mainar, Peña, Sánchez-Reyes, J, CAGD 2001]
[Carnicer, Mainar, Peña; CA 2004]
[Costantini, Lyche, Manni, NM, 2005]
[Mazure, CA, 2005]

10/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Alternatives: Polynomials vs Generalized Polynomials

Pp :=< 1, t, . . . , tp−2, tp−1, tp >

Pu,v
p :=< 1, t, . . . , tp−2, u(t), v(t) >, p ≥ 2 t ∈ [a, b]

Pu,v
p extended Tchebycheff space on [a, b]

Pu,v
p possesses a Bernstein-like basis {B0, . . . ,Bp}
p∑

j=0

Bj (t) = 1

dj

dt j
Bk (0) = 0, j = 0, . . . , k − 1,

dj

dt j
Bk (1) = 0, j = 0, . . . , p − k − 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B0

B1 B2

B3

[Goodman, Mazure, JAT, 2001]
[Mainar, Peña, Sánchez-Reyes, J, CAGD 2001]
[Carnicer, Mainar, Peña; CA 2004]
[Costantini, Lyche, Manni, NM, 2005]
[Mazure, CA, 2005]

10/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Alternatives to the rational model

rational model: Pp → B-splines → NURBS

alternative: Pp :=< 1, t, . . . , tp−2, tp−1, tp >
↓

Pu,v
p :=< 1, t, . . . , tp−2, u(t), v(t) >

construct/analyse spline spaces with sections in Pu,v
p with suitable

bases (analogous to B-splines) Generalized B-splines

[Schumaker, 1966],
[Jerome, Schumaker, JAT 1976],
[Lyche, CA 1985],
[Koch, Lyche, Computing 1993],
[Marušic, Rogina, JCAM 1995],
[Kvasov, Sattayatham, JCAM 1999],
[Costantini, CAGD 2000],
[Wang, Fang; JCAM 2008],
[Kavcic, Rogina, Bosner, Math. Comput. in Simulation, 2010], . . .
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Generalized B-splines

Given a set of knots Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}
Pui ,vi
p :=< 1, t, . . . , tp−2, ui (t), vi (t) >,

Generalized B-spline basis functions are defined recursively

B̂
(p)
i,Ξ : i-th Generalized B-spline, of degree p, with knots Ξ
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Generalized B-splines

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1},
{..., ui , vi , ...}, < 1, t, . . . , tp−2, ui (t), vi (t) >, < Dp−1ui ,D

p−1vi > E. Tchebychef

Dp−1vi (ξi ) = 0, Dp−1vi (ξi+1) > 0, Dp−1ui (ξi ) > 0, Dp−1ui (ξi+1) = 0,

B̂
(1)
i,Ξ(t) :=


Dp−1vi (t)

Dp−1vi (ξi+1)
t ∈ [ξi , ξi+1)

Dp−1ui+1(t)

Dp−1ui+1(ξi+1)
t ∈ [ξi+1, ξi+2)

0 elsewhere

B̂
(p)
i,Ξ (t) =

∫ t

−∞ δ̂
(p−1)
i,Ξ B̂

(p−1)
i,Ξ (s)ds −

∫ t

−∞ δ̂
(p−1)
i+1,Ξ B̂

(p−1)
i+1,Ξ (s)ds

δ̂
(p)
i,Ξ := 1∫ +∞

−∞ B̂
(p)
i,Ξ

(s)ds

B-splines

B
(p)
i,Ξ (t) =

∫ t

−∞ δ
(p−1)
i,Ξ B

(p−1)
i,Ξ (s)ds −

∫ t

−∞ δ
(p−1)
i+1,ΞB

(p−1)
i+1,Ξ (s)ds

δ
(p)
i,Ξ := 1∫ +∞

−∞ B
(p)
i,W ,Ξ

(s)ds
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{..., ui , vi , ...}, < 1, t, . . . , tp−2, ui (t), vi (t) >, < Dp−1ui ,D

p−1vi > E. Tchebychef

Dp−1vi (ξi ) = 0, Dp−1vi (ξi+1) > 0, Dp−1ui (ξi ) > 0, Dp−1ui (ξi+1) = 0,
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All Tchebycheffian spline spaces good for design can be built by means of

integral recurrence relations, [Mazure M.L., NM 2011]
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Generalized B-splines

