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Introduction

Palindrome is a finite string w[1..n] equal to its reversal
w[n] · · ·w[2]w[1]

like the word rotator

a simple and important type of repetitions in strings
a lot of attention in CS literature since 1970s

see Slisenko 1973; Manacher 1974; Knuth, Morris, Pratt
1975; Galil, Seiferas 1978 etc

important generalizations motivated by bioinformatics
(involutive palindromes, gapped palindromes)
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Definitions

Palindromic factorization (PF) is the factorization of a
string that contains only palindromes.
abacaba = aba · c · aba is a PF, abacaba = abacaba is a PF
too. But abac · aba is not a PF.

Palindromic k-factorization is the a PF that contains
exactly k palindromes.
ababa = ababa is 1-factorization, a · b · aba is
3-factorization.
Palindromic length (PL) of a string S is the minimal k such
that the string S has a k-factorization. PL(abacaba) = 1,
PL(baca) = 2 , PL(abaca) = 3
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Two Problems about Palindromic Factorization

Compute Palindromic Length online
The input string arrives symbol by symbol; for each new
symbol the algorithm updates the palindromic length of the
processed string

Simple solution: O(n2) time and O(n) space by using
dynamic programming. PL[i] is the palindromic length of
the prefix of length i.

k-factorization online

Simple solution: O(kn2) time and O(kn) space by using
dynamic programming. can[i][j] is the bit indicating
whether a j-factorization exists for the string S[1..i].
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Overview of Results on Factorization

Palindromic length k-factorization

2014 O(n log n) 2015 O(kn)
Fici, Gagie, Karkkainen, Kempa Kosolobov, Rubinchik, Shur

2016 O(n log n) 2016 O(n log n)
Rubinchik, Shur. Rubinchik, Shur.

O(n) — open problem O(n) — open problem
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History of these problems
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Palindromic series

Let suf1 be the largest suffix palindrome of the string, suf2
be the second and ... suft the smallest suffix palindrome
(one symbol).

period(suf1) ≥ period(suf2) ≥ ... ≥ period(suft−1) ≥
period(suft)
There are O(log n) different periods of suffix palindromes.
Palindromic series is the set of suffix palindromes with the
same period.
All suffix palindromes can be stored within O(log n) space
(O(1) for each series)
Appending a symbol to the string, we can update the series
list in O(log n) time This is the way O(n log n)-time
algorithms for palindromic factorization work
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Bit compression for palindromic factorizations

For k-factorization we have a k× n boolean matrix for
dynamic programming.

We can replace it by an integer matrix of size
k · (n/w) ≤ k · (n/ log n).

w is the number of bits in machine word
in the word-RAM model we assume that w = O(log n)

In [Kosolobov, Rubinchik, Shur, 2014] it was shown that
this matrix can be updated in O(kn) time
For palindromic length, we have a size n integer array for
dynamic programming
We cannot compress it in a simple way.
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Our result: Bit compression for palindromic length

Lemma
If S is a string of palindromic length k and c is a symbol, then
the palindromic length of Sc is k− 1, k, or k + 1.

For string “abacabaaa”, the array of palindromic lengths for
all prefixes is 1, 2, 1, 2, 3, 2, 1, 2, 2.
We can represent it like +1, -1, +1, +1, -1, -1, +1, 0. We
can replace 0 to 00, +1 to 01, -1 to 10. So we can replace
the integer array of size n to a bit array of size 2n.

Theorem
Palindromic length of a string can be found in O(n) time online.
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Open problem

The existence of a k-factorization can be decided in O(kn)
time or in O(n log n) time.

Lemma
Given a k-factorization of string S of length n, it is possible, in
O(n) time, to factor S into k + 2t palindromes for any positive
integer t such that k + 2t ≤ n.

We need to find “even palindromic length” and “odd
palindromic length” in linear time.
The difference between neighboring elements in the array of
even (odd) palindromic lengths can be Ω(n)

So we need some other trick

Open question
Is there a linear time algorithm for k-factorization.
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Thank you for your attention!
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