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Introduction

I based on “roto-translation” group;

I a simple formula for curvature-dependent line energies;

I a general relaxation for functions;

I tightness result (C 2 sets);

I dual formulation and link with previous works
[Bredies-Pock-Wirth’15];

I numerical results



Curvature information: a “natural” idea

Experiments and discovery of Hubel-Wiesel (62, 77)
Observation: the brain
reacts to orientation. Corresponding
cells are stacked and connected
together to provide sensitivity to
curvature. First mathematical theories:
Koenderink-van Doorn (87), Hoffman
(89), Zucker (2000), Petitot-Tondut
(98/2003), Citti-Sarti (2003/2006).

Main idea: use the sub-Riemanian structure of the roto-translation
group ((a,R) ∈ SE (2) ' R2 × SO(2) ' R2 × S1 in dimension 2) to
describe the geometry of the visual cortex → sub-Riemanian diffusion
and mean curvature motion (Citti-Sarti 3/6, Duits-Franken 10, Boscain
et al 14, Citti et al, 2015) for inpainting.



Variational approaches

For images: Mumford (94) suggested to use the “elastica” functional∫
γ

κ2dH1

for contour completion. (Idea suggested by psychological experiments, cf
for instance Kanizsa 1980.) General theory by Masnou-Morel 98.
Issues: not lower semicontinuous. Studied by Bellettini-Mugnai
2004/2005, Nardi (PhD 2011), Dayrens-Masnou 16, Ambrosio-Masnou
2003. [Examples]
Minimisation is computationally challenging. A few approaches based on
the “roto-translation” representation: in particular, Schoenemann with
Cremers (2007), Kahl and Cremers (2009), Masnou and Cremers (2011):
discrete approach on a graph (or LP) where vertices encode position and
orientation (also, El Zehiry-Grady 2010, ...);
Length computation by JM Mirebeau (anisotropic Eikonal equations,
2014)



Variational approaches

Bredies-Pock-Wirth 2013, 2015: “vertex” penalization (“TVX”), then
general energies

∫
γ
f (x , τ, κ), f convex, f ≥ 1. Need to “lift” the image

in R2 × S1 × R where last component = curvature, with compatibility
condition.
This work: a new (and simpler) representation for the latter approach
(with f (κ)).



Example: a C 2 curve

γ(t) planar curve, with |γ̇| = 1 (γ̇ = τγ), and γ̈ = κγτ
⊥
γ .

Lifted as Γ(t) = (γ(t), θ(t)) where τγ = (cos θ, sin θ).
Then: the length of Γ(t) in Ω × S1 is

I Finite: sub-Riemanian structure, local metric is infinite in direction
θ⊥ (we will also take into account orientation);

I Given by
∫ L

0

√
γ̇2 + θ̇2dt =

∫ L

0

√
1 + κ2dt: encoding curvature

penalization information.



Example: a C 2 curve

Let now f : R→ R be convex, assume f ≥ 1, and consider the energy∫ L

0

f (κ) =

∫ L

0

f (Γ̇θ(t))dt.

Observe that if one considers a reparametrization λ(s) of the curve Γ,
then λx(s) is a reparametrization of γ, λ̇x = |λ̇x |τ ,

κ = dθ/dt = λ̇θds/dt = λ̇θ/|λ̇x | hence the energy becomes∫
f (λ̇θ/|λ̇x |)|λ̇x |ds.



Example: a C 2 curve

Denoting σ the measure (charge) in M1(Ω × S1;R3) defined by the
curve Γ(t): ∫

Ω×S1

ψ · σ =

∫ L

0

ψ(Γ(t)) · Γ̇(t)dt,

one obtains that ∫ L

0

f (κ) =

∫
Ω×S1

h̄(σx · θ, σθ)

where

h̄(s, t) =


sf (t/s) if s > 0,

f∞(t) if s = 0,

+∞ else.

where f∞(t) = lims→0 sf (t/s) is the recession function of f .



