Convergence of Dimension Elevation Algorithms: Only a Typical CAGD Issue ?

Rachid Ait-Haddou Osaka (Japan)

(Joint work with Marie-Laurence Mazure) Joseph Fourier University Grenoble (France)

Dimension Elevation Algorithms

- **Degree Elevation of Bézier Curves**
- Dimension Elevation in Chebyshev Spaces

Dimension Elevation Algorithms

- Degree Elevation of Bézier Curves
- Dimension Elevation in Chebyshev Spaces
- Dimension Elevation in Müntz Spaces
 - **Characterization of Convergence**
 - Dimension Elevation Versus Density

Dimension Elevation Algorithms

- Degree Elevation of Bézier Curves
- Dimension Elevation in Chebyshev Spaces
- Dimension Elevation in Müntz Spaces
 - Characterization of Convergence
 - Dimension Elevation Versus Density
- Dimension Elevation Versus Bernstein Operators

Dimension Elevation Algorithms

- Degree Elevation of Bézier Curves
- Dimension Elevation in Chebyshev Spaces
- Dimension Elevation in Müntz Spaces
 - Characterization of Convergence
 - Dimension Elevation Versus Density
- Dimension Elevation Versus Bernstein Operators

Dimension Elevation For Rational Spaces

- Characterization of Convergence
- Connection to Pólya's Theorem on Positive Polynomials

Bézier Curves

Bernstein Basis (Bernstein, 1912)

$$B_k^n(t) = \binom{n}{k} \left(\frac{t-a}{b-a}\right)^k \left(\frac{b-t}{b-a}\right)^{n-k} \quad k = 0, 1, \dots, n.$$

• Basis of the linear space \mathbb{P}_n of polynomials of degree n.

•
$$0 \le B_k^n(t) \le 1$$
 for $t \in [a, b]$.

•
$$\sum_{k=0}^{n} B_k^n(t) = 1$$
 for any $t \in \mathbb{R}$.

•
$$\frac{d}{dt}B_k^n(t) = n(b-a)\left(B_{k-1}^{n-1}(t) - B_k^{n-1}(t)\right).$$

Bézier Curves

Bézier curves (Bézier-de Casteljau 1960)

$$\Gamma: P(t) = \sum_{k=0}^{n} B_k^n(t) P_k; \quad t \in [a, b]; \quad P_k \in \mathbb{R}^d.$$

•
$$P(a) = P_0$$
 and $P(b) = P_n$.

• The curve Γ lies in the convex hull of the points P_0, P_1, \ldots, P_n .

•
$$P'(a) = n(b-a)(P_1 - P_0)$$
 and $P'(b) = n(b-a)(P_n - P_{n-1}).$

The curve Γ is tangent to the end-segments of the polygon $(P_0, P_1, \ldots, P_n).$

SIGMA-SMAI 2016

Bézier Curves

Bernstein Representation of Polynomials

(de Casteljau algorithm, blossom, degree elevation, splines,...)

Degree Elevation of Bézier Curves

•
$$\mathbb{P}_{n} \subset \mathbb{P}_{n+1}$$

 $P(t) = \sum_{k=0}^{n} B_{k}^{n}(t) P_{k} = \sum_{k=0}^{n+1} B_{k}^{n+1}(t) P_{k}^{(1)}.$
• New control points
 $P_{0}^{(1)} = P_{0}, \quad P_{n+1}^{(1)} = P_{n}.$
 $P_{k}^{(1)} = \frac{k}{n+1} P_{k-1} + (1 - \frac{k}{n+1}) P_{k}.$
• $\mathbb{P}_{n} \subset \mathbb{P}_{n+1} \subset \mathbb{P}_{n+2} \subset \dots$
 $P_{0}^{(1)} = P_{0}$
 $P_{0}^{(1)} = P_{0}$
 $P_{1}^{(1)} = P_{0}$
 $P_{1}^{(1)} = P_{0}$

 $\implies \text{Iterating degree elevation leads to a sequence of control} \\ \text{polygons.}$

SIGMA-SMAI 2016

SIGMA 2016-CIRM

SIGMA 2016-CIRM

SIGMA 2016-CIRM

SIGMA 2016-CIRM

Degree Elevation of Bézier Curves

SIGMA 2016-CIRM

Theorem (Farin, 1969) The sequence of control polygons generated by the degree elevation algorithm converges uniformly to the underlying Bézier curve.

