Application to CPD

Numerical simulations

A proximal algorithm for third order tensor decomposition and application to fluorescence spectroscopy

Caroline Chaux

Joint work with X. Vu, N. Thirion-Moreau and S. Maire (LSIS, Toulon)

Aix-Marseille Univ. I2M

SIGMA, Oct. 31 - Nov. 4 2016

	Application to CPD	Conclusion and future work

Outline

Introduction 3D fluorescence spectroscopy Tensor definition Goal

Proximal tools Criterion formulation Proximity operator Proximal algorithm

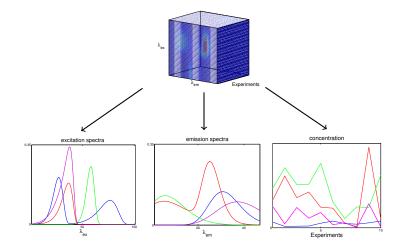
Application to CPD Minimization problem Algorithm

Numerical simulations Synthetic case Real case: water monitoring

Conclusion and future work

Introduction		Application to CPD		Conclusion and future wo
000000	0000	000000	0000000	

3D fluorescence spectroscopy



<ロ > < 部 > < 書 > < 書 > 言 の Q (~ 3/27

000000 0000 00000	

Tensor

What is a tensor?

An *N*th-order tensor is represented by an *N*-way array in a chosen basis.

Example:

- \triangleright N = 1: a vector.
- \triangleright N = 2: a matrix.

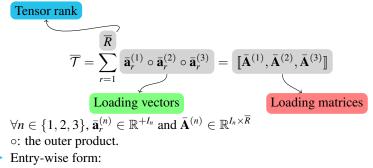
Introduction Proxi	mal tools Ap	pplication to CPD N	Numerical simulations 0	Conclusion and future work
000000 000	0 0	00000	000000	

Third-order tensors

A special case: nonnegative third-order tensors (N = 3)

$$\overline{\mathcal{T}} = (\overline{t}_{i_1 i_2 i_3})_{i_1, i_2, i_3} \in \mathbb{R}^{+I_1 \times I_2 \times I_3}.$$

► The Canonical Polyadic (CP) decomposition:



$$\bar{t}_{i_1i_2i_3} = \sum_{r=1}^{\bar{R}} \bar{a}_{i_1r}^{(1)} \bar{a}_{i_2r}^{(2)} \bar{a}_{i_3r}^{(3)}, \quad \forall (i_1, i_2, i_3)$$

Introduction	Application to CPD	Conclusion and future work
0000000		

Standard operations

• Outer product: let $\mathbf{u} \in \mathbb{R}^{I}$, $\mathbf{v} \in \mathbb{R}^{J}$,

$$\mathbf{u} \circ \mathbf{v} = \mathbf{u} \mathbf{v}^{\top} \in \mathbb{R}^{I \times J}$$

► Khatri-Rao product: let $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_J] \in \mathbb{R}^{I \times J}$ and $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_J] \in \mathbb{R}^{K \times J}$

$$\boxed{\mathbf{U}_{\odot}\mathbf{V} = [\mathbf{u}_1 \otimes \mathbf{v}_1, \mathbf{u}_2 \otimes \mathbf{v}_2, \dots, \mathbf{u}_J \otimes \mathbf{v}_J]} \in \mathbb{R}^{IK \times J}.$$

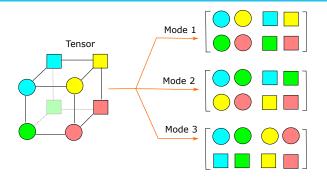
where $\mathbf{u} \otimes \mathbf{v} = [u_1 \mathbf{v}; \dots; u_I \mathbf{v}] \in \mathbb{R}^{IK}$ (Kronecker product). Hadamard division: let $\mathbf{U} \in \mathbb{R}^{I \times J}$, $\mathbf{V} \in \mathbb{R}^{I \times J}$,

$$\mathbf{U} \otimes \mathbf{V} = (u_{ij}/v_{ij})_{i,j} \in \mathbb{R}^{I \times J}$$

Introduction	Application to CPD	Conclusion and future work
0000000		

Tensor flattening: example

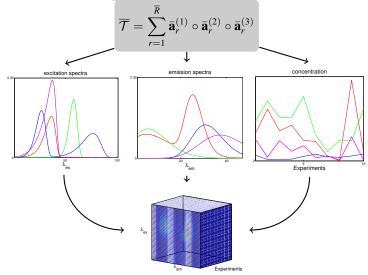
Objective: to handle matrices instead of tensors.



