Products of random matrices: explicit formulas and asymptotics

Arno Kuijlaars

KU Leuven, Belgium

SIGMA'2016

CIRM, Luminy, 4 November 2016

Outline

- 1. Introduction to Random Matrices
- 2. Orthogonal Polynomial Ensembles
- 3. Products of Random Matrices

1. Introduction to Random Matrices

Random Matrix Theory

- Probability measure on some set of matrices
- Induced probability measure on eigenvalues

Random Matrix Theory

- Probability measure on some set of matrices
- Induced probability measure on eigenvalues

In many cases of interest:

 Exact formulas for eigenvalue distributions that are tractable to asymptotic analysis as size tends to infinity

Random Matrix Theory

- Probability measure on some set of matrices
- Induced probability measure on eigenvalues

In many cases of interest:

 Exact formulas for eigenvalue distributions that are tractable to asymptotic analysis as size tends to infinity

Asymptotic analysis

 Classical methods in case of contour integral representations or otherwise new methods such as Riemann-Hilbert problems

Connections and applications

Techniques and results from random matrix theory apply to other models

- Random tiling problems
- Stochastic growth models
- Asymptotic representation theory
- . . .

Connections and applications

Techniques and results from random matrix theory apply to other models

- Random tiling problems
- Stochastic growth models
- Asymptotic representation theory
- . . .

Applications in

- Physics (nuclear physics, quantum chaos, 2D quantum gravity, ...)
- Multivariate statistics
- Number theory
- Wireless communication
- • •

Example 1: CUE

Unitary group with Haar measure

- = Circular Unitary Ensemble (CUE)
 - Joint density

$$\frac{1}{(2\pi)^n n!} \prod_{j < k} |z_j - z_k|^2$$

with z_1, \ldots, z_n on unit circle.

- Nearest neighbour repulsion
- CUE eigenvalues (top) are much more regularly spaced than independent points on the circle (bottom)

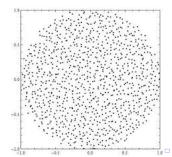
Example 2: Ginibre ensemble

Complex Ginibre matrix

- Independent entries with standard complex Gaussian distribution
- Eigenvalue density

$$\frac{1}{\pi^n \prod_{j=1}^n j!} \prod_{j < k} |z_j - z_k|^2 \prod_{k=1}^n e^{-|z_k|^2}$$

Ginibre eigenvalues fill out a disk

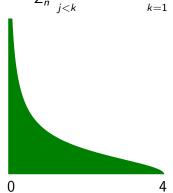


Example 3: Wishart matrix

Take $(n + \nu) \times n$ complex Ginibre matrix G

• Wishart matrix G*G has eigenvalue density

$$\frac{1}{Z_n} \prod_{j < k} (x_j - x_k)^2 \prod_{k=1}^n x_k^{\nu} e^{-x_k}, \quad \text{all } x_k > 0$$



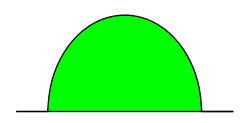
Marchenko-Pastur law for scaled eigenvalues as size tends to infinity

Example 4: GUE matrix

 $G + G^*$ is Gaussian Unitary Ensemble (GUE) matrix

- Hermitian matrix with independent complex Gaussian entries
- Eigenvalue density of GUE matrix

$$\frac{1}{Z_n} \prod_{j < k} (x_j - x_k)^2 \prod_{k=1}^n e^{-\frac{1}{2}x_k^2}$$



Semi-circle law for scaled eigenvalues as size tends to infinity

2. Orthogonal Polynomial Ensembles

OP ensemble

$$\frac{1}{Z_n}\prod_{j< k}(x_j-x_k)^2\prod_{k=1}^n w(x_k)$$

OP ensemble

$$\frac{1}{Z_n}\prod_{j< k}(x_j-x_k)^2\prod_{k=1}^n w(x_k)$$

Orthogonal polynomials

$$\int_{-\infty}^{\infty} p_j(x) p_k(x) w(x) dx = \delta_{j,k}$$

are used to build the OP kernel

$$K_n(x,y) = \sqrt{w(x)w(y)} \sum_{j=0}^{n-1} p_j(x)p_j(y)$$

Correlation functions are expressed as determinants

$$\det \left[K_n(x_j, x_k) \right]_{j,k=1}^r$$

Determinantal point process

Gap probability

Probability that no eigenvalue is in [a, b] is a Fredholm determinant

$$\det \left[I - K_n \mid_{[a,b]}\right] = 1 + \sum_{r=1}^{\infty} \frac{(-1)^r}{r!} \underbrace{\int_a^b \cdots \int_a^b}_{r \text{ integrals}} \det \left[K_n(x_j, x_k)\right]_{j,k=1}^r dx_1 \cdots dx_r$$