Nested Sequence of Linear Function Spaces

$$1 \in \mathbb{P}_1 \subset \mathbb{P}_2 \subset \ldots \subset \mathbb{P}_n \subset \ldots \subset C^{\infty}([a, b])$$

 \mathbb{P}_n : the linear space of polynomials of degree *n* over [a, b].

Bernstein Basis in Each Space $B_k^n(t) = \binom{n}{k} \left(\frac{t-a}{b-a}\right)^k \left(\frac{b-t}{b-a}\right)^{n-k} k = 0, 1, \dots, n.$

• $B_k^n(t) > 0$ for $t \in]a, b[$.

•
$$\sum_{k=0}^{n} B_k^n(t) = 1$$
 for any $t \in [a, b]$.

• B_k^n vanishes exactly k times at a and (n-k) times at b.

Definition

An (n + 1)-dimensional space $\mathbb{E}_n \subset C^{\infty}([a, b] \text{ is said to be}$ an Extended Chebyshev space (in short, EC-space) on [a, b]if any non-zero element $F \in \mathbb{E}_n$ vanishes at most n times on [a, b] counting multiplicities.

Definition

 $(B_0^n, B_1^n, \dots, B_n^n)$ is said to be a Bernstein basis of \mathbb{E}_n over (a, b) if • $B_k^n(t) > 0$ for $t \in]a, b[$.

•
$$\sum_{k=0}^{n} B_k^n(t) = 1$$
 for any $t \in [a, b]$.

• B_k^n vanishes exactly k times at a and (n-k) times at b.

Theorem (Mazure, 2009)

Assume that $1 \in \mathbb{E}_n$. \mathbb{E}_n possesses a Bernstein basis over (a, b)if and only if $D\mathbb{E}_n$ is an (n-dim) EC-space over [a, b], where $D\mathbb{E}_n = \{F'/F \in \mathbb{E}_n\}.$

Definition

 \mathbb{E}_n is said to be good for design if it contains constants and $D\mathbb{E}_n$ is an (*n*-dim) EC-space over [a, b].

 \Longrightarrow Development of all CAGD algorithms in \mathbb{E}_n .

(Bézier curves, de Casteljau algorithm, blossom, dimension elevation, splines,...)

Spaces Good for Design

Examples

- $(1, t, t^2, \dots, t^{n-2}, \cosh t, \sinh t)$ span a space good for design on any interval $[a, b] \subset \mathbb{R}$.
- $(1, t, t^2, \dots, t^{n-2}, \cos t, \sin t)$ span a space good for design on any interval $[a, b] \subset [\alpha, \alpha + \pi[. (Cycloidal spaces)$
- Given real numbers $0 = r_0 < r_1 < \ldots r_n$, $(t^{r_0}, t^{r_1}, \ldots, t^{r_n})$ span a space good for design on any $[a, b] \subset]0, \infty[$. (Müntz spaces)
- Given any real numbers $a_1, a_2, \ldots, a_n \in \mathbb{R} \setminus [a, b]$, $(1, \frac{1}{t-a_1}, \frac{1}{t-a_2}, \ldots, \frac{1}{t-a_n})$ span a space good for design over [a, b].

