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Background

This is joint work with Nuno Freitas and Bartosz Naskręcki.

The Generalized Fermat Equation is the equation

xp + yq = zr

with fixed exponents p, q, r ≥ 2,
to be solved in coprime integers.

The structure of its solution set is governed by

χ =
1

p
+
1

q
+
1

r
− 1 .

Theorem.
• If χ > 0, there are infinitely many solutions.
• If χ ≤ 0, there are only finitely many solutions.
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Known Solutions

Apart from trivial solutions (with xyz = 0),
there are only the following ten solutions known when χ ≤ 0:

1+ 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072, 338 + 15490342 = 156133

(up to permutations and sign changes).

Conjecture.
There are no other nontrivial solutions.

Remark.
The ABC Conjecture (with any ε < 1/5) would imply
that there are only finitely many solutions in total for χ ≤ 0.
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The Next Case

Heuristically, one expects more solutions when χ < 0 is closer to zero:

{p, q, r} {2, 3, 7} {2, 3, 8} {2, 4, 5} {2, 3, 9} {2, 3, 10} {2, 3, 11}

−χ 1/42 1/24 1/20 1/18 1/15 5/66

#solns 5 3 2 2 1 1?

The five cases that have χ < 0 closest to zero have been completely solved.
({2, 3, 8}, {2, 4, 5}, {2, 3, 9}: N. Bruin; {2, 3, 7}: B. Poonen, E. Schaefer, MS;
{2, 3, 10}: D. Zureick-Brown and S. Siksek independently)

The next case in this ordering is (p, q, r) = (2, 3, 11).
The only nontrivial solutions should be (x, y, z) = (±3,−2, 1).

Goal: Solve x2 + y3 = z11!
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Frey Curves

We follow the general approach taken in the proof of FLT.
To a putative solution (a, b, c) of x2 + y3 = z11

we associate the Frey elliptic curve

E(a,b,c) : y
2 = x3 + 3bx− 2a .

It has discriminant −123c11.

The 11-torsion Galois module E(a,b,c)[11] is always irreducible.
By the usual level lowering results and modularity (plus some extra work),
we find that (up to quadratic twist) E(a,b,c)[11] ' E[11] for some

E ∈ {27a1, 54a1, 96a1, 288a1, 864a1, 864b1, 864c1} .

Known solutions: (±1, 0, 1) ↔ 27a1, ±(0, 1, 1) ↔ 288a1, (±3,−2, 1) ↔ 864b1.
The trivial solutions (±1,−1, 0) result in a degenerate Frey curve.
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The CM Cases

The curves 27a1 and 288a1 have complex multiplication.
In both cases the image of the mod 11 Galois representation
is contained in the normalizer of a non-split Cartan subgroup.

Elliptic curves E ′ such that E ′[11] ' 27a1[11] or 288a1[11]
correspond to rational points on the quadratic twists

X
(d)
nonsplit(11) −→ X+nonsplit(11)

with d = −3 or −1 of the double cover Xnonsplit(11) −→ X+nonsplit(11).

X
(d)
nonsplit(11) has genus 4 and can be defined by the equations

y2 = 4x3 − 4x2 − 28x+ 41

t2 = −d(4x3 + 7x2 − 6x+ 19)
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The CM Cases (2)

X
(d)
nonsplit(11) : y2 = 4x3 − 4x2 − 28x+ 41 , t2 = −d(4x3 + 7x2 − 6x+ 19)

The Jacobian of each of the two curves splits up to isogeny
as a product of four elliptic curves of rank 1.
So a direct application of Chabauty’s method is not possible.

Let K = Q(α) with α a root of 4x3 − 4x2 − 28x+ 41.

A rational point on X(d)nonsplit(11) will give a K-rational point
with rational x-coordinate on

u2 = −d(x−α)(4x3+7x2−6x+19) or u2 = −d(4−α)(x−α)(4x3+7x2−6x+19) .

These elliptic curves over K have rank ≤ 2 < [K : Q],
so Elliptic Curve Chabauty applies and can be used to show
that the only solutions coming from 27a1 and 288a1 are the trivial ones.
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The Remaining Curves

We still have to deal with E = 54a1, 96a1, 864a1, 864b1, 864c1.