Example: a C 2 curve

It is standard that if f is convex lsc, then also h is, with

h̄(s, t) = sup {as + bt : a + f ∗(b) ≤ 0} .

In addition, as σx = λθ where λ is a positive measure in Ω × S1,
introducing for p = (px , pθ) ∈ R3

h(θ, p) =

{
h̄(px · θ, pθ) if px · θ = |px | ⇔ px ‖ θ, px · θ ≥ 0

+∞ else,

which encodes the sub-Riemanian structure of Ω × S1: we also have∫ L

0

f (κ) =

∫
Ω×S1

h̄(σx · θ, σθ) =

∫
Ω×S1

h(θ, σ).



Example: a C 2 curve

Now, observe that divσ = δΓ(L) − δΓ(0), in particular if γ is a closed curve
or has its endpoints on ∂Ω, then divσ = 0.

Obviously, if one considers the marginal σ̄ =
∫
S1 σ

x ∈M1(Ω;R2) defined
by ∫

Ω×S1

(ψ, 0) · σ =

∫
Ω

ψ · σ̄

for any ψ ∈ Cc(Ω;R2), then it also has zero divergence (as it vanishes if
ψ = ∇φ for some φ). In dimension 2, it follows that (assuming Ω is
connected) there exists a BV function u such that Du⊥ = σ̄. In our case,
u is the characteristic function of a set E with ∂E ∩ Ω = γ([0,T ]) ∩ Ω.



Generalization to BV functions

One can define for any u ∈ BV (Ω)

F (u) = inf

{∫
Ω×S1

h(θ, σ) : divσ = 0,

∫
S1

σx = Du⊥
}
.

If we assume that f (t) ≥
√

1 + t2, then one sees that h̄(s, t) ≥
√
s2 + t2

and
∫

Ω×S1 h(θ, σ) ≥
∫

Ω×S1 |σ|. It easily follows that the “inf” is a min,
and that F defines a convex, lower semicontinuous function on BV with
F (u) ≥ |Du|(Ω).
From the example above, we readily see that if E is a C 2 set, then

F (χE ) ≤
∫
∂E

f (κ)dH1.



Tightness of the representation

We can show the following result:

Theorem if E is a C 2 set, then

F (χE ) =

∫
∂E

f (κ)dH1.

Proof: we need to show ≥. In other words, we need to show the obvious
fact that if σ is a measure with

∫
S1 σ

x = Dχ⊥E , then σ, above ∂E ,
consists at least in the measure defined by the lifted curve above ∂E
(with its orientation as third component).
Maybe there is a simple way to do this (as it is obvious). We used
S. Smirnov’s theorem which shows that if σ is a measure with divσ = 0,
then it is a superposition of curves.



Smirnov’s Theorem A (1994)

If divσ = 0 then it can be decomposed in the following way:

σ =

∫
C1

λdµ(λ), |σ| =

∫
C1

|λ|dµ(λ),

where λ are of the form
λγ = τγH1 γ

for rectifiable (possibly closed) curves γ ⊂ Ω × S1 of length at most one.
(C1 is the corresponding set.)

[We do not need here the more precise “Theorem B”]



Smirnov’s Theorem A (1994)

Thanks to the fact that the decomposition is convex (ie with
|σ| =

∫
C1
|λ|dµ(λ)) we can show that |σ|-a.e., for µ-a.e. curve λ one has

σ/|σ| = λ/|λ| |λ|-a.e., and in particular λx is oriented along θ, and∫
Ω×S1

h(θ, σ) =

∫
C1

(∫
Ω×S1

h(θ, λ)

)
dµ(λ) =

∫
C1

(∫
γ

h(θ, τγ)

)
dH1.

The horizontal projection λx is a rectifiable curve, and one can deduce
that its curvature is a bounded measure.
For this we reparametrize λ with the length of λx : that is we define
λ̃(t) = λ(s(t)) in such a way that H1(λ̃x([0, t])) = t) [if simple]. Then
we show that λ̃θ(t), which is the orientation of the tangent [because the
energy is finite], has bounded variation.