Gap probability

Probability that no eigenvalue is in [a, b] is a Fredholm determinant

$$\det \left[I - K_n \mid_{[a,b]}\right] = 1 + \sum_{r=1}^{\infty} \frac{(-1)^r}{r!} \underbrace{\int_a^b \cdots \int_a^b}_{r \text{ integrals}} \det \left[K_n(x_j, x_k)\right]_{j,k=1}^r dx_1 \cdots dx_r$$

• Largest eigenvalue has distribution function

$$F_n(s) =$$
 Probability all eigenvalues $\leq s$

$$= \det \left[I - K_n \mid_{[s,\infty]} \right]$$

$$F_n(s) = \det \left[I - K_n \mid_{[s,\infty]}\right]$$

• Limit theorem (after scaling, in many cases)

$$\lim_{n\to\infty} F_n(a_n+tb_n) = F_{TW}(t)$$

exists. It is Tracy-Widom distribution.

$$F_n(s) = \det \left[I - K_n \mid_{[s,\infty]}\right]$$

Limit theorem (after scaling, in many cases)

$$\lim_{n\to\infty} F_n(a_n+tb_n)=F_{TW}(t)$$

exists. It is Tracy-Widom distribution.

• F_{TW} is Fredholm determinant

$$F_{TW}(t) = \det \left[I - K^{Airy}\mid_{[t,\infty]}
ight]$$

with Airy kernel

$$K^{Airy}(x,y) = \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x - y}$$

$$F_n(s) = \det \left[I - K_n \mid_{[s,\infty]}\right]$$

Limit theorem (after scaling, in many cases)

$$\lim_{n\to\infty} F_n(a_n + tb_n) = F_{TW}(t)$$

exists. It is Tracy-Widom distribution.

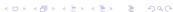
• F_{TW} is Fredholm determinant

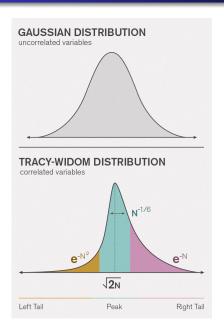
$$F_{TW}(t) = \det \left[I - K^{Airy} \mid_{[t,\infty]} \right]$$

with Airy kernel

$$K^{Airy}(x,y) = \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x - y}$$

 Also explicit formula in terms of a solution of the Painlevé II equation.





Natalie Wolchover

Mysterious statistical law may finally have an explanation Quanta Magazine 2014

3. Products of Random Matices

Products of Ginibre matrices

Product of complex Ginibre matrices $Y = G_r \cdots G_1$

• Eigenvalues of Y are determinantal point process

$$\frac{1}{Z_n} \prod_{j < k} |z_k - z_j|^2 \prod_{j=1}^n w(|z|^2)$$

Akemann, Burda (2012)

Products of Ginibre matrices

Product of complex Ginibre matrices $Y = G_r \cdots G_1$

• Eigenvalues of Y are determinantal point process

$$\frac{1}{Z_n} \prod_{j < k} |z_k - z_j|^2 \prod_{j=1}^n w(|z|^2)$$

Akemann, Burda (2012)

• Eigenvalues of Y^*Y (squared singular values of Y) are determinantal point process on $[0, \infty)$

$$\frac{1}{Z_n} \prod_{i < k} (y_k - y_j) \det [w_k(y_j)]_{j,k=1}^n$$

square matrices: Akemann, Kieburg, Wei (2013) rectangular: Akemann, Ipsen, Kieburg (2013)

Transformation result

Theorem (K-Stivigny (2014))

Suppose squared singular values of X have joint density

$$\propto \prod_{j < k} (x_k - x_j) \det [f_k(x_j)]_{j,k=1}^n$$

Let G be $(n + \nu) \times n$ complex Ginibre matrix. Then squared singular values of Y = GX have density

$$\propto \prod_{j < k} (y_k - y_j) \det [g_k(y_j)]_{j,k=1}^n$$

with
$$g_k(y) = \int_0^\infty x^{\nu} e^{-x} f_k\left(\frac{y}{x}\right) \frac{dx}{x}$$

 g_k is the Mellin convolution of f_k with $x^{\nu}e^{-x}$

Transformation result

Complex Ginibre G_1 of size $(n \times \nu_1) \times n$

Joint density

$$\frac{1}{Z_n} \prod_{j < k} (x_k - x_j)^2 \prod_{j=1}^n x_j^{\nu_1} e^{-x_j}
= \frac{1}{Z_n} \prod_{j < k} (x_k - x_j) \det \left[x_j^{k-1} \right]_{j,k=1}^n \prod_{j=1}^n x_j^{\nu_1} e^{-x_j}
= \frac{1}{Z_n} \prod_{j < k} (x_k - x_j) \det \left[x_j^{k+\nu_1 - 1} e^{-x_j} \right]_{j,k=1}^n$$