An elliptic curve E ′ such that E ′[11] ' E[11]
corresponds to a rational point on one of two twists XE(11) and X

−
E (11)

of the modular curve X(11),
depending on whether the isomorphism acts on the Weil pairing
by a square or a nonsquare in F×11.

A detailed study of the possible Galois representations over Q2 and Q3
lets us rule out the twists X−E (11) for all curves E.

It remains to find the rational points on the five twists XE(11)
that correspond to primitive (= coprime integer) solutions of x2+y3 = z11.
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From X(11) to X0(11)

The genus of X(11) is 26, which is too large for explicit computations.

Instead, we use the intermediate curve C := X0(11),

which is the elliptic curve 11a1. XE(11) 'Q̄ X(11) → X0(11)
j→ P1

Let KE be the field of definition of a cyclic subgroup of order 11 on E.
Then a rational point on XE(11) maps to a KE-rational point on C,
whose image under the j-invariant map is in Q.

This is again the setting for Elliptic Curve Chabauty.

Problem:
We need to find generators of a finite-index subgroup of C(KE),
but are unable to do so.
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Selmer Group Chabauty

We work around this problem by employing a new approach
that allows us to perform Elliptic Curve Chabauty
based only on the knowledge of a suitable Selmer group.

We can compute the 2-Selmer group S of C over KE,
assuming the Generalized Riemann Hypothesis.
([KE : Q] = 12; we need the class group of a cubic extension LE of KE.)

The Selmer group sits in the following diagram:

C(KE)

2C(KE)
↪→ S

σ−→ C(KE ⊗Q2)
2C(KE ⊗Q2)

↪→ (LE ⊗Q2)×

(LE ⊗Q2)×2

We check that σ is injective for each of our curves E.
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Partitioning the j-Line

The main idea is to combine the global information from the Selmer group
with local, in our case 2-adic, information.

We first find the potential images in Q2 under the j-invariant map
of the points we are interested in.
For each curve E, we obtain a finite collection of sets {u+ vtn : t ∈ Z2}:

54a1 : 1 set , 96a1 : 3 sets , 864a1 : 2 sets , 864b1 : 3 sets , 864c1 : 3 sets .

We lift these sets in all possible ways to C(KE ⊗Q2)
and check which of them map into σ(S) under π : C(KE ⊗Q2) → C(KE⊗Q2)

2C(KE⊗Q2)
.

This leaves

54a1 : 1 set , 96a1 : 2 sets , 864a1 : 0 sets , 864b1 : 1 set , 864c1 : 1 set .

This already rules out 864a1.
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Dealing With the Remaining Sets

For each of the remaining sets D there is a point P ∈ C(KE) such that

P and all points mapping into D have the same image in C(KE⊗Q2)
2C(KE⊗Q2)

.

Lemma.
Assume that for all P 6= Q ∈ C(KE ⊗Q2) with j(Q) ∈ D
there are n ≥ 0 and Q ′ ∈ C(KE⊗Q2) such that Q = P+ 2nQ ′ and π(Q ′) /∈ σ(S).
Then if j(P) ∈ D, P is the only point Q ∈ C(KE) with j(Q) ∈ D,
and if j(P) /∈ D, then there is no such point.

Proof. Let Q ∈ C(KE) with j(Q) ∈ D and Q 6= P.
Then Q = P + 2nQ ′ with Q ′ ∈ C(KE ⊗Q2) and π(Q ′) /∈ σ(S).
Using that σ is injective and C(KE)[2] = 0, we obtain Q ′ ∈ C(KE),
which implies π(Q ′) ∈ σ(S), a contradiction. 2
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Finishing the Argument

The point Q ′ in the Lemma is unique (we have to take n maximal).
The map Q 7→ π(Q ′) is locally constant on any lift of D in an explicit way.
So we can effectively check the assumption in the Lemma.

It turns out that the assumption holds in all cases.
This leaves us with three points P such that j(P) ∈ D,
only one of which gives a primitive solution, namely (±3,−2, 1).
(This point comes from the ‘tautological point’ on X864b1(11).)

We finally obtain:

Theorem.
Assume GRH. The only coprime integer solutions of x2 + y3 = z11 are

(±1, 0, 1) , ±(0, 1, 1) , (±1,−1, 0) , (±3,−2, 1) .
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Thank You!