 Introduction
 Proximal tools
 Application to CPD
 Numerical simulations
 Conclusion and fr

 0000000
 0000
 0000000
 0000000
 0000000
 0000000

3D fluorescence spectroscopy and tensors



Introduction		Application to CPD		Conclusion and future work
000000	0000	000000	0000000	

Objective: tensor decomposition

Input:

- ► Observed tensor T: observation of an original (unknown) tensor T possibly degraded (noise).
- Output:
 - Estimated loading matrices $\widehat{\mathbf{A}}^{(n)}$ for all $n \in \{1, 2, 3\}$
- Difficulty:
 - ▶ Rank \overline{R} unknown (*i.e.* $\widehat{R} \neq \overline{R}$): generally i) estimated or ii) overestimated.

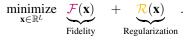
Proposed approach

Formulate the problem under a variational approach.

Proximal tools	Application to CPD	Conclusion and future work
0000		

Minimization problem

Standard problem:



► Taking into account several regularizations (*J* terms):

$$\mathcal{R}(\mathbf{x}) = \sum_{j=1}^{J} \mathcal{R}_j(\mathbf{x})$$

► For large size problem or for other reasons, can be interesting to work on data blocks $\mathbf{x}^{(j)}$ of size L_j ($\mathbf{x} = (\mathbf{x}^{(j)})_{1 \le j \le J}$)

$$\mathcal{R}(\mathbf{x}) = \sum_{j=1}^{J} \mathcal{R}_j(\mathbf{x}^{(j)})$$

Technical assumptions: \mathcal{F} , \mathcal{R} and \mathcal{R}_j are proper lower semi-continuous functions. \mathcal{F} is differentiable with a β -Lipschitz gradient. \mathcal{R}_j is assumed to be bounded from below by an affine function, and its restriction to its domain is continuous.

0000000 0000 000000 000000		Proximal tools	Application to CPD		Conclusion and future work
	0000000	0000	000000	0000000	

Proximity operator

 let φ : ℝ →]−∞, +∞] be a proper lower semi-continuous function. The proximity operator is defined as

$$\operatorname{prox}_{\varphi} \colon \mathbb{R} \to \mathbb{R} \colon v \mapsto \arg\min_{u \in \mathbb{R}} \frac{1}{2} \left\| u - v \right\|^2 + \varphi(u),$$

 let φ : ℝ^L →]−∞, +∞] be a proper lower semi-continuous function. The proximity operator associated with a Symmetric Positive Definite (SPD) matrix **P** is defined as

$$\mathrm{prox}_{\mathbf{P},\varphi} \colon \mathbb{R}^L \to \mathbb{R}^L \colon \mathbf{v} \mapsto \arg\min_{\mathbf{u} \in \mathbb{R}^L} \frac{1}{2} \left\| \mathbf{u} - \mathbf{v} \right\|_{\mathbf{P}}^2 + \varphi(\mathbf{u}),$$

where $\forall x \in \mathbb{R}^L$, $\|x\|_P^2 = \langle x, Px \rangle$ and $\langle \cdot, \cdot \rangle$ is the inner product.

Remark : Note that if **P** reduces to the identity matrix, then the two definitions coincides.

Proximal tools	Application to CPD	Conclusion and future work
0000		

Criterion to be minimized

$$\underset{\mathbf{x} \in \mathbb{R}^{L}}{\text{minimize}} \ \mathcal{F}(\mathbf{x}) \quad + \sum_{j=1}^{J} \mathcal{R}_{j}(\mathbf{x}^{(j)})$$

Some solutions (non exhaustive list, CPD oriented):

- Proximal Alternating Linearized Minimization (PALM) [Bolte et al., 2014]
- A Block Coordinate Descent Method for both CPD and Tucker decomposition [Xu and Yin, 2013]
- ► An accelerated projection gradient based algorithm [Zhang et al., 2016]
- Block-Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm [Chouzenoux et al., 2016]

Advantages of the BC-VMFB: flexible, stable, integrates preconditionning, relatively fast.

