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F a non-archimedean local field;

O C F its discrete valuation ring;

p C © the maximal ideal;

k=o0/p~Fq; q= pf the residue field;

G a connected reductive group defined over F;

G = G(F), with the p-adic topology;

0G the subgroup of G generated by its compact subgroups;

Rep(G) the category of smooth C-representations of G.
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Parahoric subgroups

Let B(G) denote the (affine) Bruhat-Tits building of G. This is a locally
finite polysimplicial complex on which G acts via simplicial automorphisms.
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Let B(G) denote the (affine) Bruhat-Tits building of G. This is a locally
finite polysimplicial complex on which G acts via simplicial automorphisms.

For x € %(G), the group G, = Stabg(x) N°G is compact open, and
canonically of the form G, (0) for a smooth (possibly disconnected)
0-model GX of G. Let G4 be the identity component of GX, and let
Gx = Gx(0). Gy is a parahoric subgroup of G.

Gy is maximal as a parahoric subgroup of G if and only if x € Z(G) is a
vertex, and Gg = gGyg 1.

The pro-unipotent radical of Gy is its maximal open normal pro-p
subgroup, denoted G;. The group G,/G,' identifies with G, (k), for a
connected reductive group G, over k (the special fibre of Gy).

Definition

An irreducible representation m of G is of depth zero if there exists
x € B(G) such that 76 # 0.
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An example

The building of G = SLy(F) is a regular infinite tree of degree g + 1:

Vertices naturally correspond to o-lattices in F2, and for a lattice A, Gp is
the usual stabilizer of A. If x is not a vertex, G, = Gp N Gy for A, N the
two neighbouring vertices.
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An example

The building of G = SLy(F) is a regular infinite tree of degree g + 1:

Vertices naturally correspond to o-lattices in F2, and for a lattice A, Gp is
the usual stabilizer of A. If x is not a vertex, G, = Gp N Gy for A, N the
two neighbouring vertices.

So, up to GLy(F)-conjugacy, the parahoric subgroups of SLy(F) are:

Kl_(o Z)HG; K1+_(1+P p >ﬂG; Ko/Ki ~ SL(2, q); and

o p 1+
_(© © e+ [(1+p 0O ) + 0 (X2
K2_<p O)mc, K; _< N 1+p)mc, KoKy =~ (F)2.
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Theorem (Bernstein decomposition)

The category Rep(G) of smooth complex representations of G splits as an
product of indecomposable full subcategories:

Rep(G) = H Rep®(
s€B(G)
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Theorem (Bernstein decomposition)

The category Rep(G) of smooth complex representations of G splits as an
product of indecomposable full subcategories:

Rep(G) = H Rep®(
s€B(G)

Definition
Let & C B(G). An &-type (J, \) consists of an irreducible representation

A of a compact open subgroup J of G such that, for any m € Rep(G), one
has Hom (), 7|;) # 0 if and only if m € Rep®(G) = [[,cs Rep®(G).

For a supercuspidal representation 7 of G, let [G, 7|s denote the unique
s € B(G) such that m € Rep®(G).

Then the irreducible objects of Repl®™¢(G) are 7 ® w, for unramified

w: G — C* (i.e. such that wlog is trivial).
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Depth zero types

Definition

An unrefined depth zero type is a pair (Gx, o) where x € Z(G) and o is
an irreducible cuspidal representation of G./Gy .
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An unrefined depth zero type is a pair (Gx, o) where x € #(G) and o is
an irreducible cuspidal representation of G./Gy .

Theorem (Morris)

(i) Let (Gx, o) be an unrefined depth zero type. Then (Gyx, o) is an
S, -type for some finite set S, C B(G).

(i) Rep®?(G) contains a supercuspidal representation if and only if x is
a vertex in B(G), in which case any element of Irr®? (G) is
supercuspidal.