Dimension Elevation

Setting

- [a, b] a fixed interval. $\mathbb{E}_n \subset \mathbb{E}_{n+1}$ both good for design over [a, b].
- $(B_0^n, B_1^n, \ldots, B_n^n)$ Bernstein basis of \mathbb{E}_n over (a, b).
- $(B_0^{n+1}, B_1^{n+1}, \dots, B_{n+1}^{n+1})$ Bernstein basis of \mathbb{E}_{n+1} over (a, b).

$$P(t) = \sum_{k=0}^{n} B_k^n(t) P_k = \sum_{k=0}^{n+1} B_k^{n+1}(t) P_k^{(1)}, \quad P_k, P_k^{(1)} \in \mathbb{R}^d.$$

Theorem

There exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in]0, 1[$, independent of P, such that

$$P_0^{(1)} = P_0, \ P_{n+1}^{(1)} = P_n$$
$$P_k^{(1)} = \alpha_k P_{k-1} + (1 - \alpha_k) P_k, \ k = 1, 2, \dots, n$$

SIGMA 2016-CIRM

Geometrical Interpretation

• [a, b] a fixed interval. $\mathbb{E}_n \subset \mathbb{E}_{n+1}$ both good for design over [a, b].

SIGMA 2016-CIRM

Dimension Elevation Algorithm

Nested Sequence of Spaces Good for Design

Nested Sequence of Müntz Spaces

• $\Lambda_{\infty} = (r_1, r_2, \dots, r_n, \dots)$ a strictly increasing sequence of positive real numbers.

• $\mathbb{E}_n(\Lambda_\infty) := Span\{1, t^{r_1}, t^{r_2}, \dots, t^{r_n}\}$ is a space good for design on any interval $[a, b] \subset]0, \infty[$.

$$1 \in \mathbb{E}_1(\Lambda_\infty) \subset \mathbb{E}_2(\Lambda_\infty) \ldots \subset \mathbb{E}_n(\Lambda_\infty) \subset \ldots \subset C^\infty([a,b]).$$

Main Question: Characterize the sequences Λ_{∞} for which the dimension elevation algorithm converges to the underlying curve ?

Schur Functions

• $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ is a real partition if

$$\lambda_1 > \lambda_2 - 1 > \lambda_3 - 2 > \ldots > \lambda_n - (n-1) > -n.$$

• The Schur function S_{λ} indexed by a real partition λ is defined by

$$S_{\lambda}(u_1,\ldots,u_n) = \frac{\det(u_i^{\lambda_j+n-j})_{1\leq i,j\leq n}}{\prod_{1\leq i< j\leq n}(u_i-u_j)}, \quad \tilde{S}_{\lambda}(u_1,\ldots,u_n) := \frac{S_{\lambda}(u_1,\ldots,u_n)}{S_{\lambda}(1,1,\ldots,1)}$$

• If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are positive integers, then we recover the classical notion of integer partitions and Schur functions

$$S_{\lambda}(u_1, u_2, \ldots, u_n) \in \mathbb{Z}[u_1, u_2, \ldots, u_n].$$

Schur Functions and Bernstein Bases (R.A, 2013)

•
$$\mathbb{E}_n(\Lambda_\infty) := Span\{1, t^{r_1}, t^{r_2}, \dots, t^{r_n}\}.$$

Theorem. The Bernstein basis of the space $\mathbb{E}_n(\Lambda_{\infty})$ over (a, b) is given by

$$B_{k,\Lambda_{\infty}}^{n}(t) = \frac{\tilde{S}_{\lambda^{(0)}}(a^{[n-k]}, b^{[k]})\tilde{S}_{\lambda}(a^{[n-k]}, b^{[k]}, ab/t)}{\tilde{S}_{\lambda}(a^{[n+1-k]}, b^{[k]})\tilde{S}_{\lambda}(a^{[n-k]}, b^{[k+1]})}t^{\lambda_{1}}B_{k}^{n}(t),$$

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ and $\lambda^{(0)} = (\lambda_2, \dots, \lambda_n)$ with

$$\lambda_k = r_n - r_{k-1} - (n - k + 1), \quad k = 1, 2, \dots, n.$$

• The ratio b/a is a shape parameter.

It is sufficient to study dimension elevation over intervals of the form [a, 1], a > 0.