Proximal tools	Application to CPD	Conclusion and future work
0000		

Block coordinate proximal algorithm

- 1: Let $\mathbf{x}_0 \in \mathsf{dom}\mathcal{R}, k \in \mathbb{N}$ and $\gamma_k \in]0, +\infty[$ // Initialization step
- 2: for k = 0, 1, ... do // k-th iteration of the algorithm
- 3: Let $j_k \in \{1, ..., J\}$ // Processing of block number j_k (chosen, here, according to a quasi cyclic rule)
- 4: Let $\mathbf{P}_{j_k}(\mathbf{x}_k)$ be a SPD matrix // Construction of the preconditioner $\mathbf{P}_{j_k}(\mathbf{x}_k)$
- 5: Let $\nabla_{j_k} \mathcal{F}(\mathbf{x}_k)$ be the Gradient // Calculation of Gradient
- 6: $\tilde{\mathbf{x}}_{k}^{(j_{k})} = \mathbf{x}_{k}^{(j_{k})} \gamma_{k} \mathbf{P}_{j_{k}}(\mathbf{x}_{k})^{-1} \nabla_{j_{k}} \mathcal{F}(\mathbf{x}_{k})$ // Updating of block j_{k} according to a Gradient step
- 7: $\mathbf{x}_{k+1}^{(j_k)} \in \operatorname{prox}_{\gamma_k^{-1}\mathbf{P}_{j_k}(\mathbf{x}_k), \mathcal{R}_{j_k}}\left(\tilde{\mathbf{x}}_k^{(j_k)}\right)$ // Updating of block j_k according to a **Proximal step**

8:
$$\mathbf{x}_{k+1}^{l_k} = \mathbf{x}_k^{l_k}$$
 where $\overline{j} = \{1, ..., J\} \setminus \{j\}$ // Other blocks are kept unchanged

9: end for

	Application to CPD	Conclusion and future work
	00000	

Prox for CP decomposition

CP decomposition: decompose a tensor into a (minimal) sum of rank-1 terms.

Order 3:

$$\overline{\mathcal{T}} = \sum_{r=1}^{\overline{R}} \overline{\mathbf{a}}_r^{(1)} \circ \overline{\mathbf{a}}_r^{(2)} \circ \overline{\mathbf{a}}_r^{(3)} = [\![\overline{\mathbf{A}}^{(1)}, \overline{\mathbf{A}}^{(2)}, \overline{\mathbf{A}}^{(3)}]\!], \tag{1}$$

Tensor structure: naturally leads to consider 3 blocks corresponding to the loading matrices $A^{(1)}$, $A^{(2)}$ and $A^{(3)}$.

Proposed optimization problem

 $\min_{\mathbf{A}^{(n)} \in \mathbb{R}^{l_n \times R}, n \in \{1,2,3\}} \mathcal{F}(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}) + \mathcal{R}_1(\mathbf{A}^{(1)}) + \mathcal{R}_2(\mathbf{A}^{(2)}) + \mathcal{R}_3(\mathbf{A}^{(3)}).$

Some of the fastest classical approaches: Fast HALS [Phan et al., 2013] and *N*-Way [Bro, 1997].

	Application to CPD	Conclusion and future work
	00000	

Tensor matricization

▶ $\overline{\mathbf{T}}_{I_n,I_{-n}}^{(n)} \in \mathbb{R}_+^{I_n \times I_{-n}}$ the matrix obtained by unfolding the tensor $\overline{\mathcal{T}}$ in the *n*-th mode where the size I_{-n} is equal to $I_1 I_2 I_3 / I_n$

Tensor expressed under matrix form as

$$\overline{\mathbf{T}}_{I_n,I_{-n}}^{(n)} = \bar{\mathbf{A}}^{(n)} (\overline{\mathbf{Z}}^{(-n)})^{\top}, \quad n \in \{1,2,3\}$$

where

$$\begin{split} \overline{\mathbf{Z}}^{(-1)} &= \overline{\mathbf{A}}^{(3)} \odot \overline{\mathbf{A}}^{(2)} \in \mathbb{R}_{+}^{I_{-1} \times \overline{R}}, \\ \overline{\mathbf{Z}}^{(-2)} &= \overline{\mathbf{A}}^{(3)} \odot \overline{\mathbf{A}}^{(1)} \in \mathbb{R}_{+}^{I_{-2} \times \overline{R}}, \\ \overline{\mathbf{Z}}^{(-3)} &= \overline{\mathbf{A}}^{(2)} \odot \overline{\mathbf{A}}^{(1)} \in \mathbb{R}_{+}^{I_{-3} \times \overline{R}}, \end{split}$$