Given a set of knots Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}
Pui ,vi
p :=< 1, t, . . . , tp−2, ui (t), vi (t) >,

Generalized B-spline basis functions are defined recursively

B̂
(p)
i,Ξ : i-th GB-spline, of degree p, with knots Ξ

they have minimum support
they are a basis for piecewise Pui ,vi

p

they are all non negative and form a partition of unity
they have smoothness related to knot mutiplicity
they are locally linearly independent

EXP3 = Pu,v
3 :=< 1, t, eαt , e−αt > α→ 0: B-splines
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TRIG2 = Pu,v
2 :=< 1, cosαt, sinαt > α→ 0: B-splines
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Generalized B-splines

knot insertion (refinement with positive coefficients)

trig/exp: same approximation properties as B-splines
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< 1, t, cosαt, sinαt >,α = 2
3
π (light) and algebraic C2 cubics (dark)
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Tensor-product structures:

DRAWBACKS

multivariate setting: Tensor-product

/tensor-product structure NO efficient local refinement
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Local Tensor-product structures

/tensor-product structure NO efficient local refinements
Alternatives local tensor-product structure (polynomial splines):

T-splines/Analysis-Suitable T-splines
[Sederberg et al., ACMToG, 2003], [Bazilevs, et al. CMAME 2010],

[Beirão da Veiga, et al. CMAME, 2012]...

LR splines
[ Dokken, Lyche, Pettersen, CAGD 2013],

Hierarchical splines
[Forsey, Bartels, CG 1988] [Kraft, 1997] [Giannelli, Juttler, Speleers,

CAGD 2012], ...

Splines over T-meshes
[Deng, Chen, Feng, JCAM 2006], [Schumaker, Wang, NM 2011],

[Schumaker, Wang, CAGD 2012]
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Local Tensor-product structures: Generalized splines

/tensor-product Generalized B-splines NO efficient local refinements
Alternatives:

Generalized T-splines
[Bracco et al. CMAME 2014] [Bracco and Cho, CMAME 2014]

LR Generalized B-splines
[Bracco, Lyche, Manni, Roman, Speleers, AMC 2015]

Hierarchical Generalized B-splines

Generalized Splines over T-meshes
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LR/Hierarchical B-splines/GB-splines

perspective: consider a set of functions and study their properties

positivity, partition of unity
linear independence
spanned space

19/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Hierarchical Generalized B-spline model

Hierarchical B-splines/Generalized B-splines: same construction

1D Example: < 1, t, expαi t , exp−αi t >,αi = 50
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[Manni, Pelosi, Speleers, LNCS 2014]
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Hierarchical Generalized B-spline model

Hierarchical B-splines/Generalized B-splines: same construction & same
properties

,linearly independence

,nested spaces:

,positivity

,partition of unity by using truncated bases
[Giannelli, Jüttler, Speleers, CAGD 2012]

[Giannelli, Jüttler, Speleers, AiCM 2013]

,good quasi-interpolants for free from good quasi-interpolants
in building block spaces
[Speleers, Manni, NM 2015]

[Speleers, AiCM 2016]
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Generalized Spline spaces over T-meshes

T-mesh T partition of a domain by axis-aligned rectangles

Ŝrp(T ) :=
{
s(x , y) ∈ C r, s(x , y)|τi ∈ Pu1,v1

p1
× Pu2,v2

p2
, τi ∈ T

}
,

Pu,v
p :=< 1, t, . . . , tp−2, u(t), v(t) >

suitable spaces : exponential, trigonometric

smoothness cond.: Bernstein like representation

construction and properties: as for polynomial splines

22/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Generalized Spline spaces over T-meshes

T-mesh T partition of a domain by axis-aligned rectangles
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smoothness cond.: Bernstein like representation

construction and properties: as for polynomial splines

22/49



GB-splines GB-splines in simulation Spectral Analysis Local Refinements Hierarchical bases T-meshes