• Apply transformation result r-1 times to find density for $G_r \cdots G_1$

Product of Ginibre matrices

$$Y = G_r \cdots G_1$$
 with complex Ginibre matrices G_j of sizes $(n + \nu_j) \times (n + \nu_{j-1})$ all $\nu_j \ge 0$ and $\nu_0 = 0$

Theorem (Akemann-Ipsen-Kieburg (2013))

Squared singular values of Y have joint density

$$\frac{1}{Z_n} \prod_{j < k} (y_k - y_j) \det \left[w_k(y_j) \right]_{j,k=1}^n$$

where functions w_k are (r-1)-fold Mellin convolutions of gamma densities.

They have Mellin transforms

Meijer G-functions

$$\int_0^\infty x^{s-1} w_k(x) dx = s^{k-1} \prod_{j=1}^r \Gamma(s+\nu_j), \qquad \operatorname{Re} s > 0.$$

Transformation of kernel

Suppose Y = GX as before

Transformation result for correlation kernel of the determinantal point process

• Correlation kernel $K_n^X \mapsto K_n^Y$

$$K_n^Y(x,y) = \frac{1}{2\pi i} \oint_{\Sigma} \frac{ds}{s} \int_0^{\infty} \frac{dt}{t} \left(\frac{t}{s}\right)^{\nu} e^{s-t} K_n^X \left(\frac{x}{s}, \frac{y}{t}\right)$$

Claeys-K-Wang (2015)

Correlation kernel

Suppose $Y = G_r \cdots G_1$ as before and apply the transformation result for the kernel repeatedly.

Correlation kernel K_n for the squared singular values of Y is a double contour integral

$$K_{n}(x,y) = \frac{1}{(2\pi i)^{2}} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} ds \oint_{\Sigma} dt \prod_{j=0}^{r} \frac{\Gamma(s+\nu_{j}+1)}{\Gamma(t+\nu_{j}+1)} \frac{\Gamma(t-n+1)}{\Gamma(s-n+1)} \frac{x^{t}y^{-s-1}}{s-t}$$

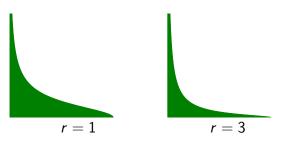
- ullet is a contour encircling the positive real axis, and not intersecting the vertical line $\mathrm{Re}\,s=-1/2$.
- Double integral is convenient for limit $n \to \infty$.

Macroscopic limit

- Fix ν_1, \ldots, ν_r and let $n \to \infty$.
- Largest eigenvalue of Y^*Y grows like n^r .

Macroscopic limit

- Fix ν_1, \ldots, ν_r and let $n \to \infty$.
- Largest eigenvalue of Y^*Y grows like n^r .
- Limiting density $\rho_r(x)$ of rescaled eigenvalues exists



Density blows up $\rho_r(x) \sim x^{-r/(r+1)}$ as $x \to 0+$

• Exponent depends on r

Microscopic limit: universality

Scaling limits of

$$K_{n}(x,y) = \frac{1}{(2\pi i)^{2}} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} ds \oint_{\Sigma} dt$$

$$\left(\prod_{j=0}^{r} \frac{\Gamma(s+\nu_{j}+1)}{\Gamma(t+\nu_{j}+1)}\right) \frac{\Gamma(t-n+1)}{\Gamma(s-n+1)} \frac{x^{t}y^{-s-1}}{s-t}$$

as $n \to \infty$ with ν_1, \ldots, ν_r fixed?

We find

- sine kernel in the bulk and Airy kernel at the right edge Liu-Wang-Zhang (to appear 2016)
- something new at the hard edge 0.

Hard edge scaling limit

Theorem (K-Zhang (2014))

$$\lim_{n\to\infty}\frac{1}{n}K_n\left(\frac{x}{n},\frac{y}{n}\right)=K_{\nu_1,\dots,\nu_r}(x,y), \qquad x,y>0$$

exists with limiting kernel

$$\begin{split} &\mathcal{K}_{\nu_1,\dots,\nu_r}(x,y) = \\ &\frac{1}{(2\pi i)^2} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} ds \int_{\Sigma} dt \left(\prod_{j=0}^r \frac{\Gamma(s+\nu_j+1)}{\Gamma(t+\nu_j+1)} \right) \frac{\sin \pi s}{\sin \pi t} \frac{x^t y^{-s-1}}{s-t} \end{split}$$

It implies new limiting law for smallest squared singular value

$$\det\left[I-\left(\mathit{K}_{\nu_{1},\ldots,\nu_{r}}\right)|_{[0,s]}\right]$$

• Problem: What is the connection with Painlevé-type equations?

Thank you for your attention