Introduction P		Application to CPD	Numerical simulations	Conclusion and future work
0000000 0	0000	00000	0000000	

Function choice

• $\mathcal{F}(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)})$: quadratic data fidelity term

$$\mathcal{F}(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}) = \frac{1}{2} \|\mathcal{T} - [\![\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}]\!] \|_{F}^{2} = \frac{1}{2} \|\mathbf{T}_{I_{n}, I_{-n}}^{(n)} - \mathbf{A}^{(n)} \mathbf{Z}^{(-n)^{\top}} \|_{F}^{2}$$

R_n(**A**⁽ⁿ⁾): block dependent penalty terms enforcing sparsity and nonnegativity

$$\mathcal{R}_n(\mathbf{A}^{(n)}) = \sum_{i_n=1}^{I_n} \sum_{r=1}^R \rho_n(a_{i_n r}^{(n)}) \qquad \forall n \in \{1, 2, 3\}$$

where loading matrices are defined element wise as $\mathbf{A}^{(n)} = (a_{i_n r}^{(n)})_{(i_n, r) \in \{1, \dots, I_n\} \times \{1, \dots, R\}} \text{ and}$ $\rho_n(\omega) = \begin{cases} \alpha^{(n)} |\omega|^{\pi^{(n)}} & \text{if } \eta_{\min}^{(n)} \le \omega \le \eta_{\max}^{(n)} \\ +\infty & \text{otherwise} \end{cases}$

 $\begin{array}{l} \alpha^{(n)} \in]0, +\infty[, \pi^{(n)} \in \mathbb{N}^*, \eta_{\min}^{(n)} \in [-\infty, +\infty[\text{ and } \eta_{\max}^{(n)} \in [\eta_{\min}^{(n)}, +\infty]. \\ \Rightarrow \text{ block dependent but constant within a block regularization parameters.} \end{array}$

	Application to CPD	Conclusion and future work
	000000	

Preconditionning

Precontionning similar to the one used in NMF [Lee and Seung, 2001]. The matrix **P** for the *n*-th block can be defined as follows $\forall n \in \{1, 2, 3\}$

$$\mathbf{P}^{(n)}(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}) = \mathbf{A}^{(n)}(\mathbf{Z}^{(-n)^{\top}}\mathbf{Z}^{(-n)}) \oslash \mathbf{A}^{(n)}$$

Remark: $\forall n \in \{1, 2, 3\}$, $\mathbf{A}^{(n)}$ must be non zero.

 Introduction
 Proximal tools
 Application to CPD
 Numerical simulations
 Conclusion and future work

 0000000
 0000
 0000000
 0000000
 0000000
 0000000

Gradient and proximity operator

• Gradient matrices of \mathcal{F} with respect to $\mathbf{A}^{(n)}$ for all n = 1, ..., 3, defined as

$$\nabla_{n} \mathcal{F}(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}) = -(\mathbf{T}_{I_{n}, I_{-n}}^{(n)} - \mathbf{A}^{(n)} \mathbf{Z}^{(-n)^{\top}}) \mathbf{Z}^{(-n)}.$$

• Proximity operator given by $(\forall y = (y^{(i)})_{i \in \{1,...,RI_n\}} \in \mathbb{R}^{RI_n}))$

$$\operatorname{prox}_{\gamma[k]^{-1}\mathbf{P}^{(n)}[k],\mathcal{R}_{n}}(y) = \left(\operatorname{prox}_{\gamma[k]^{-1}p_{i}^{(n)}[k],\rho_{n}}(y^{(i)})\right)_{i \in \{1,\dots,RI_{n}\}}$$

where $\forall i \in \{1, ..., RI_n\}$, we have $(\forall v \in \mathbb{R})$

$$\operatorname{prox}_{\gamma[k]^{-1}p_{i}^{(n)},\rho_{n}}(\upsilon) = \min\left\{\eta_{\max}^{(n)}, \max\left\{\eta_{\min}^{(n)}, \operatorname{prox}_{\gamma[k]\alpha^{(n)}(p_{i}^{(n)}[k])^{-1}| \, . \, |^{\pi^{(n)}}}(\upsilon)\right\}\right\}$$

(separable structure, diagonal preconditionning matrices, componentwise calculation)

	Application to CPD	Conclusion and future work
	00000	

Proximal algorithm for tensor decomposition

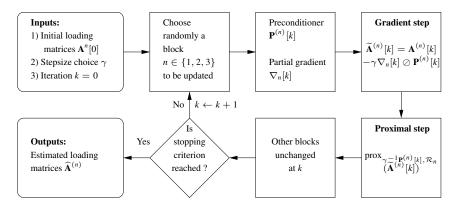


Figure: BC-VMFB algorithm for CPD.