SIGMA 2016–CIRM

Dimension Elevation Algorithm

•
$$\Lambda_n = (r_1, r_2, \dots, r_n), \quad \Lambda_{n+1} = (r_1, r_2, \dots, r_n, r_{n+1})$$

$$P(t) = \sum_{k=0}^{n} B_{k,\Lambda_{\infty}}^{n}(t) P_{k} = \sum_{k=0}^{n+1} B_{k,\Lambda_{\infty}}^{n+1}(t) P_{k}^{(1)}$$

- New control points
- $P_0^{(1)} = P_0, \quad P_{n+1}^{(1)} = P_n$ $P_k^{(1)} = \xi_k P_{k-1} + (1 - \xi_k) P_k.$
- $\Longrightarrow \xi_k$ have very complicated expression

A direct proof of a convergence theorem is unlikely

November 01, 2016

 P_{2}

 $P_2^{(1)} \xi_2 P_2$

 $P_{1}^{(1)}$

 $P_0^{(1)} = P_0$

SIGMA 2016-CIRM

SIGMA 2016-CIRM

Dimension Elevation in Müntz spaces

$$\implies \text{Working with } H^n_{k,\Lambda_{\infty}}(t) := \lim_{a \to 0} B^n_{k,\Lambda_{\infty}}(t).$$
(Gelfond-Bernstein basis)

SIGMA 2016–CIRM

Gelfond-Bézier Curves

Dimension Elevation for Gelfond-Bézier Curves

•
$$A_n = (r_1, r_2, ..., r_n)$$
 $A_{n+1} = (r_1, r_2, ..., r_n, r_{n+1})$
 $P(t) = \sum_{k=0}^{n} H_{k,\Lambda_{\infty}}^n(t) P_k = \sum_{k=0}^{n+1} H_{k,\Lambda_{\infty}}^{n+1}(t) P_k^{(1)}$
• New control points $P_0^{(1)} = P_0$ $P_{n+1}^{(1)} = P_n$
 $P_k^{(1)} = \frac{r_k}{r_{n+1}} P_{k-1} + \left(1 - \frac{r_k}{r_{n+1}}\right) P_k$
 $P_0^{(1)} = P_0$ $P_4^{(1)} = P_0$ $P_4^{(1)} = P_3$

$$P(t) = \sum_{k=0}^{3} B_{k,\Lambda_{\infty}}^{3}(t) P_{k}$$

 $\Lambda_3 = [1, 2, 3] \implies \Lambda_\infty = [1, 2, 3 | 8, 10, ..., 2i, ...]$

SIGMA 2016-CIRM

$$\Lambda_3 = [1, 2, 3] \implies \Lambda_\infty = [1, 2, 3 | 16, 25, ..., i^2, ...]$$

SIGMA 2016-CIRM

SIGMA 2016–CIRM

Examples

Convergent
$$\Lambda_3 = [1, 2, 3] \implies \Lambda_{\infty} = [1, 2, 3 | 8, 10, ..., 2i, ...] \qquad \sum_i \frac{1}{2i} = +\infty$$

Non convergent
$$\Lambda_3 = [1, 2, 3] \implies \Lambda_{\infty} = [1, 2, 3 | 16, 25, ..., i^2, ...] \sum_i \frac{1}{i^2} < +\infty$$

Non convergent
$$\Lambda_3 = [1, 2, 3] \implies \Lambda_\infty = [1, 2, 3 | 4 - \frac{1}{4}, 4 - \frac{1}{5}, ..., 4 - \frac{1}{i}, ...]$$

SIGMA 2016-CIRM

Dimension Elevation of Gelfond-Bézier Curves

Theorem (R.A, 2013)

The sequence of control polygons obtained by dimension elevation converges uniformly to the underlying Gelfond-Bézier curve if and only if

$$\lim_{n \to \infty} r_n = +\infty \quad \text{and} \quad \sum_i \frac{1}{r_i} = +\infty$$

