
Synchronization of Weakly Acyclic Automata

Andrew Ryzhikov
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Synchronizing Automata

We consider deterministic finite automata without inputs and outputs.

Definition

Automaton A = (Q,Σ,δ ) is synchronizing, if there exists a word

w ∈Σ∗ such that after reading this word A is transited to some

particular state regardless of its initial state. Such word is called a

reset word.
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Applications

1. Orienting parts in manufacturing;

2. Synchronizing codes;

3. Semigroup theory;

4. Symbolic Dynamics.
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Theorem (Černý)

Checking whether an automaton is synchronizing can be done in

polynomial time.
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For each automaton with n states there exists a reset word of length

(n−1)2.

Proved for orientable, Eulerian, aperiodic, ...

Theorem (Pin)

For each automaton with n states there exists a reset word of length
n3−n

6
.



Weakly Acyclic Automata

Definition

A cycle in an automaton is a sequence q1, . . . ,qn of its states such that

there exist letters x1, . . . ,xn ∈ Σ with δ (qi ,xi) = qi+1 for 1 ≤ i ≤ n−1

and δ (qn,xn) = q1. A cycle is a self-loop if it consists of one state. An

automaton is called weakly acyclic if all its cycles are self-loops.

Called sometimes acyclic or partially ordered.
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Motivation

Why study synchronization in weakly acyclic automata?

1. It’s a natural notion;

2. Many hard problems for general automata are still hard for them

– we get tighter results;

3. Already considered implicitly in several complexity reductions.
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Short Words

Definition

Given an automaton A, the rank of a word w is the number

|{δ (s,w) | s ∈ Q}|

Theorem (R)

Let A be a weakly acyclic automaton, and w be a word of rank r with

respect to A. Then there exists a word of length n− r and rank r with

respect to A.



Short Words

Definition

Given an automaton A, the rank of a word w is the number

|{δ (s,w) | s ∈ Q}|

Theorem (R)

Let A be a weakly acyclic automaton, and w be a word of rank r with

respect to A. Then there exists a word of length n− r and rank r with

respect to A.



Synchronizing Set

Definition

A set S ⊆ Q of states in an automaton A is called synchronizing if

there exists a word w ∈ Σ∗ and a state q ∈ Q such that the word w

maps each state s ∈ S to the state q.
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for a synchronizing subset of states.
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Synchronizing Set

Theorem (R)

Let S be a synchronizing set of states of size k in a weakly acyclic

n-state automaton A. Then the length of a shortest reset word for S is

at most
k(2n−k−1)
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Short Synchronizing Words Complexity

Theorem (Eppstein)

Finding a shortest reset word for binary weakly acyclic automata is an

NP-hard problem.

Theorem (Berlinkov)

For any γ > 0, the problem of finding a reset word of minimum length

in weakly acyclic synchronizing automata with alphabet of size n1+γ

can not be approximated within a factor of d logn for any d < csc

unless P = NP.

Question

Improve this bounds or find approximation algorithms.
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MAX SYNC SET

MAX SYNC SET

Input: An automaton A;

Output: A synchronizing set of states of maximum size in A.
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