Computer simulation: simulated spectroscopy-like data

- Simulated tensor: (uni or bimodal type) emission and excitation spectra, random concentrations $\Rightarrow \overline{T} \in \mathbb{R}^{100 \times 100 \times 100}_+$ and $\overline{R} = 5$.
- Simulated observed tensor: $T = \overline{T} + B$ where B stands for an additive white Gaussian noise
- 2 considered cases :
 - 1. Perturbed case (noiseless): no noise added and $\hat{R} = 6$ (overestimation).
 - 2. Perturbed case (noisy): \mathcal{B} fixed such that SNR = 17.6 dB and $\hat{R} = 6$ (overestimation).

Error measures

1. Signal to Noise Ratio defined as $SNR = 20 \log_{10} \frac{\|\mathcal{T}\|_F}{\|\widehat{\mathcal{T}} - \overline{\mathcal{T}}\|_F}$

2. Relative Reconstruction Error defined as $\mathsf{RRE} = 20 \log_{10} \frac{\|\hat{\mathcal{T}} - \overline{\mathcal{T}}\|_1}{\|\overline{\mathcal{T}}\|}$

3. Estimation error:
$$\mathbf{E}_1 = 10 \log_{10} \left(\frac{\sum_{n=1}^3 \|\widehat{\mathbf{A}}^{(n)}(1:\overline{R}) - \overline{\mathbf{A}}^{(n)}\|_1}{\sum_{n=1}^3 \|\overline{\mathbf{A}}^{(n)}\|_1} \right)^n$$

4. Over-factoring error: $\mathbf{E}_2 = 10 \log_{10} \left(\| \sum_{r=\overline{R}+1} \widehat{\mathbf{a}}_r^{(1)} \circ \widehat{\mathbf{a}}_r^{(2)} \circ \widehat{\mathbf{a}}_r^{(3)} \|_1 \right)$

	Application to CPD	Numerical simulations	Conclusion and future work
		000000	

Numerical results

	Elapsed time (s)	BC-VMFB without penalty	BC-VMFB with penalty	N-way	fast HALS
	For 50 iterations	0.2	0.2	11	0.5
Noisy case	To reach stopping conditions (actual number of iterations)	102 (48500)	75 (36500)	8 (43)	8 (1856)
	$(SNR, E_1, E_2) dB$	(31.3, -12.5, 30.6)	(32.7, -11.2, -409)	(31.3, -12.5, 30.6)	(31.3, -12.5, 30.6)
Noiseless case	To reach stopping conditions	202	74	80	3.7
	(actual number of iterations)	(100000)	(36500)	(838)	(308)
	$(RRE, E_1, E_2) dB$	(-75.1,-12.4,25.6)	(-44.7, -15, -409)	(-127.9, -8.7, 31.7)	(-63.9, -6.1, 31.7)

Computation time comparison of BC-VMFB in two cases: with or without penalty, with *N*-way [Bro, 1997] and fast HALS [Phan et al., 2013] using the same initial value in the noiseless and noisy cases.

	Application to CPD	Numerical simulations	Conclusion and future work
		000000	

Visual results: noiseless case

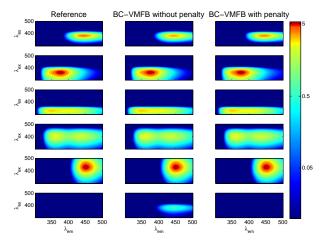


Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without regularization (middle) and with regularization $\alpha = 0.05$ (right).

	Application to CPD	Numerical simulations	Conclusion and future w
		000000	

Visual results: noiseless case

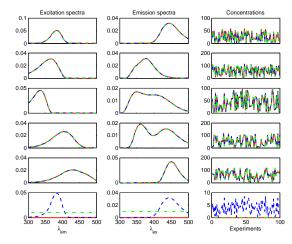


Figure: $\hat{R} = 6$ - reference spectra / BC-VMFB without penalty / BC-VMFB with penalty $\alpha = 0.05$.