Generalized Spline spaces over T-meshes

T-mesh T partition of a domain by axis-aligned rectangles
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Generalized Spline spaces over T-meshes
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Generalized Spline spaces over T-meshes
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p2
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}
,

Pu,v
p :=< 1, t, . . . , tp−2, u(t), v(t) >

space structure

dimension: homological techniques full Tchebycheffian splines
[Bracco, Lyche, Manni, Roman, Speleers, CAGD 2016]
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Dimension of the spline space Ŝr

p
(T ): instability

, stable dimension: only depending on degree, smoothness, topology

p = (2, 2), r = (1, 1)
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Figure 1: Example of an unstable T-mesh.

Corollary 5.1 gives an explicit and computable expression for the dimension of the space ST ,r
p (T )

when the upper bound in (5.1) is zero (and so H0 = 0). It is evident that such configurations are
of practical interest, and therefore the upper bound in (5.1) plays an important role in the design of
T-mesh refinement algorithms. This upper bound depends on the bi-degree, on the smoothness, and
on the weights of MIS with respect to any ordering of MIS. If the T-mesh is obtained by successive
refinements, we can use the following algorithm (Algorithm 5.1) to generate a naturally induced or-
dering of MIS, which will be employed to construct a T-mesh refinement algorithm (Algorithm 5.2)
ensuring H0 = 0.

Algorithm 5.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ (i.e., one or more consecutive edges). The ordering ι̃ of mis(T̃ ) is computed
as follows:

1. set ι̃(ρ̃) := ι(ρ̃) for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)} where ρ(τ) ∈ ms(T̃ ) is the maximal segment contain-
ing τ ;

2. if ρ(τ) ∈ mis(T̃ ):

(a) if ρ(τ) = ρ′ ∪ τ ∪ ρ′′ with ρ′, ρ′′ ∈ mis(T ), then ι̃(ρ(τ)) := min(ι(ρ′), ι(ρ′′));
(b) if ρ(τ) = τ ∪ ρ′ with ρ′ ∈ mis(T ), then ι̃(ρ(τ)) := ι(ρ′);
(c) if ρ(τ) = τ , then ι̃(τ) := 1 +maxρ′∈mis(T ) ι(ρ

′).

Figure 2 illustrates the different cases of inserting a new segment τ in Algorithm 5.1. Note that the
indices of the ordering of MIS produced by Algorithm 5.1 are not necessarily consecutive. As shown in
the next lemma, Algorithm 5.1 ensures that the weights of the already existing MIS do not decrease.

Lemma 5.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ and let ι̃ be the ordering of mis(T̃ ) computed by Algorithm 5.1. Then, for
all ρ̃ ∈ mis(T̃ ) such that M(ρ̃) := {ρ ∈ mis(T ) : ρ ⊆ ρ̃} 6= ∅, there exists ρ̄ ∈ M(ρ̃) with ι(ρ̄) = ι̃(ρ̃)
and ωι(ρ̄) ≤ ωι̃(ρ̃).

Proof. Let us first focus on Step 1 in Algorithm 5.1. Since mis(T̃ ) \ {ρ(τ)} = mis(T̃ ) ∩ mis(T ), we
have M(ρ̃) = {ρ̃} for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)}. In such case, we set ρ̄ = ρ̃. When arriving at Step 2(a)
and considering ρ̃ = ρ(τ) ∈ mis(T̃ ), we have M(ρ̃) = {ρ′, ρ′′} and we set ρ̄ = ρ′ if ι(ρ′) < ι(ρ′′) and

12

36 ≤ dim
(
Ŝr

p
(T )
)
≤ 37, ∀〈1, u, v〉 ECT

[Bracco, Lyche, Manni,Speleers, 2016]
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p
(T ): instability

/ NO stable dimension

p = (2, 2), r = (1, 1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

s0 s1 s2 s3 s4 s5 s6
t0

t1

t2

t3

t4

t5

t6

ρ1

ρ3

ρ2 ρ4

Figure 1: Example of an unstable T-mesh.