Tightness

Then one can show that if

Γ+ = {x ∈ ∂E ∩ λx(0, L) : the curves have the same orientation }

then a.e. on Γ+, the absolutely continuous part of the curvature κ = ˙̃λθ

coincides with κE . Using that for any set I ,∫
λx (I )

f (κa) ≤
∫
I×S1

h(θ, λ),

which more or less follows because this is precisely the way we have built
h, we can deduce since κa = κE a.e.:∫

∂E

f (κE ) ≤
∫
C1

∫
∂E×S1

h(θ, λ)dµ(λ)

which implies our inequality.



Tightness

I More cases?

I We know that F can be below the standard (L1) relaxation of∫
∂E

f (κ) (Bellettini-Mugnai 04/05, Dayrens-Masnou 16) (simple
examples).



Dual representation

We can compute the dual problem of

F (u) = inf

{∫
Ω×S1

h(θ, σ) : divσ = 0,

∫
S1

σx = Du⊥
}
.

by the standard perturbation technique, which consists in defining

G (p) = inf

{∫
Ω×S1

h(θ, σ + p) : divσ = 0,

∫
S1

σx = Du⊥
}
,

showing (exactly as for F ) that p 7→ G (p) is (weakly-∗) lsc and therefore
that G∗∗ = G , and in particular

F (u) = G (0) = sup
η∈C 0

0 (Ω×S1;R3)

−G∗(η)



Dual representation
Then, it remains to compute G∗(η):

G∗(η) = sup
p,σ:divσ=0∫
S1 σ=Du⊥

∫
Ω×S1

η · p − h(θ, σ + p)

= sup
σ:divσ=0∫
S1 σ=Du⊥

−
∫

Ω×S1

η · σ + sup
p
η · (σ + p)− h(θ, σ + p)

We find θ · ηx + f ∗(ηθ) ≤ 0, and then η = ψ(x) +∇ϕ(x , θ) so that:

F (u) = sup

{∫
Ω

ψ · Du⊥ : ψ ∈ C 0
c (Ω;R2),

∃ϕ ∈ C 1
c (Ω × S1), θ · (∇xϕ+ ψ) + f ∗(∂θϕ) ≤ 0

}
.

→ SAME as Bredies-Pock-Wirth’ 2015... This is how we find out that
this representation is a simpler variant of theirs...



Numerical discretization

This is work in progress. We have a few approaches which work in theory
but yield poorly concentrated measures σ. And better approaches which
are not clearly justified.
We use both the primal and dual representation and solve the discretized
problem using a saddle-point optimisation.



Examples: shape completion

(a) Original shape (b) Input (c) Inpainted shape

Figure : Weickert’s cat: Shape completion using the function f2 =
√

1 + k|κ|2.



Examples: shape denoising



Examples: shape denoising

(a) AC, λ = 8 (b) AC, λ = 4 (c) AC, λ = 2

(d) EL, λ = 8 (e) EL, λ = 4 (f) EL, λ = 2

Figure : Shape denoising: First row: Using the function f1 = 1 + k|κ|, second
row: Using the function f3 = 1 + k|κ|2.



Examples: Willmore flow
(cf for instance Dayrens-Masnou-Novaga 2016)

(a) AC (b) EL

Figure : Motion by the gradient flow of different curvature depending energies.
Energy 1 + |κ| gives the same as standard mean curvature flow for convex
curves. Elastica/Willmore flow converges to a circle (shrinkage is still present
due to the length term).



Conclusion, perspectives

I We have introduced a relatively simple systematic way to represent
curvature-dependent energies in 2D;

I It simplifies the (equivalent) framework of [Bredies-Pock-Wirth
2012];

I Open questions: characterize the functions for which the relaxation
is tight (conjecture: functions with “continuous” curvature?);

I Discretization needs some improvement (issues: measure with
orientation constraint).

Thank you for your attention
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