SIGMA 2016-CIRM

- \bullet The de Casteljau algorithm and Chebyshev blossoming still make sense over [0,1]
- Clarkson-Erdös-Schwartz inequality $||P'||_{[0,1-\epsilon]} < c(\Lambda_{\infty},\epsilon)||P||_{[1-\epsilon,1]}$

A New Emergence of the Müntz Condition

Theorem (R.A, 2013) For a sequence $\Lambda_{\infty} = (r_1, r_2, \ldots, r_n, \ldots)$ of strictly increasing positive real numbers such that $\lim_{n\to\infty} r_n = \infty$, the convergence of dimension elevation to the underlying curves is equivalent to

$$\sum_{n} \frac{1}{r_n} = +\infty$$

Theorem(Müntz, 1912; Schwartz, 1944)

The space $Span(1, t^{r_1}, t^{r_2}, \ldots, t^{r_n}, \ldots)$ is a dense subset of C([a, b]) with $[a, b] \subset [0, \infty]$ if and only if

$$\sum_{n} \frac{1}{r_n} = +\infty$$

Dimension Elevation vs Density

Corollary

For a sequence $\Lambda_{\infty} = (r_1, r_2, \dots, r_n, \dots)$ of strictly increasing positive real numbers such that $\lim_{n\to\infty} r_n = \infty$, the convergence of dimension elevation to the underlying curves is equivalent to the density of the space $\cup_{n\geq 1}\mathbb{E}_n$ in C([a, b]) endowed with the uniform norm.

Question: Is this equivalence an isolated fact or a general one ?

Polynomial Bernstein Operators

Explicit Expression

$$1 \in \mathbb{P}_1 \subset \mathbb{P}_2 \subset \ldots \subset \mathbb{P}_n \subset \ldots \subset C^{\infty}([a, b])$$

•
$$\mathbb{B}_n : C([a, b]) \longrightarrow \mathbb{P}_n$$

 $\mathbb{B}_n F = \sum_{k=0}^n F\left(\frac{(n-k)a + kb}{n}\right) B_k^n.$

- \mathbb{B}_n linear positive operator.
- \mathbb{B}_n reproduces every elements of \mathbb{P}_1 .

$$t = \sum_{k=0}^{n} \frac{(n-k)a + kb}{n} B_k^n(t).$$

Chebyshev-Bernstein Operators

Construction $1 \in \mathbb{E}_1 \subset \mathbb{E}_2 \subset \ldots \subset \mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \ldots \subset C^{\infty}([a,b])$

• Let $U \in \mathbb{E}_1$ be a strictly increasing function over [a, b].

$$U(t) = \sum_{k=0}^{n} u_{k,n} B_k^n(t).$$

The Bernstein operator $\mathbb{B}_n : C([a, b]) \longrightarrow \mathbb{E}_n$ reproducing U is defined by:

$$\mathbb{B}_n F = \sum_{k=0}^n F(\xi_{k,n}) B_k^n,$$

where $\xi_{k,n} = U^{-1}(u_{k,n}), \ k = 0, 1, \dots, n.$

SIGMA 2016-CIRM

Chebyshev-Bernstein Operators

D Main Question $1 \in \mathbb{E}_1 \subset \mathbb{E}_2 \subset \ldots \subset \mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \ldots \subset C^{\infty}([a,b])$

When does the Bernstein operators \mathbb{B}_n converge to the identity ? i.e.;

$$\lim_{n \to \infty} ||\mathbb{B}_n F - F||_{\infty} = 0 \quad \text{for any} \quad F \in C([a, b]).$$

 $\implies \bigcup_{n=0}^{\infty} \mathbb{E}_n \text{ is a dense subset of } C([a, b]) \text{ endowed with}$ the uniform norm.