Corollary 5.1 gives an explicit and computable expression for the dimension of the space ST ,r
p (T )

when the upper bound in (5.1) is zero (and so H0 = 0). It is evident that such configurations are
of practical interest, and therefore the upper bound in (5.1) plays an important role in the design of
T-mesh refinement algorithms. This upper bound depends on the bi-degree, on the smoothness, and
on the weights of MIS with respect to any ordering of MIS. If the T-mesh is obtained by successive
refinements, we can use the following algorithm (Algorithm 5.1) to generate a naturally induced or-
dering of MIS, which will be employed to construct a T-mesh refinement algorithm (Algorithm 5.2)
ensuring H0 = 0.

Algorithm 5.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ (i.e., one or more consecutive edges). The ordering ι̃ of mis(T̃ ) is computed
as follows:

1. set ι̃(ρ̃) := ι(ρ̃) for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)} where ρ(τ) ∈ ms(T̃ ) is the maximal segment contain-
ing τ ;

2. if ρ(τ) ∈ mis(T̃ ):

(a) if ρ(τ) = ρ′ ∪ τ ∪ ρ′′ with ρ′, ρ′′ ∈ mis(T ), then ι̃(ρ(τ)) := min(ι(ρ′), ι(ρ′′));
(b) if ρ(τ) = τ ∪ ρ′ with ρ′ ∈ mis(T ), then ι̃(ρ(τ)) := ι(ρ′);
(c) if ρ(τ) = τ , then ι̃(τ) := 1 +maxρ′∈mis(T ) ι(ρ

′).

Figure 2 illustrates the different cases of inserting a new segment τ in Algorithm 5.1. Note that the
indices of the ordering of MIS produced by Algorithm 5.1 are not necessarily consecutive. As shown in
the next lemma, Algorithm 5.1 ensures that the weights of the already existing MIS do not decrease.

Lemma 5.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ and let ι̃ be the ordering of mis(T̃ ) computed by Algorithm 5.1. Then, for
all ρ̃ ∈ mis(T̃ ) such that M(ρ̃) := {ρ ∈ mis(T ) : ρ ⊆ ρ̃} 6= ∅, there exists ρ̄ ∈ M(ρ̃) with ι(ρ̄) = ι̃(ρ̃)
and ωι(ρ̄) ≤ ωι̃(ρ̃).

Proof. Let us first focus on Step 1 in Algorithm 5.1. Since mis(T̃ ) \ {ρ(τ)} = mis(T̃ ) ∩ mis(T ), we
have M(ρ̃) = {ρ̃} for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)}. In such case, we set ρ̄ = ρ̃. When arriving at Step 2(a)
and considering ρ̃ = ρ(τ) ∈ mis(T̃ ), we have M(ρ̃) = {ρ′, ρ′′} and we set ρ̄ = ρ′ if ι(ρ′) < ι(ρ′′) and

12

36 ≤ dim
(
Ŝr
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GB-splines in simulation:

GB-splines IgA Galerkin and Collocation methods
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The problem

Second order (elliptic) partial differential equation (PDE),

Lu =

{
Lu = f, in Ω
Γu = g on ∂Ω

Ω ∂Ω

weak formulation:

Find u ∈ V, such that a(u, v) = F (v), ∀ v ∈ V

a : V × V → R bilinear form depending on L
F : V → R linear form depending on f and g.
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The problem

Second order (elliptic) partial differential equation (PDE),

Lu =

{
Lu = f, in Ω
Γu = g on ∂Ω

Ω ∂Ω

weak formulation:

Find u ∈ V, such that a(u, v) = F (v), ∀ v ∈ V

Example:

{
−∆u = f, in Ω
u = 0 on ∂Ω

 find u ∈ V := H1
0 (Ω), such that

a(u, v) :=

∫
Ω
∇u∇v dxdy =

∫
Ω
fv dxdy =: F (v), ∀ v ∈ V
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The problem

Second order (elliptic) partial differential equation (PDE),
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{
Lu = f, in Ω
Γu = g on ∂Ω

Ω ∂Ω

weak formulation:

Find u ∈ V, such that a(u, v) = F (v), ∀ v ∈ V

Galerkin approach: Vh : < φ1, φ2, . . . , φnh >⊂ V
Find uh ∈ Vh, such that a(uh, vh) = F (vh), ∀vh ∈ Vh

uh =
∑nh

i=1 qiφi → linear system Aq = f

different choices of Vh ⇒ different methods (FEM,...)
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Generalized B-splines based IgA

Ω0 := [0, 1]2 : parametric domain, Ω : physical domain

global geometry function G : Ω0 → Ω:
G(ξ) =

∑nh
i=1 Bi (ξ)ci , {B1, · · · ,Bnh} : basis

−→
G

Ω0 Ω

ξ ∈ Ω0 x(ξ) ∈ Ω

uh(x) =
∑nh

i=1 Bi ◦ G−1(x)︸ ︷︷ ︸qi , x ∈ Ω,

basis functions φi

IgA Galerkin based on NURBS

basis functions in Ω0: tensor-product NURBS

IgA Galerkin based on GB-splines

basis functions in Ω0: tensor-product GB-splines

NURBS and Generalized B-splines are plug-to-plug in IgA
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Generalized B-splines based IgA: Galerkin

Section spaces to be selected with a problem-dependent strategy

strong gradients/thin layers ⇒ Exp.or Variable degree B-splines
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[Manni, Pelosi, Sampoli, JCAM 2011]
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Generalized B-splines based IgA: Galerkin

[Manni, Pelosi, Sampoli, JCAM 2011]

strong gradients/thin layers ⇒ Exp.or Variable degree B-splines
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Sampoli, CMAME 2011], [Manni, Pelosi, Speleers, LNCS 2014]

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction

div σ(u) = 0 in Ω

σ · n = 0

exact σ

u1 = 0
symmetry

u2 = 0
symmetry

exact geometry requires trigonometric GB-splines < 1, cos((π
2

)t), sin((π
2

)t) >
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction

div σ(u) = 0 in Ω
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction

div σ(u) = 0 in Ω
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Generalized B-splines based IgA: Hierachical bases

[Manni, Pelosi, Speleers, LNCS 2014]

Infinite plate with circular hole, uniform tension in x-direction

div σ(u) = 0 in Ω
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IgA: Galerkin vs Collocation

the efficiency of the Galerkin method deeply depends on the
numerical quadrature rules for the construction of the linear systems

in FEA elementwise Gauss quadrature is known to be optimal; not
the same for IgA

/GB-splines IgA Galerkin methods also suffer from the quadrature
issue

a minimum number of point evaluations per degree of freedom is
even more attractive in the context of GB-splines than for classical
polynomial B-splines/NURBS.

,high regularity of the basis functions ⇒ discretization of the
strong form of (high order) PDEs

,GB-splines present the same smoothness properties and can be
adjusted to any order (degree) as classical B-splines.

IgA NURBS/GB-splines Collocation
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,high regularity of the basis functions ⇒ discretization of the
strong form of (high order) PDEs

,GB-splines present the same smoothness properties and can be
adjusted to any order (degree) as classical B-splines.
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IgA Collocation

Second order (elliptic) partial differential equation (PDE),

Lu =

{
Lu = f, in Ω
Γu = g on ∂Ω

Ω ∂Ω

Collocation:

Collocation space: Vh : < φ1, φ2, . . . , φnh >⊂ V
Collocation points: τ1, τ2, . . . , τnh ∈ Ω
find uh ∈ Vh, such that{

Luh(τi ) = f(τi ), τi ∈ Ω
Γuh(τj) = g(τj) τj ∈ ∂Ω

uh =
∑nh

i=1 qiφi → linear system Aq = f

different choices of Vh ⇒ different collocation methods
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IgA Collocation

Ω0 := [0, 1]2 : parametric domain, Ω : physical domain

global geometry function G : Ω0 → Ω:
G(ξ) =

∑nh
i=1 Bi (ξ)ci , {B1, · · · ,Bnh} : basis

−→
G

Ω0 Ω

τ̂i ∈ Ω0 τi = G(τ̂i ) ∈ Ω

IgA collocation based on NURBS

basis functions in Ω0: tensor-product NURBS

IgA collocation based on GB-splines

basis functions in Ω0: tensor-product GB-splines
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GB-splines GB-splines in simulation Spectral Analysis Galerkin Collocation

IgA Collocation: Pros/Cons

,extremely cheap: one degree of freedom for evaluation

,extremely easily to implement

almost optimal approximation order{
hp p : even,
hp−1 p : odd

L2

/almost no theoretical understanding (partial results d = 1)

Collocation points? Usually Greville abscissae
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GB-splines GB-splines in simulation Spectral Analysis Galerkin Collocation

Example: Advection-Diffusion Prob.