	Application to CPD	Numerical simulations	Conclusion and future work
		0000000	

Visual results: noisy case

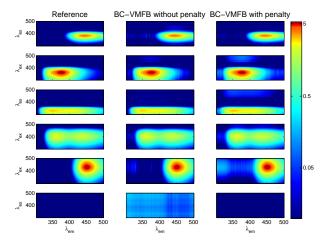


Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without regularization (middle) and with regularization $\alpha = 0.05$ (right).

	Application to CPD	Numerical simulations	Conclusion and future w
		0000000	

Visual results: noisy case

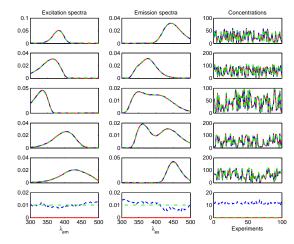


Figure: $\hat{R} = 6$ - reference spectra / BC-VMFB without penalty / BC-VMFB with penalty $\alpha = 0.05$.

Computer simulation: real experimental data - water monitoring to detect pollutants

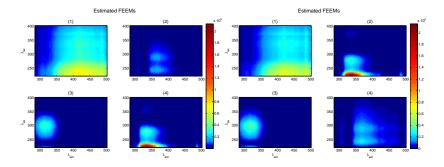
- ► Data were acquired automatically every 3 minutes, during a 10 days monitoring campaign performed on water extracted from an urban river ⇒ tensor of size 36 × 111 × 2594.
- ► The excitation wavelengths range from 225nm to 400nm with a 5nm bandwidth, whereas the emission wavelengths range from 280nm to 500nm with a 2nm bandwidth.
- The FEEM have been pre-processed using the Zepp's method (negative values were set to 0).

Contamination

During this experiment, a contamination with diesel oil appeared 7 days after the beginning of the monitoring.

	Application to CPD	Numerical simulations	Conclusion and future work
		0000000	

Results: what about the rank ?



penalized BC-VMFB algorithm

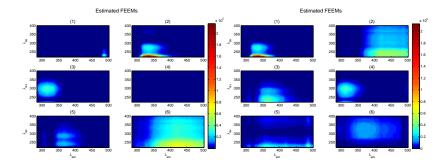
Bro's N-way algorithm

Case
$$\widehat{R} = 4$$

< □ > < 部 > < 差 > < 差 > 差 ● ○ Q (~ 25/27

	Application to CPD	Numerical simulations	Conclusion and future work
		0000000	

Results: what about the rank?



penalized BC-VMFB algorithm

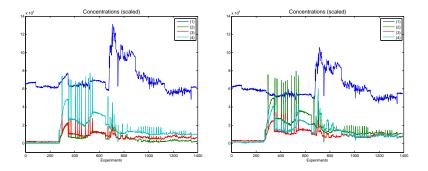
Bro's N-way algorithm

Case
$$\widehat{R} = 6$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 25/27)

	Application to CPD	Numerical simulations	Conclusion and future work
		000000	

Results: concentrations



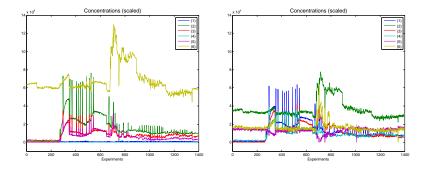
penalized BC-VMFB algorithm

Bro's N-way algorithm

Case $\hat{R} = 4$

	Application to CPD	Numerical simulations	Conclusion and future work
		000000	

Results: concentrations



penalized BC-VMFB algorithm

Bro's N-way algorithm

Case $\hat{R} = 6$

Introduction	Proximal tools	Application to CPD	Numerical simulations	Conclusion and future work

Conclusion

- clear theoretical and mathematical framework for CPD decomposition;
- interesting properties of the proposed approach: reliability, robustness versus noise and overestimation of the rank, good performance despite model errors and relative quickness;
- promising results on simulated and real data.

Perspectives:

- extension to higher order tensor (in progress);
- possibility of considering missing data;
- study other preconditionning stategies.

Introduction	Proximal tools	Application to CPD	Numerical simulations	Conclusion and future work

Conclusion

- clear theoretical and mathematical framework for CPD decomposition;
- interesting properties of the proposed approach: reliability, robustness versus noise and overestimation of the rank, good performance despite model errors and relative quickness;
- promising results on simulated and real data.

Perspectives:

- extension to higher order tensor (in progress);
- possibility of considering missing data;
- study other preconditionning stategies.

