Maximal Edit Distance to a Synchronizing Coloring of a Graph

Michael Samoylenko Ural Federal University

Introduction

Goal: What number of coloring changes is sufficient to make it synchronizing?

- Examples of graphs, for which that number is big.
- How big that number can be for a graph on n vertices upper bound.

Graphs and Automata

- $G = \langle V, E \rangle directed multigraph$
- |V| = n number of vertices
- $\forall v \in V, out\text{-}degree(v) = k$

- $A = \langle Q, \Sigma \rangle deterministic finite automata$
- |Q| = n number of states
- $|\Sigma| = k$ number of symbols (colors)

Synchronizing automata

Word $w \in \Sigma^*$ – synchronizing (reset) word $q_1 \cdot w = q_2 \cdot w$, for all $q_1, q_2 \in Q$ a a,b Example: Černý automata b Synchronizing word: $(ab^3)^2a$ b 3 b

Motivation

When graph has a synchronizing coloring?

- 1. Graph has a unique reachable sink component.
- 2. Graph is aperiodic (primitive) the gcd of lengths of all its cycles is equal to 1.

Road coloring theorem:

A graph has a synchronizing coloring if and only if it satisfies those two condition.

Problem:

What is the number of *changes*, that is sufficient to transform any random coloring to a synchronizing one?

Coloring change

Problem formulation

Sync-range of an automata A, denoted $\varrho(A)$, is the minimal distance to a synchronizing coloring

Sync-range of a graph G, denoted $\varrho(G)$, is the maximal sync-range of its colorings.

How large can $\varrho(G)$ be, for a graph on n vertices? Upper bound: n(k - 1)

Simple enumeration of graphs for k = 2 up to 6 vertices gives us:

Simple enumeration of graphs for k = 3 up to 4 vertices gives us:

Enumeration of graphs up to n=10 for k=2 and to n=7 for k=3 gives: nothing new...

It is easy to guess the next one. This is the graph of **d**-dimensional hypercube with loops.

- $Hypercube_d$ • $n = 2^d$
- k = d + 1
- $\varrho(Hypercube_d) = d$

Cayley graphs

Let \mathfrak{G} – be a group and $S \subseteq \mathfrak{G}$ – generating set The Cayley graph $\Gamma(\mathfrak{G}, S) = \langle V, E \rangle$, is automata where: • $V = \mathfrak{G}$

- $\Sigma = S$
- For each element $g \in \mathfrak{G}$, and generator $s \in S$ there is an edge (g, gs) in E, having color s.

Note that 6 is uniquely defined by S, and can be omited.

Hypercube graphs

It is easy to see, that every $Hypercube_d$ graph is in fact Cayley graph of a permutation group with generating set composed of:

- Identity permutation
- *Cycle* (1, 2)
- *Cycle* (3, 4)
- ...
- *Cycle* (2d 1, 2d)

For example: $Hypercube_2$ is a graph of a group of permutations on 4 elements, with generating set {id, (1,2), (3,4)}

Hyperprism graphs

 $Hyperprism_d$

- $n=2\cdot 3^{d-1}$
- k = d
- $\varrho(Hyperprism_d) = d$
- It is Cayley graph of:
- (1,2),(1,2,3)
- (4,5), (4,5,6)
- • •
- (3d-2, 3d-1)
- (3d-2, 3d-1, 3d)

Symmetric group graph

Cayley graph of generated by:

- (1, 2, ..., d 1)
- (1, 2, ..., d)
 Is a graph of the symmetric group S_d, and has:
- n = d!
- k = 2
- $\varrho(G) = d$

Determining synchronization *Lemma*:

Automata A is synchronizing if f $\forall q_1, q_2 \in Q, \exists w \in \Sigma^* : q_1 \cdot w = q_2 \cdot w$

Algorithm:

Consider graph $\mathcal{P}^{[2]}(A) = \langle Q', \Sigma \rangle$, where $Q' = Q \cup \{(q_1, q_2) | q_1, q_2 \in Q\}$. Check that for every (q_1, q_2) there is some reachable singleton q.

Upper bound

Denote SCC(A) – number of sink components in $\mathcal{P}^{[2]}(A)$.

A is synchronizing \Leftrightarrow SCC(A) = 1.

Observation:

If for every non-synchronizing coloring A, there is a change to a coloring B having $SCC(B) \leq SCC(A)/2$

Then, $\varrho(A) \leq \log_2 n$.

Summary

We have upper bound: $\varrho(G) \leq \log_2 n$ It is reached by Hypercube_d, for $k = d = \log_2 n$.

For k = 2, upper bound must be smaller: For a graph having $n = d!, \varrho(G) = d$. But the upper bound is $\ln d! \approx d \cdot \ln d$.