[Manni, Reali, Speleers, CMA 2015]{
−κ∆u + β · ∇u = f, in Ω := (0, 1)× (0, 1)
u = 0, on ∂Ω,

κ = 10−3, β = [1, 0]T , f = 1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

hyperbolic GB-splines < 1, t, . . . , tp−2, cosh(αt), sinh(αt) >
collocation points: B-spline Greville abscissae

α = ||β||/κ = 103 : global Péclet number
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Example: Advection-Diffusion Prob.

polynomial B-splines p = 4 hyperbolic GB α = 103, p = 4dof dof

10× 10 10× 10

50× 5050× 50

300× 300
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GB-splines GB-splines in simulation Spectral Analysis

Spectral Analysis of matrices in IgA

Linear PDE Lu = g

⇓
Linear Numerical Method Anun = gn

Nn := dim(An)→∞ as n→∞
{An}n sequence of matrices

{An}n has an asymptotic spectral distribution described by a
spectral symbol f

lim
n→∞

1

Nn

Nn∑
j=1

F (λj (An)) =
1

µ`(D)

∫
D
F (f (y))dy ∀F ∈ Cc (C)

f : D ⊂ R` → C, 0 < µ`(D) <∞
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Spectral Analysis of matrices in IgA

Linear PDE Lu = g

⇓
Linear Numerical Method Anun = gn

Nn := dim(An)→∞ as n→∞
{An}n sequence of matrices

{An}n has an asymptotic spectral distribution described by a
spectral symbol f

Informal Meaning: the eigenvalues of An are approximately a
uniform sampling of f

{An}n ∼λ f

39/49



GB-splines GB-splines in simulation Spectral Analysis

Symbol: WHY

analysis of the spectral properties of An for large n

design of fast (iterative) solvers
[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, CMAMEa 2015, CMAMEb

2015], [Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, SINUM 2016]

theoretical tool to analyze whether the numerical method is
appropriate to approximate the spectrum of L
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GB-splines GB-splines in simulation Spectral Analysis

Spectral analysis for B-spline IgA (Galerkin/Collocation)

Elliptic model problem{
−∇ · K∇u + β · ∇u + γu = f, in Ω,
u = 0, on ∂Ω,

where Ω ⊂ Rd , K : Ω→ Rd×d is SPD, β : Ω→ Rd and γ ≥ 0

symbol based spectral analysis complete for B-spline IgA
(Galerkin/Collocation) ⇒ Au = f

ill-conditioning at the low frequencies (θ = 0)
canonical: similar to FD/FE discretizations

ill-conditioning at the high frequencies for large p (θ = π)
non-canonical

⇒ classical multigrid methods present problems for large p

[Garoni, Manni, Pelosi, Serra-Capizzano, Speleers, NM 2014]

[Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, MC 2016]
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GB-splines GB-splines in simulation Spectral Analysis

Constructing symbol: building block{
−u′′ = f, in Ω = (0, 1),
u = 0, on ∂Ω,

Galerkin uniform grid

fp(θ) := −φ̈[2p+1](p + 1)− 2

p∑
k=1

φ̈[2p+1](p + 1− k) cos(kθ) = (2− 2 cos θ)hp−1(θ)

hp−1(θ) := φ[2p−1](p) + 2

p−1∑
k=1

φ[2p−1](p − k) cos(kθ)

φ[p] cardinal B-spline of degree p

{1

n
An

}
n
∼λfp

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

 

 

p=1 p=2 p=3 p=4 p=5
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GB-splines GB-splines in simulation Spectral Analysis

