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Introduction

Goal: What number of coloring changes is sufficient to make it synchronizing?

e Examples of graphs, for which that number is big.

e How big that number can be for a graph on n vertices - upper bound.



Graphs and Automata

1 1

G = (V,E) — directed multigraph m m

V| = n —number of vertices

Yv € V,out-degree(v) = k @

A= (0Q,X) — deterministic finite automata
|Q| = n — number of states
|2| = k — number of symbols (colors)



Synchronizing automata

Word w € £* — synchronizing (reset) word
q1 W =qz - w,forallq,,q; €Q

1 2 v
Q Example: Cernyautomata
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P,

Synchronizing word: (ab®)?a




Motivation

When graph has a synchronizing coloring?

1. Graph has a unique reachable sink component.

2. Graph is aperiodic (primitive) - the gcd of lengths of all its cycles is equal to 1.

Road coloring theorem:
A graph has a synchronizing coloring if and only if it satisfies those two condition.

Problem:
What is the number of changes, that is sufficient to transform any random coloring

to a synchronizing one?



Coloring change
1 0 1

OO OO

Not synchronizing Synchronizing



Problem formulation

Sync-range of an automata A, denoted 0(A),
is the minimal distance to a synchronizing coloring

Sync-range of a graph G, denoted 0(G),
is the maximal sync-range of its colorings.

How large can o(G) be, for a graph on n vertices?
Upper bound: n(k — 1)



Experiments

Simple enumeration of graphs for k = 2 up to 6 vertices gives us:




Experiments

Simple enumeration of graphs for k = 3 up to 4 vertices gives us:
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Experiments

Enumeration of graphs up to n=10 for k=2 and to n=7 for k=3 gives: nothing new...




Experiments

It is easy to guess the next one.
This is the graph of d-dimensional
hypercube with loops.

Hypercubeg,
e n =24
ck=d+1

* o(Hypercube,) = d




Cayley graphs

Let ® — be a group and S € ® — generating set
The Cayley graphT (®,5) = (V,E),is automata where:
e V=0
s YX=395
» For each element g € ®,and generator s € S
there is an edge (g, gs) in E, having color s.

Note that ® is uniquely defined by S, and can be omited.



Hypercube graphs

It is easy to see, that every Hypercube,; graph
s in fact Cayley graph of a permutation group
with generating set composed of:

« Identity permutation

« Cycle (1,2)

« Cycle (3,4)

 Cycle (2d —1,24d)

For example: Hypercube, is a graph of
a group of permutations on 4 elements,
with generating set {id, (1,2), (3,4)}




Hyperprism graphs

Hyperprismg

e n=2-.3%"1

c k=d
 o(Hyperprismy) =d

It is Cayley graph of:
- (1,2),(1,2,3)

* (41 5)1 (41 51 6)

* (3d—-2,3d—1)

« (3d—2,3d —1,3d)




Symmetric group graph

4123 3412
Caézlleéz gracioh 01]; generated by: 2413 : 4132
« (1,2,..,d)
Is a graph of the symmetric 32‘;—’132
group fﬁ' and has: 12434_2431 43214_3214 21344—1342
* n=d!
e k=2 1432—»2143
3124 —>4312 4213—>3421
e \ j/
142 €4— 1423
/ 314_»4231 \

1234 2341




Determining synchronization

Lemma:
Automata A is synchronizing if f
V41,92 €EQ,AWEL 1 q - W=qy W

Algorithm:
Consider graph P21(4) = (Q', %), where

Q, — Q U {(QL qZ)lQlJ d> € Q}
Check that for every (qq4,q,) there is

some reachable singleton q.



Upper bound
Denote SCC(A) — number of sink components in PI21(4).

A is synchronizing & SCC(A) = 1.

Observation:

If for every non-synchronizing coloring A, there is
achange to a coloring B having SCC(B) < SCC(A)/2

Then,p(A) < log,n.



Summary

We have upper bound: o(G) < log,n
It is reached by Hypercubeg,
fork =d =log,n.

For k = 2, upper bound must be smaller:
For a graph having n = d!, o(G) = d.
But the upper boundisInd! = d - In d.



