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Asymptotic analysis
@ Classical methods in case of contour integral

representations or otherwise new methods such as
Riemann-Hilbert problems
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Techniques and results from random matrix theory
apply to other models

e Random tiling problems
e Stochastic growth models
e Asymptotic representation theory

Applications in

e Physics (nuclear physics, quantum chaos, 2D
quantum gravity, ...)

o Multivariate statistics
@ Number theory
@ Wireless communication



Example 1: CUE

Unitary group with Haar measure
= Circular Unitary Ensemble (CUE)

e Joint density
1 2
—_— zZi — Z,
(27)"nl H' i~ 2
j<k
with z;, ..., z, on unit circle.
@ Nearest neighbour repulsion
e CUE eigenvalues (top) are :
much more regularly spaced

than independent points on the ]
circle (bottom) . ‘



Example 2: Ginibre ensemble

Complex Ginibre matrix
e Independent entries with standard complex
Gaussian distribution
e Eigenvalue density

1 n
2
" [l ! j<k J k=1

e Ginibre eigenvalues fill out a disk




Example 3: Wishart matrix

Take (n+ v) x n complex Ginibre matrix G

e Wishart matrix G*G has eigenvalue density

1 n
TR | Co P
" j<k k=1
Marchenko-
Pastur law
for scaled

eigenvalues as
size tends to
infinity




Example 4: GUE matrix

G + G* is Gaussian Unitary Ensemble (GUE) matrix

e Hermitian matrix with independent complex
Gaussian entries

e Eigenvalue density of GUE matrix

ZH |~ Xk) Heik

Jj<k

Semi-circle law
for scaled
eigenvalues as
size tends to
infinity




2. Orthogonal Polynomial Ensembles



OP ensemble

n

1 2
- T105 =% TT wixe)

" j<k k=1



OP ensemble

e Orthogonal polynomials

| ppmxyd = s

o

are used to build the OP kernel
n—1
Kn(x,y) = Vw(x)w(y) Y pi(x)pi(y)
j=0

e Correlation functions are expressed as determinants
r
det [Ka (X, Xk)]j,k:l

@ Determinantal point process



Gap probability

Probability that no eigenvalue is in [a, b] is a Fredholm
determinant

det [/ - K, ‘[a,b]} =
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Gap probability

Probability that no eigenvalue is in [a, b] is a Fredholm
determinant

det [/ - K, ‘[a,b]} =

1y O

b b
/ . / det [Kn(x;, xk)]}k:1 dxq - - - dx,

——

r integrals
o Largest eigenvalue has distribution function
F.(s) = Probability all eigenvalues <'s

= det [/ — K, |[s,oo]]



Tracy-Widom distribution
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Fn(S) = det [/ - K, |[s,oo]}
e Limit theorem (after scaling, in many cases)
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exists. It is Tracy-Widom distribution.
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Frw(t) = det [I — KA | o]
with Airy kernel
Ai(x) Ai'(y) — Ai'(x) Ai(y)
X—=Yy

KA (x,y) =

@ Also explicit formula in terms of a solution of the
Painlevé |l equation.



Tracy-Widom distribution

GAUSSIAN DISTRIBUTION

uncorrelated variables

TRACY-WIDOM DISTRIBUTION

correlated variables

Natalie Wolchover
Mysterious statistical
law may finally have
an explanation

Quanta Magazine 2014

Left Tail Peak Right Tail



3. Products of Random Matices
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Products of Ginibre matrices

Product of complex Ginibre matrices Y = G, --- G;
e Eigenvalues of Y are determinantal point process

20— Tt
Jj<k
Akemann, Burda (2012)

e Eigenvalues of Y*Y (squared singular values of Y)
are determinantal point process on [0, c0)

il H Y — y;) det [wi(y)]7 s

square matrices: Akemann, Kieburg, Wei (2013)
rectangular: Akemann, Ipsen, Kieburg (2013)



Transformation result

Theorem (K-Stivigny (2014))
Suppose squared singular values of X have joint density

e H(Xk — ;) det [fk(xj)]j,k:l

j<k

Let G be (n+ ) x n complex Ginibre matrix.
Then squared singular values of Y = GX have density

x H(J/k — y;) det [gk(yj)]jn,k:l

j<k

. < dx
with  gi(y) :/0 x"e " f (j—;) —

X

g« is the Mellin convolution of f, with x"e™



Transformation result

Complex Ginibre G; of size (n x 1) x n

e Joint density

|| || V1 —X;
Xk—X xX.-e
Z J

J<k
=7 Mo ) e ), T
j<k
k 1 _—
:—ka—xj)det[ s eXJ]Jkl
j<k

e Apply transformation result r — 1 times to find
density for G, - - G;



Product of Ginibre matrices
Y = G, --- G; with complex Ginibre matrices G; of sizes
(I’I + I/j) X (n + I/jfl) all Vj > 0 and vy = 0

Theorem (Akemann-lIpsen-Kieburg (2013))
Squared singular values of Y have joint density

Zi H(yk — ;) det [wi ()]} =,

N j<k

where functions w; are (r — 1)-fold Mellin convolutions
of gamma densities.
They have Mellin transforms Meijer G-functions

/ X twi(x)dx = s H [(s +v;), Res > 0.
0

j=1




Transformation of kernel

Suppose Y = GX as before

Transformation result for correlation kernel of the
determinantal point process

e Correlation kernel KX — KY

K () 2%/]{: / dt e th(s );>

Claeys-K-Wang (2015)



Correlation kernel

Suppose Y = G, --- G; as before and apply the
transformation result for the kernel repeatedly.

Correlation kernel K, for the squared singular values of
Y is a double contour integral

Ka(x,y) =
1 [t s+u+1)T(t—n+1)xty—s1
ds ¢ dt !
(2m‘)2/5,00 57{ Hl't+uj+1 YI(s—n+1) s—t

@ X is a contour encircling the positive real axis, and
not intersecting the vertical line Res = —1/2.

e Double integral is convenient for limit n — oo.



Macroscopic limit

e Fix v1,...,v, and let n — oc.

e Largest eigenvalue of Y*Y grows like n".



Macroscopic limit

e Fix v1,...,v, and let n — oc.

e Largest eigenvalue of Y*Y grows like n".

e Limiting density p,(x) of rescaled eigenvalues exists

I’:]. r:3

Density blows up  p,(x) ~ x~7/0*1)  as x — 0+
e Exponent depends on r



Microscopic limit: universality

@ Scaling limits of

1 —l-i-ioo
Kn(Xa)/) / dS% dt
———/oo pN

i)
ST(s+v+ 1)) M(t—n+1)xty <1
LT

(t+v;+1)JT(s—n+1) s—t
as n — oo with vy, ... v, fixed?
We find
e sine kernel in the bulk and Airy kernel at the right
edge Liu-Wang-Zhang (to appear 2016)

e something new at the hard edge 0.



Hard edge scaling limit

Theorem (K-Zhang (2014))

1
lim —Kn (i, )_/> — Kyl,...,l/,(x7y)7 X,y >0

n—oo N n n
exists with limiting kernel

KVI ----- Vr(X7 .y) —

1 Ak s+vj+1)) sinmsxty—1
T d dt J
(27i) /—é—ioo S/ (Hr (t+v;+1) > sinmt s—t

It implies new limiting law for smallest squared singular
value

det [ = (Kip....r) ljo.s]]

o Problem: What is the connection with
Painlevé-type equations?



Thank you for your attention