Symbol: general case{
−∇ · K∇u + β · ∇u + γu = f, in Ω ⊂ Rd ,
u = 0, on ∂Ω,

G : [0, 1]d → Ω{
−1(KG ◦ Hû)1T + βG · ∇û + γ(G)û = f(G), in (0, 1)d ,
û = 0, on ∂((0, 1)d),

KG := (JG)−1K (G)(JG)−T ,

1(| det(JG(x̂))|KG(x̂) ◦ Hp(θ))1T , x̂ ∈ (0, 1)d , θ ∈ [−π, π]d

(Hp)ij :=


(⊗i−1

r=1 hpr
)
⊗ fpi ⊗

(⊗d
r=i+1 hpr

)
, if i = j ,(⊗i−1

r=1 hpr
)
⊗ gpi ⊗

(⊗j−1
r=i+1 hpr

)
⊗ gpj ⊗

(⊗d
r=j+1 hpr

)
, if i < j ,(⊗j−1

r=1 hpr
)
⊗ gpj ⊗

(⊗i−1
r=j+1 hpr

)
⊗ gpi ⊗

(⊗d
r=i+1 hpr

)
, if i > j ,

HOW: GLT (Generalized Locally Toeplitz) sequences

[Serra-Capizzano, LAA 2003], [Serra-Capizzano, LAA 2006],

[Beckermann, Serra-Capizzano, SINUM 2007],...
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r=i+1 hpr

)
⊗ gpj ⊗

(⊗d
r=j+1 hpr

)
, if i < j ,(⊗j−1

r=1 hpr
)
⊗ gpj ⊗

(⊗i−1
r=j+1 hpr

)
⊗ gpi ⊗

(⊗d
r=i+1 hpr

)
, if i > j ,

HOW: GLT (Generalized Locally Toeplitz) sequences

[Serra-Capizzano, LAA 2003], [Serra-Capizzano, LAA 2006],

[Beckermann, Serra-Capizzano, SINUM 2007],...
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Example: symbol 1D

{
−k(x)u′′ + βu′ + γu = f, in Ω,
u = 0, on ∂Ω,

G : [0, 1]→ Ω, x = G (x̂), x̂ ∈ [0, 1]

{
1

n
An

}
n

∼λ
k(G (x̂))

|G ′(x̂)| fp(θ)
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 k(x) = ex , G (x̂) = 1
2 x̂(x̂ + 1), β = γ = 0

p = 2, n = m2 − p + 2, m = 10 p = 3, n = m2 − p + 2, m = 10

o symbol samples ∗ eigenvalues
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)

[Roman, Manni, Speleers, NM 2016]

nested trigonometric/hyperbolic GB splines
< 1, t, . . . , tp−2, cosαt, sinαt >, < 1, t, . . . , tp−2, eαt , e−αt >

same symbol as polynomial B-splines of the same degree

not nested trigonometric/hyperbolic GB splines
< 1, t, . . . , tp−2, cos nαt, sin nαt >, < 1, t, . . . , tp−2, enαt , e−nαt >

same structure and properties of the symbol as polynomial B-splines
with building blocks

f Tαp , f Hαp

lim
α→0

f Tαp = lim
α→0

f Hαp = fp
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Spectral analysis for GB-spline IgA (Galerkin/Collocation)
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fp f Hαp , α = 10
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Concluding Message

Bernstein/B-splines representations

crucial for efficiency of NURBS based IgA
not confined to (piecewise) polynomial spaces

GB-splines

enjoy the same properties of B-splines
support local refinement based on local tensor-product
structure

Generalized (trigonometric/exponential...) B-splines behave
similarly to NURBS in IgA, with problem-dependent improvements

B-splines/GB-splines plug-to-plug compatible in IgA
Galerkin
Collocation
Spectral properties
IgA BEMs
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Announcement

CIME Summer School

“Splines and PDEs: Recent Advances from Approximation
Theory to Structured Numerical Linear Algebra”

Organizers:

Tom Lyche, Carla Manni, Hendrik Speleers

Date:

July 2–8, 2017

Place:

Hotel S. Michele, Cetraro, Italy
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