(iii) Any depth zero representation of G contains a unique G-conjugacy
class of unrefined depth zero types.
(iv) For any s € &,, there exists a subrepresentation T of Indgz o such

that (éX, T) is an s-type. In particular, there exists a [G, ] g-type for
every depth zero supercuspidal representation 7w of G.
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Classification of types

Definition

A refined depth zero type is a type of the foNrm (GX, 7), for some unrefined
depth zero type (Gx, o) and some 7 — Indgi 0.
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(i) Let y € B(G) and suppose that ¢’ is a representation of G, such

that (G,,0’) is an &'-type for some &' C &,. Then there exists a
g € G such that y = gx and 0/ ~ &0.

(i) If K C G is maximal compact and there exists a [G, 7| g-type of the
form (K, T) then there exists a g € G such that K = Ggx, and 7|g,,
is a sum of G-conjugates of o.

(ii1) Any [G,7]|g-type is a refined depth zero type.
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The tame inertial Langlands correspondence

F/F separable algebraic closure; k/k the resulting closure of k;
Wr C Gal(F/F) the Weil group; Ir C WE the inertia group:

0—— Ir —— Gal(F/F) —— Gal(k/k) ~ Z.————0

]

0 > Ip We Z = (Frob : x + x4) —— 0
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The tame inertial Langlands correspondence

F/F separable algebraic closure; k/k the resulting closure of k;
We C Gal(F/F) the Weil group; Ir C WE the inertia group:

0—— Ir —— Gal(F/F) —— Gal(k/k) ~ Z.————0

]

0 Ir We Z = (Frob : x + x4) —— 0

Let /,:f C Ir be the wild inertia group, i.e. the maximal open normal pro-p
subgroup, and let LG be the Langlands dual of G; this is an algebraic group
over C whose connected component has root datum dual to that of G.

Theorem (DeBacker—Reeder)

There is a surjective map with finite fibres

R(6) £(G)
Il Il

iso. classes of “regular’ depth zero rec smooth “regular” Frob-semisimple
supercuspidal representations p:Wg/ I;f —LG, modulo LG-conjugacy

V.
8/ 11
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The tame inertial Langlands correspondence, continued

Let LA(G) denote the set of conjugacy classes of [G, 7]-types (refined
depth zero types), for m € R(G), and D(G) the set of conjugacy classes of
unrefined depth zero types contained in m € R(G).
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The tame inertial Langlands correspondence, continued

Let LA(G) denote the set of conjugacy classes of [G, 7]-types (refined
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The tame inertial Langlands correspondence, continued

Let LA(G) denote the set of conjugacy classes of [G, 7]-types (refined
depth zero types), for m € R(G), and D(G) the set of conjugacy classes of
unrefined depth zero types contained |n m € R(G).

Let Z(G) denote the image under Res, of L(G).

Theorem (L.)

There are unique well-defined surjective maps iner : A(G) — Z(G) and
inerp : D(G) — Z(G) such that the following diagram commutes:

R(G) —= L(G)

l lResYZF

A(G) ——Z(G)

inerp
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The tame inertial Langlands correspondence, continued

Theorem (L.)

R(G) —= L(G)

J{ lRes;/VF
F

A(G) ——I(G)

e

D(6)

inerp

(i) #inerp'(¢li) = #rec™ (¢);
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The tame inertial Langlands correspondence, continued

Theorem (L.)

R(G) —= L(G)
J{ lRes;/:F
A(G) WI(G)
D(G) .
(i) #inergl(sO!/F) = #rec (),
(II) #iner_l(ﬂlp) = Z(GX,U)Einer;)l(@hF) #6o.
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Consequences for finite groups

Corollary (“Local Langlands” for finite groups)

The “regular” cuspidal representations of the parahoric subgroups of G are
naturally parametrised by the set of LG-conjugacy classes of smooth
Frob-semisimple homomorphisms I/ /,ﬁf — LG. Moreover, this
parametrisation has a completely explicit description.

This gives a natural transfer between packets of representations of finite
groups of Lie type.

For example, taking G = Sp4(F), there are vertices x, y € #(G) with
Gx/ Gy = Spy(k) and G, /Gf = SLy(k) x SLy(k). There exist inertial
types ¢ : Ig/IF — LSp,(F) = SOs5(C) such that inerp! () contains
cuspidal representations of both G, /G, and G, /G .
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