Dimension Elevation vs Bernstein Operators

SIGMA 2016–CIRM

Main Theorem

Dimension Elevation vs Bernstein Operators

 $1 \in \mathbb{E}_1 \subset \mathbb{E}_2 \subset \ldots \subset \mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \ldots \subset C^{\infty}([a,b])$

Theorem(M.-L. Mazure, R. A, 2014)

There is equivalence between:

- Convergence of dimension elevation to the underlying curves
- Convergence of the Bernstein operators to the identity

Corollary

If dimension elevation converges to the underlying curves then $\bigcup_{n\geq 1}\mathbb{E}_n$ is dense in C([a, b]) endowed with the uniform norm

Converse Question

$1 \in \mathbb{E}_1 \subset \mathbb{E}_2 \subset \ldots \subset \mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \ldots \subset C^{\infty}([a,b])$

Does the density of $\bigcup_{n\geq 1}\mathbb{E}_n$ implies the convergence of dimension elevation to the underlying curves ?

Converse Question

$1 \in \mathbb{E}_1 \subset \mathbb{E}_2 \subset \ldots \subset \mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \ldots \subset C^{\infty}([a,b])$

Does the density of $\bigcup_{n\geq 1}\mathbb{E}_n$ implies the convergence of dimension elevation to the underlying curves ?

Answer: NO

SIGMA 2016–CIRM

Nested Sequence of Rational Spaces

•
$$\mathcal{A}_{\infty} = (a_1, a_2, \dots, a_n, \dots)$$
 a sequence of real numbers in $\mathbb{R} \setminus [a, b]$.

• $\mathbb{E}_n(\mathcal{A}_\infty) := Span\{1, \frac{1}{t-a_1}, \frac{1}{t-a_2}, \dots, \frac{1}{t-a_n}\}$ is a space good for design on the interval [a, b].

$$1 \in \mathbb{E}_1(\mathcal{A}_\infty) \subset \mathbb{E}_2(\mathcal{A}_\infty) \ldots \subset \mathbb{E}_n(\mathcal{A}_\infty) \subset \ldots \subset C^\infty([a,b]).$$

Akhieser's theorem (1956)

 $\cup_{n\geq 1} \mathbb{E}_n(\mathcal{A}_\infty)$ is dense in C([a,b]) if and only if

$$\sum_{n=1}^{\infty} \sqrt{(a_n - a)(a_n - b)} = +\infty.$$

Dimension Elevation for Rational Spaces

Counter-Example

SIGMA 2016–CIRM

Pólya Theorem (1928)

Let P be a real univariate polynomial which is positive on the interval $[0, \infty[$. Then there exists an integer m such that the coefficients of the polynomial $(t+1)^m P(t)$ are positive.

Definition

An infinite sequence $\mathcal{B}_{\infty} = (b_1, b_2, \dots, b_n, \dots)$ of positive numbers is said to be Pólya positive if, for any real polynomial P which is positive on the interval $[0, \infty[$, there exists an integer m such that all the coefficients of the polynomial $(t + b_1)(t + b_2) \dots (t + b_m)P(t)$ are positive.

 \square The sequence $(1, 1, \dots, 1, \dots)$ is Pólya positive

Theorem (R.A, M.-L. Mazure, 2016)

A infinite sequence of poles $\mathcal{A}_{\infty} = (a_1, a_2, \dots, a_n, \dots)$ ensures the convergence of dimension elevation to the underlying curves if and only if the infinite sequence

$$\mathcal{B}_{\infty} = \left(\frac{a-a_1}{b-a_1}, \frac{a-a_2}{b-a_2}, \dots, \frac{a-a_n}{b-a_n}, \dots\right)$$

is Pólya positive.

Theorem (Baker and Handelman, 1992)

An infinite sequence $\mathcal{B}_{\infty} = (b_1, b_2, \dots, b_n, \dots)$ of positive numbers is Pólya positive if and only if

$$\sum_{n=1}^{\infty} \min(b_n, \frac{1}{b_n}) = +\infty$$

Conclusion

• $u_{k,n}, k = 0, 1, \ldots, n$, the control points of any element of \mathbb{E}_1

SIGMA 2016-CIRM

Thank you for your attention

SIGMA 2016-CIRM