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Notation

F a non-archimedean local field;

O ⊂ F its discrete valuation ring;

p ⊂ O the maximal ideal;

k = O/p ' Fq; q = pf the residue field;

G a connected reductive group defined over F ;

G = G(F ), with the p-adic topology;
0G the subgroup of G generated by its compact subgroups;

Rep(G ) the category of smooth C-representations of G .
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Parahoric subgroups

Let B(G ) denote the (affine) Bruhat–Tits building of G . This is a locally
finite polysimplicial complex on which G acts via simplicial automorphisms.

For x ∈ B(G ), the group G̃x = StabG (x) ∩ 0G is compact open, and
canonically of the form G̃x(O) for a smooth (possibly disconnected)
O-model G̃x of G. Let Gx be the identity component of G̃x , and let
Gx = Gx(O). Gx is a parahoric subgroup of G .

Gx is maximal as a parahoric subgroup of G if and only if x ∈ B(G ) is a
vertex, and Ggx = gGxg

−1.

The pro-unipotent radical of Gx is its maximal open normal pro-p
subgroup, denoted G+

x . The group Gx/G
+
x identifies with Gx(k), for a

connected reductive group Gx over k (the special fibre of Gx).

Definition

An irreducible representation π of G is of depth zero if there exists
x ∈ B(G ) such that πG

+
x 6= 0.
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An example

The building of G = SL2(F ) is a regular infinite tree of degree q + 1:

Vertices naturally correspond to O-lattices in F 2, and for a lattice Λ, GΛ is
the usual stabilizer of Λ. If x is not a vertex, Gx = GΛ ∩ GΛ′ for Λ,Λ′ the
two neighbouring vertices.

So, up to GLN(F )-conjugacy, the parahoric subgroups of SLN(F ) are:

K1 =

(
O O
O O

)
∩ G ; K+

1 =

(
1 + p p
p 1 + p

)
∩ G ; K0/K1 ' SL(2, q); and

K2 =

(
O O
p O

)
∩ G ; K+

2 =

(
1 + p O
p 1 + p

)
∩ G ; K2/K

+
2 ' (F×q )2.
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Types

Theorem (Bernstein decomposition)

The category Rep(G ) of smooth complex representations of G splits as an
product of indecomposable full subcategories:

Rep(G ) =
∏

s∈B(G)

Reps(G ).

Definition

Let S ⊂ B(G ). An S-type (J, λ) consists of an irreducible representation
λ of a compact open subgroup J of G such that, for any π ∈ Rep(G ), one
has HomJ(λ, π|J) 6= 0 if and only if π ∈ RepS(G ) =

∏
s∈SReps(G ).

For a supercuspidal representation π of G , let [G , π]G denote the unique
s ∈ B(G ) such that π ∈ Reps(G ).

Then the irreducible objects of Rep[G ,π]G (G ) are π ⊗ ω, for unramified
ω : G → C× (i.e. such that ω|0G is trivial).
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Depth zero types

Definition

An unrefined depth zero type is a pair (Gx , σ) where x ∈ B(G ) and σ is
an irreducible cuspidal representation of Gx/G

+
x .

Theorem (Morris)

(i) Let (Gx , σ) be an unrefined depth zero type. Then (Gx , σ) is an
Sσ-type for some finite set Sσ ⊂ B(G ).

(ii) RepSσ(G ) contains a supercuspidal representation if and only if x is
a vertex in B(G ), in which case any element of IrrSσ(G ) is
supercuspidal.

(iii) Any depth zero representation of G contains a unique G -conjugacy
class of unrefined depth zero types.

(iv) For any s ∈ Sσ, there exists a subrepresentation τ of IndG̃x
Gx
σ such

that (G̃x , τ) is an s-type. In particular, there exists a [G , π]G -type for
every depth zero supercuspidal representation π of G .
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Classification of types

Definition

A refined depth zero type is a type of the form (G̃x , τ), for some unrefined

depth zero type (Gx , σ) and some τ ↪→ IndG̃x
Gx
σ.

Theorem (L.)

Let π be a depth zero supercuspidal representation of G , and let (Gx , σ)
be an unrefined depth zero type contained in π.

(i) Let y ∈ B(G ) and suppose that σ′ is a representation of Gy such
that (Gy , σ

′) is an S′-type for some S′ ⊂ Sσ. Then there exists a
g ∈ G such that y = gx and σ′ ' gσ.

(ii) If K ⊂ G is maximal compact and there exists a [G , π]G -type of the
form (K , τ) then there exists a g ∈ G such that K = G̃gx , and τ |Ggx

is a sum of G -conjugates of σ.

(iii) Any [G , π]G -type is a refined depth zero type.
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The tame inertial Langlands correspondence

F̄/F separable algebraic closure; k̄/k the resulting closure of k ;
WF ⊂ Gal(F̄/F ) the Weil group; IF ⊂WF the inertia group:

0 // IF // Gal(F̄/F ) // Gal(k̄/k) ' Ẑ // 0

0 // IF //WF
?�

OO

// Z = 〈Frob : x 7→ xq〉
?�

OO

// 0

Let I+
F ⊂ IF be the wild inertia group, i.e. the maximal open normal pro-p

subgroup, and let LG be the Langlands dual of G ; this is an algebraic group
over C whose connected component has root datum dual to that of G.

Theorem (DeBacker–Reeder)

There is a surjective map with finite fibres

R(G ) L(G ){
iso. classes of “regular” depth zero

supercuspidal representations

}
rec // //

{
smooth “regular” Frob-semisimple

ϕ:WF /I
+
F →

LG, modulo LG-conjugacy

}
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The tame inertial Langlands correspondence, continued

Let A(G ) denote the set of conjugacy classes of [G , π]G -types (refined
depth zero types), for π ∈ R(G ), and D(G ) the set of conjugacy classes of
unrefined depth zero types contained in π ∈ R(G ).

Let I(G ) denote the image under ResWF
IF

of L(G ).

Theorem (L.)

There are unique well-defined surjective maps iner : A(G )→ I(G ) and
inerD : D(G )→ I(G ) such that the following diagram commutes:

R(G )
rec //

��

��

L(G )

Res
WF
IF

��

A(G )
iner
//

{{

I(G )

D(G )
inerD

DD
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The tame inertial Langlands correspondence, continued

Theorem (L.)

R(G )
rec //

��

��

L(G )

Res
WF
IF

��

A(G )
iner
//

{{

I(G )

D(G )
inerD

DD

(i) #iner−1
D (ϕ|IF ) = #rec−1(ϕ);

(ii) #iner−1(ϕ|IF ) =
∑

(Gx ,σ)∈iner−1
D (ϕ|IF ) #Sσ.
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Consequences for finite groups

Corollary (“Local Langlands” for finite groups)

The “regular” cuspidal representations of the parahoric subgroups of G are
naturally parametrised by the set of LG-conjugacy classes of smooth
Frob-semisimple homomorphisms IF/I

+
F →

LG. Moreover, this
parametrisation has a completely explicit description.

This gives a natural transfer between packets of representations of finite
groups of Lie type.

For example, taking G = Sp4(F ), there are vertices x , y ∈ B(G ) with
Gx/G

+
x = Sp4(k) and Gy/G

+
y = SL2(k)× SL2(k). There exist inertial

types ϕ : IF/I
+
F →

LSp4(F ) = SO5(C) such that iner−1
D (ϕ) contains

cuspidal representations of both Gx/G
+
x and Gy/G

+
y .
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